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Abstract

The inversion of soil moisture from Synthetic Aperture Radar (SAR) closure phases is intrinsically plagued by
ambiguities that affect the moisture order. This work shows a characterization of the ambiguities and a way
to solve for them with the help of interferometric coherence. This allows to properly constrain the inversion
and to retrieve the moisture signal. A data set of ALOS-2/ PALSAR-2 L-band images is used as an example of
successful inversion at the scene level, with sub-kilometer resolution. The results are validated with soil moisture
products based on ASCAT and show a high degree of correlation. The raw moisture derived by the algorithm
could be immediately used to correct SAR interferometric phases; however, for applications that need absolute
moisture levels, a calibration step is likely necessary. Unexpectedly, a good performance was observed over
forested areas, which suggests a sensitivity of closure phases to tree moisture; at the same time, over pastures
and agricultural �elds the closure phase signal was found relatively weak. Additional research is needed to
evaluate the applicability of the same measurements principle to shorter wavelengths and exploitation of potential
synergies with backscatter and polarimetric information.
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1. Introduction

Soil moisture is a key variable in modeling the wa-
ter cycle, energy and carbon �uxes and therefore rele-
vant for many disciplines including hydrology, meteo-
rology, and climatology (Ochsner et al. (2013); Wag-
ner et al. (2012)). Whereas moisture probes give pre-
cise point measurements, the high spatial variability
of the moisture signal limits the usefulness of single
probes or even sensor networks for characterizing a
given area (Peng et al. (2017); Crow et al. (2012)).
Remote sensing techniques are useful in sensing the
moisture �eld over large areas, with their limitations:
coarse spatial resolution (e.g. > 10 km), sparse tem-
poral sampling (e.g. a few days), sensitivity only to
the �rst centimeters of soil (i.e. no root zone mois-
ture) (Mohanty et al. (2017)). Currently, the most
successful wide-area retrieval concepts belong to the
�eld of microwave remote sensing, active and pas-

sive (Peng & Loew (2017); Das & Paul (2015); Kor-
nelsen & Coulibaly (2013)).

Both active and passive techniques often require
compensation of unwanted in�uences related to the
vegetation cycle and surface roughness (Brocca et al.
(2011); Wagner et al. (1999)). Products derived
from synthetic aperture radar backscatter cannot fully
exploit the high resolution of SAR images: exten-
sive spatial averaging is typically needed in order to
counter the instability of surface roughness (Thoma
et al. (2008)).

This paper presents a novel moisture measurement
concept based on SAR closure phases. This concept
has the potential to offer moisture products with �ne
spatial resolution (e.g. 500 m or better), which is
one unmet need identi�ed in Peng & Loew (2017),
the other being high temporal resolution. Consider-
ing the three interferograms I l ,m, Im,n, In,l generated
with three images l , m, n and averaged spatially, the
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closure phase is simply the phase of the cyclic prod-
uct of the interferograms:

� l ,m,n = arg( I l ,m Im,n In,l ). (1)

Closure phases are interferometric observables whose
potential in SAR has not been entirely explored
yet (De Zan et al. (2015)). It has been known for
a few years that interferometric and closure phases
carry information on soil moisture (Morrison et al.
(2011); De Zan et al. (2014); Zwieback et al. (2015)),
however the retrieval of moisture levels from closure
phases has not shown any progress (Zwieback et al.
(2017)). On the other hand, there would be obvious
advantages in using closure phases instead of interfer-
ometric phases for moisture inversion: closure phases
are immune to all simple propagative effects like tar-
get displacement, delays in atmospheric propagation,
topographic effects, i.e. the usual contributors to the
interferometric phase.

The approach proposed in this contribution could
complement existing methods (radiometric or scat-
terometric) for soil moisture retrieval. However, with
this work we do not claim to introduce an operational,
ef�cient, and validated technique for soil moisture re-
trieval. We report �rst experiments with L-band data,
which we selected considering the coherence advan-
tage and the fact that closure phases are larger in L-
band compared to higher frequencies. Our �rst results
are promising; however, the only L-band spaceborne
SAR sensor today is PALSAR-2 onboard ALOS-2, and
for any operational soil moisture applications its spa-
tial and temporal sampling is likely insuf�cient. How-
ever, more satellite L-band SAR's are being launched,
and we should prepare today for future opportunities.

The physical modelling and understanding is also
not complete: in the data set we examined, for ex-
ample, the scale of the closure phase signal is rather
weak over the (relatively small) areas of pasture and
rice �elds. Surprisingly, we were able to perform con-
sistent inversions over large forested areas, where the
closure signal is very strong. All this shows the need
for further understanding before an operational algo-
rithm can be designed and the potential of closure
phases can be fully harnessed.

Apart from the potential for soil moisture retrieval,
the successful inversion of a moisture model will al-
low correcting the interferometric phases, both for
single interferograms and for multi-image interfero-
metric processing. These corrections are especially
relevant for the lower frequency SAR's, since the effect
of moisture variations roughly scales with the wave-

length (Zwieback et al. (2017)).
In this publication we speci�cally address the pres-

ence of an ambiguity in the moisture model for clo-
sure phases: the same set of observed closure phases
can be explained almost equally well by different sets
of moisture levels. The ambiguity arises because the
closure phases can only partially constrain the order-
ing of the acquisitions according to moisture levels.
This is illustrated in Section 2. Once this ambigu-
ity is tackled explicitly and correctly solved, the way
is open for reliable moisture inversion (Section 3).
Section 4 presents inversion results and a compari-
son with several available products. Successful inver-
sion of moisture levels allows compensating moisture-
induced contributions to interferometric phases (Sec-
tion 5) thus improving traditional repeat-pass InSAR
products like deformation monitoring of the Earth's
crust.

2. Ambiguities in closure phases models

2.1. Interferometric models for moisture

We want to model the interferograms as a function
of the moisture values in the two interfering acqui-
sitions, indexed by l and m. Our starting point is
Eq. (11) in (De Zan et al. (2014)), which derives the
expected value of the interferogram as a function of
the two wavenumbers (kl and km) and the scattering
pro�le in the soil f (z). We report it here for conve-
nience:

I l ,m =

Z 1

0

f (z) exp(� j2kl z)(exp(� j2kmz)) � dz. (2)

The star indicates the complex conjugation operation.
The wavenumberskn depend on the dielectric con-

stant, which is a function of the moisture levels (� n,
in the following) and soil type (Hallikainen et al.
(1985); Bircher et al. (2016)). A good approximation
is to take the formula for normal incidence (Morrison
& Bennett (2015); De Zan et al. (2014))

k =
Æ

! 2�� , (3)

where ! is the angular frequency, � and � = � (� ) are
respectively the dielectric permeability and permittiv-
ity.

Assuming an exponential scattering pro�le f (z) =
exp(� 2� ), � > 0, the expected value of the interfero-
gram is:

I l ,m =
1=2

j(kl � k�
m) + �

. (4)
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If � = 0, the model is trivially the one of Eq. (12)
in (De Zan et al. (2014)),

I l ,m =
1=2

j(kl � k�
m)

, (5)

and the scattering intensity at different depths is gov-
erned solely by the dielectric constant itself, or more
precisely, by the imaginary part of the wavenumbers.
Note that the interferogram in Eq. (5) is not nor-
malized: normalization is straightforward and is nec-
essary if one needs to compute interferometric co-
herences. The coherence decays approximately with
moisture difference, as one can see in De Zan et al.
(2014). The corresponding closure phase � l ,m,n is
simply the phase of the cyclic triple product

� l ,m,n = arg

�
1=2

j(kl � k�
m)

1=2
j(km � k�

n)
1=2

j(kn � k�
l )

�

. (6)

It is useful to consider another specialization of
Eq. (4), by discarding the imaginary part of the
wavenumbers and setting necessarily� 6= 0:

I l ,m =
1=2

j(kl � km) + �
. (7)

This case describes also the SAR tomographic setting
(see Dall (2007), Eq.(9)), in which it is common to
assume that the variations of the viewing angle do not
affect the scattering pro�le. This model is useful to
derive an approximation to the closure phase (De Zan
et al. (2015))

� l ,m,n = arg( I l ,m Im,n In,l )

� � � � 3(kl � km)( km � kn)( kn � kl ).
(8)

By further approximating kl � km / � l � � m, i.e.
the soil moisture difference, one can obtain a direct
link between closure phases and moisture variations:

� l ,m,n � � � � 3(� l � � m)( � m � � n)( � n � � l ) (9)

where the proportionality parameter � will have to be
properly adjusted.

2.2. Ambiguities in sorting the acquisitions according
to the moisture level

Ambiguities in closure phase models block the
way to the successful inversion of the parameters of
interest, in this particular case the moisture level,
as (Zwieback et al. (2017)) has clearly identi�ed. In
this section we will try to shed light on the character of

�

�

�

�

�

�

Figure 1. Closure-phase signs allow sorting acquisitions accordingto in-
creasing moisture, but the result is wrapped. In the example, acquisitions 5
is the driest, 6 is the wettest, as indicated by the color.
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Figure 2. Left: one possible moisture evolution is displayed with �ll ed cir-
cles. The open circles replicate the evolution to simulate the circular wrap-
ping of the moisture ordering. Right: an alternative moistu re ordering that
would generate the same closure phase signs. It correspondsto a different
selection of the ambiguity interval (dashed horizontal lin es). Additional in-
formation is needed to select the correct solution.

the ambiguities. We are going to base our discussion
on the signs of the closure phases, as we observed that
ambiguities arise in the inversion when two or more
moisture histories yield a set of closure phases which
have the same signs. We start by considering the sim-
pli�ed model for closure phases given by Eq. (9). This
model is not totally equivalent to the one of Eq. (6),
however the signs of the closure phases are identical,
as one can easily verify. The two models are there-
fore considered equivalent for our purpose, and the
conclusions will be valid for both.

It is immediate to verify that cyclical permutations
of the moisture ordering of three acquisitions will not
change the sign of � l ,m,n (Zwieback et al. (2017)).
The same extends to any number of acquisitions and
any closure phase that can be generated with those
acquisitions. Thus it follows that the signs of the clo-
sure phases can be exploited to sort the acquisitions
according to the moisture level, up to a special kind of
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ambiguity: The signs of the closure phases are invari-
ant to cyclic permutations of the moisture order. Fig. 1
illustrates an example of the ambiguous ordering of
six acquisitions. This ambiguity means that there are
many indistinguishable sorting possibilities: for in-
stance, both orders (5,2,1,4,3,6) and (1,4,3,6,5,2) of
increasing moisture are acceptable by looking just at
the signs of the corresponding closure phases. Of
course the different permutations correspond to to-
tally different moisture trajectories in time as shown
in Fig. 2.

The central problem is therefore recovering the
right order among those allowed by the closure phase
signs. This is equivalent to �nding out the acquisition
with the highest moisture level, or the lowest. In gen-
eral, with N acquisitions there are N ambiguous so-
lutions. One can think of different ways of resolving
the ambiguity either using SAR observables or exter-
nal data.

2.3. Additional data are needed to solve the ambiguities

External data (moisture data from other sensors,
or from numerical weather models) could help iden-
tifying, for instance, the acquisition with the high-
est or the lowest moisture level. Nevertheless the
availability, accuracy and spatial resolution of these
measurements is not suf�cient for our objectives. It
is therefore necessary to extract this information di-
rectly from the SAR images.

Using SAR backscatter as a proxy for moisture is
also a possibility (Wagner et al. (2007)). Accord-
ing to our limited experience, it is hard to reliably
identify the wettest or the driest acquisition from the
backscatter series. Note that this is a different applica-
tion from reconstructing the moisture evolution from
the backscatter, for which there exist operational algo-
rithms. Our lack of success may also be explained by
insuf�cient spatial mitigation of temporal roughness
instability, or by seasonal variations in the backscatter
not related to moisture changes. In any case, we soon
abandoned this way when we found a viable solution
based on the local interferometric coherence.

The local interferometric coherence is in�uenced
by temporal decorrelation, volumetric decorrelation,
ground changes, and also by soil moisture. For this
reason, a direct estimation of the soil moisture from
the coherence is probably impossible. Nevertheless,
we think that the coherence can be used to unravel
the ambiguity issue: our concept is to collect a list
of rules that a wrong soil moisture ordering would
break, therefore allowing us to reject it, or at least

consider it as unlikely. For example, images with dif-
ferent levels of soil moisture should typically present
lower coherence levels than images with similar mois-
ture. At the same time one should not forget that
measured coherence values can be lower than pre-
dicted from the inverted moisture, because of tem-
poral decorrelation or other effects, but for sure they
cannot be higher. The coherence compensated with
the predicted moisture is expected to decrease with
time. These considerations allow to evaluate the like-
lihood of any given solution of the ambiguity.

3. Inversion algorithm

Our objective is the recovery of the moisture
changes that explain the closure phases. The input
data of the inversion are therefore the observed clo-
sure phaseŝ� l ,m,n, whereas the moisture levels are the
unknown variables to be estimated. We collect them
in the vector � . The inverse problem is solved by min-
imizing a function that represents how well the data
predicted by the moisture model �t the observations.
We simply took the mean square difference between
predicted and observed data:

E(� ) =
X

l ,m,n

�
�̂ l ,m,n � � l ,m,n(� )

� 2
. (10)

Due to the non-linearity of the problem the cost func-
tion presents many local minima: a nonlinear opti-
mization method would then, in theory, be necessary.
However, the global minimum of the cost function is
not necessarily associated with the correct soil mois-
ture sequence because of the ambiguities in the model
and of the data noise. For this reason, global opti-
mization algorithms are alone not suf�cient to �nd
the correct solution of the problem.

The method we developed to estimate the soil mois-
ture consists of three parts:

(I) For each data pixel, we �rst establish in which
sequence the acquisitions are connected in order
to ensure monotonically increasing moisture values.
That is, we establish the moisture order, subject to
circular permutation ambiguity. The acquisitions are
now arranged in a chain like in Fig. 1;

(II) In the second part, we determine which of the
acquisitions presents the highest moisture level, we
therefore solve the ambiguity and break the moisture
circle at the correct point. This stage corresponds, for
example, to choosing the solution on the left in Fig. 2;

(III) Finally, we recover the actual moisture levels
by a global minimization of the cost function while
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constraining the variables to keep the order estab-
lished in the latter step. The next sections will en-
lighten these procedures more in detail. Figure 3
shows a schematic representation of the whole pro-
cedure.

Among all possible closure phase combinations,
only a subset contains independent data. ForN im-
ages, the number of independent closure phases is
(N � 1) � (N � 2)=2. In our inversions we always use
at least as many closure phases as the number of in-
dependent ones. At the same time the number of un-
knowns is only N � 1 since we do not seem to have
enough sensitivity to estimate the starting value of the
moisture sequence and we �x it arbitrarily to a reason-
able value. With increasing number of acquisitions,
the number of independent data outgrows quickly the
number of unknowns, thus making the result more
reliable. For example, with 4 images there are 3 in-
dependent closure phases and 3 unknowns, with 12
images there are 55 independent closure phases and
11 unknowns.

Figure 3. Block diagram of the inversion algorithm.

3.1. Collection of Ambiguous Solutions

According to Section 2, due to the ambiguity of the
closure phase problem, various moisture sequences
can produce almost the same closure phases. For this

reason, a global optimization will �nd multiple solu-
tions with similar levels of mean square error that are
circularly similar.

In our method we run multiple times a simple min-
imization algorithm (Powell's method) that can only
�nd local minima, for each run we use a different ran-
dom starting point in the moisture domain. This way,
the solutions that are produced should have compa-
rable small error and either be the correct one, or a
circularly equivalent solution, or a different solution.
If the phase noise is suf�ciently low and the physical
model is correct, we assume that the most frequent
solutions and with lowest cost that are found belong
to the same moisture chain, i.e. the correct circular
ordering. The ambiguity has now to be solved, the im-
ages with the maximum and minimum moisture must
be identi�ed to open the chain and establish the �nal
moisture order.

3.2. Solution of the Ambiguity

Based on the premises expounded in Sect. 2.2, we
developed a �rst simple algorithm which has shown to
provide acceptable results with our test cases; it might
have to be improved for other scenarios. We base
our rule on the expectation that the observed coher-
ence should be lower for acquisitions with different
soil moisture than for acquisitions with similar mois-
ture. Therefore, images which are distant in the (cor-
rect) moisture order, thus possibly having the most
different moisture values, should present the lowest
coherence levels among all. On the contrary, images
which are close in the moisture order should present
the highest levels of coherence. We exploit this to sep-
arate the wettest from the driest image. Each image
is tested for the position of the wettest element in the
chain: Let Bi be the set of measured coherence val-
ues for pairs separated byi steps in the order under
test. For each bin we select the maximum coherence
mi = max(Bi ) and �t a line as a function of the bin
(i.e. through the points (i , mi ) ). The image which
gives the steepest downward line is selected as the
correct one. The choice of picking the maximum
coherence instead of the average needs some expla-
nation. Note that for small moisture differences there
is no guarantee to measure high coherence as other
factors might come into play and degrade the coher-
ence. However there are typically many pairs with
small moisture difference in a data set, and we require
only the maximum of their coherences to be high. For
large moisture differences, instead, there is no doubt
that we should always observe low coherences.

5



Figure 4. Example of ambiguity solution. At the top, the images chain:
(1, 3, 6, 4, 10, 9, 12, 5, 7,8, 2,11) in decreasing order as indicated by the ar-
row; the maximum value is still unknown. In the bottom, coher ence plots
for two maximum candidates: 6 and 3. Each triangle is the pixel's coherence
of an interferogram, its abscissa is the distance between the two images of
the interferogram in the supposed order. The dashed line is �tted to the max-
imum coherences of each distance: the black triangles. The outer numbers
in the top chain are the slope of the �tted lines. The steepest line is formed
when the image 6 is selected as the maximum one, as in the left plot.

Figure 4 illustrates this procedure with a real-
data example. Let us suppose that, with 12 im-
ages, the selected chain in decreasing order is:
(1,3,6,4,10,9,12,5,7,8,2,11), any circular shift of
this chain might represent the correct order of mois-
ture. To decide whether, for instance, it is more likely
for number 6 or number 3 to be wettest date, we show
the two respective coherence plots. The abscissa is the
distance in the order: if we are plotting the pixel's co-
herence of the interferogram between images 6 and
8 when the supposed maximum is 6 (i.e. in the left
plot), the distance is 7. The gradient of the line �t-
ting the maximum coherences (black triangles) is in-
dicated close to the respective chain maximum in the
top part of the �gure. It becomes clear that the num-
ber 6 is more likely to be the right choice, since it cor-
responds to the steepest downward line. In fact, if we
select the number 6 as wettest, we see that the prin-
ciple that says that images with similar moisture have
high coherence and different ones low coherence is
honored by and large.

3.3. Constrained Inversion

Once the order has been established a constrained
inversion can be performed, �xing the order of the
moisture to the selected one. We use a simple con-
strained optimizer, which runs multiple times with
different random starting points to achieve a global
search. Finally, the moisture solution with the low-
est cost is selected. The moisture of the �rst image
is kept constant and not inverted, as the sensitivity of
the closure phase to a moisture offset is not suf�cient
to recover it.

a)

b)

2/
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16
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11
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/2
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6
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25
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Figure 5. Area of Kumamoto, Japan: optical satellite photo from Google
maps service (a) and geocoded closure phase (b) with exaggerated hillshad-
ing.
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4. Results and Validation

We experimented with an ALOS-2/ PALSAR-2 data
set consisting of 12 images, acquired in HH polariza-
tion from March to November, 2016 over the area of
Kumamoto, Japan.

We tested two forward models: the physical one of
Equation (6) with Hallikainen dielectric model (Hal-
likainen et al. (1985)), and the simpli�ed one of Equa-
tion (9). The results are quite similar but the physical
model can better �t the data: its mean square error is
generally lower than the simpli�ed model's one. We
are therefore presenting the physical model inversion
results.

We used several products to compare with our re-
sults: the surface soil moisture product based on AS-
CAT scatterometer measurements provided by the EU-
METSAT's H SAF project, the soil moisture product
from ESA Climate Change Initiative (ESA CCI v04.2
COMBINED), the ERA5 reanalysis product by ECMWF
and the surface soil moisture provided by the SMAP
mission (Level-4 Global 3-hourly 9 km EASE-Grid
Analysis Update). One must say that SMAP does not
provide level-2 radiometric measurements over our
area of interest because of radio-frequency interfer-
ence.

4.1. Kumamoto

Figure 5a shows the extent of the SAR image and
ground elevation of the Kumamoto area derived from
the SRTM DEM. As it can be seen from the optical
satellite photo of the area in Figure 5a, the ground
coverage includes coniferous forests, grasslands, rice
cultures, and cities. Figure 5b is an example of
geocoded closure phase, which can be compared to
the ground cover. Figure 6 shows other phase ex-
amples, it can be easily noted that forested areas of-
ten present high closure phase values, different from
grassland and urban areas.

The SAR images were acquired in stripmap mode
with 80 MHz range bandwidth yielding a range res-
olution of about 3 meters and an azimuth resolution
of about 3 meters. Interferometric processing used a
90 by 90 pixels multilooking window. Finally, after
the inversion, a median �lter with a square window
of four pixels was applied, producing a �nal ground
resolution of about 540 meters in range and azimuth.
This resolution is limited by our ability to recover sta-
ble moisture ordering: there are chances that it can
still be improved. The mean coherence of the 66 in-
terferograms spans from 0.11 to 0.67 with an average
of 0.3.
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Figure 6. Example of different closure phases in the area of Kumamoto,
Japan. A good correlation with the ground coverage is clearly visible,
forested areas generally present larger phase levels. The closure phase is
also higher in zones where a rain event occurred (bottom right image, blue
areas).

From 12 images, 55 independent closure phases
have been produced and used for the inversion. The
results are presented in Figure 7. Moisture values for
the �rst SAR image are missing as it has been used as
a reference for the other dates. The bottom right pic-
ture in Figure 7 indicates the index of the image with
the highest moisture level, according to the algorithm
outcome. It can be seen that, in forested areas, the
maximum is mostly either in the sixth of tenth image,
but, randomly, also in other images. These local in-
homogeneities might be due to incorrect estimation
of the maxima. The presence of salt and pepper noise
in the estimated moisture likely indicates the picking
of a wrong maximum.

The offset and the scale of the results were cali-
brated to best �t the ASCAT data: the closure phase
is only little sensitive to offset changes, and errors in
the assumed porosity or mismodeling on our side can
in�uence the scaling factor.

Unfortunately we were not able to �nd moisture
probes in the area, the validation is therefore only
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18/ 4/ 2016 2/ 5/ 2016 16/ 5/ 2016 13/ 6/ 2016

11/ 7/ 2016 25/ 7/ 2016 8/ 8/ 2016 5/ 9/ 2016

19/ 9/ 2016 3/ 10/ 2016 31/ 10/ 2016

Figure 7. Inverted moisture values of the Kumamoto area, linearly scaled to �t ASCAT data. Bottom right: index of the image with the highest moisture level.

done with remote sensing and global reanalysis prod-
ucts. Figure 8 shows a good agreement especially
between the moisture evolution from ALOS-2 closure
phases and the ASCAT product. Both are based on ac-
tive sensors, but the measurement concepts are rather

different, one being incoherent and the other coher-
ent. The correlation with ESA CCI, ECMWF and SMAP
is less pronounced but some common features are rec-
ognizable. One cannot avoid noticing the discrepan-
cies among the different products.
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Figure 8. Comparison of Kumamoto inversion results with other available
moisture products. The ASCAT product has been scaled to volumetric mois-
ture assuming a porosity of 50%.

We have analysed our inversion results for different
classes of land cover: crop �elds, grassland and forest.
The results are reported in Figure 9. The forest class
presents the largest excursion, in line with the fact
that the observed closure phases are larger in magni-
tude over forests. It appears that a single scaling law
is not enough to yield comparable soil moisture evo-
lutions for all land covers. In our case the image is
dominated by the forest and the scaling would there-
fore be appropriate only for this class.

Figure 9. Kumamoto inversion results for different land cover classes. The
scaling factor, appropriate for the average of the whole image, is probably
too small for non-forest classes, resulting is a compressedevolution.

The average brightness of the SAR images also
present a trend similar to the one in Figure 8. This can
be see in Figure 10 for different land-cover classes.
Here the backscatter variations, in dB scale, are less
pronounced for the forest class.

Figure 10. Kumamoto backscatter (� 0) for different land cover classes
(colour coding and classes as in Figure9).

The particular high closure phase areas in Figure 5f

are most probably due to a rain event, as ground radar
images from the Japan Meteorological Agency also
show similar patterns during July, 25th. Most of the
closure phases and coherence maps produced using
the image of July, 25th present such pattern. On the
contrary, it is not possible to recognize it from bright-
ness images. Finally, the estimated moisture for the
same date shows the signs of the rain event, as it can
be seen in Figure 7.

5. Interferometric Corrections

The estimation of the moisture sequence allows
compensating the interferometric phase and coher-
ence on any interferogram generated with the same
data set. Such corrections might be important to In-
SAR applications aimed at retrieving actual surface
motion, to which the moisture signal is a nuisance.
The interferometric phase caused by moisture varia-
tions will be in the order of a few centimeters (for
L-band) and affect large areas. Fig. 11 shows the cor-
rection suggested by the forward models using the
inverted moisture for an interferogram of the Ku-
mamoto data set affected by a localized rain event.
The phase variation in the scene is about 2 cm. The
coherence compensation shows that the model is not
able to predict fully the coherence loss, whereas it
explains well the observed closure phases. A possi-
ble explanation is that the rain event and moisture
change induce an additional loss of coherence which
is different in nature compared to the one modelled
in conjunction with closure phases. Similar observa-
tions can be done for a second example reported here
in Fig. 12.

6. Discussion

The performance of the inversion is in�uenced by
different factors. The statistical noise affecting phase
estimation is not the main concern here, since it is
possible to average suf�ciently the interferograms in
space. The main issues reside with the choice of the
model and model parameter mismatch.

For the inversion we have chosen a speci�c law
� = � (� ), derived from Hallikainen et al. (1985).
Deviations from the correct model will affect the in-
verted moisture. Our simulations show that in many
cases a simple stretch of the moisture axis is enough
to compensate for the model mismatch, even when
the loss tangent is wrong, i.e. the ratio between the
real and imaginary part of the dielectric constant. The
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25/ 7/ 2016 - 8/ 8/ 2016

a) b)

c) d)

Figure 11. Original coherence (a), modeled coherence (b), compensated
coherence (c) and modeled interferometric phase (d).

possibility to identify the correct dielectric law from
the data is still to be investigated.

An unexpected �nding is that the inversion yields
consistent results over forested areas: The closure
phase signal is actually very clean over forests and the
inversion is stable, even if the model was developed
for bare soils, and soil visibility is partially blocked
over forests at L-band. A possible explanation is that
the vegetation itself is contributing to the closure
phase signal and the inverted moisture re�ects the
water status of the plants. The variation of the dielec-
tric constant of trees has been demonstrated and stud-
ied in the past (see McDonald et al. (2002)) so that a
similar model to the one proposed for soils could also
apply. After all the model in De Zan et al. (2014) is
built on very simple assumptions: a semi-transparent
medium, scatterers at all depths, phase and amplitude
dependent on the moisture level through the effect of
the dielectric contant. Considering that the dielectric
behaviour of soils and wood is not so different can
explain why the two media can share the same inter-
ferometric modeling. Another important points con-

11/ 7/ 2016 - 8/ 8/ 2016

a) b)

c) d)

e) f)

Figure 12. Original coherence (a), modeled coherence (b), compensated
coherence (c), modeled interferometric phase (d), original interferogram (f)
and compensated interferogram (e).

cerns the dielectric constants which are generally very
large compared to air or vacuum. This implies a prop-
agation in the denser medium (soil or wood) which is
almost aligned with the normal to the surface, i.e. al-
most independent of the incidence angle. We expect
similar effect of surfaces oriented vertically, horizon-
tally or anything in between.

We should consider that it might be dif�cult to tell
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from our experiment whether closure phases are sen-
sitive to soil or vegetation moisture, as vegetation
moisture is correlated to soil moisture, possibly to soil
moisture in the root zone rather than the �rst few cen-
timeters of soil that L-band radar is able to sense un-
der normal circumstances.

Indeed the closure phases measured over non-
forested areas, including agricultural �elds and grass-
lands, are typically very small (together with the in-
verted moisture variation). This could be an indica-
tion of an actual difference in the dynamics of mois-
ture over �elds and forests, or as an inadequacy of the
model to describe both scatterers.

We notice that double-bounce scattering in the for-
est could even enhance the closure-phase signal ob-
served in the data. Each bounce contributes a phase
delay so that the �nal phase is the sum of all contribu-
tions. Assuming two bounces with equal effect on the
interferometric phase, the interferogram would show
a doubled phase effect, and the closure phase would
also double. Fortunately the inversion is robust to a
moderate increase of the closure phases. By looking
at Eq. (9) one can see that a linear scaling in the mois-
ture has a cubic effect on the closure phases: this gives
some robustness to scaling in the closure phases.

If the acquisitions display a signi�cant normal base-
line variation, the interpretation of closure phases
over forests would be more dif�cult, as volumetric ef-
fects could contribute to closure phases, beside mois-
ture variations. In this case one should develop a
method to estimate, along with the moisture contribu-
tion, also the volumetric effect. Luckily, ALOS-2 has a
good orbit control and such effects are irrelevant.

It is worth mentioning that our inversion is not par-
ticularly ef�cient, but we have also not devoted much
effort in making it so, considering that other limita-
tions prevent from declaring it an operational tool.

7. Conclusions

This work has illustrated a novel method to retrieve
moisture levels from SAR closure phases, overcom-
ing the dif�culties posed by ambiguities in the in-
verse problem. The inversion appears to work at sub-
kilometer scale, but validation is still dif�cult. In gen-
eral we have not found suitable ALOS-2/ PALSAR-2
data sets over areas where large networks of mois-
ture probes have been deployed. There are actually
limited places in the world with stacks of coherent
PALSAR-2 acquisitions. To con�rm that we are ob-
serving a moisture signal we have resorted to remote
sensing, in particular a good agreement was found

with EUMETSAT ASCAT moisture products. Unfortu-
nately radiometric measurements were not available
on our Kumamoto test site because of radio-frequency
interference.

The proposed inversion is not able to give absolute
moisture values, a starting point needs to be provided.
At the moment we believe that a calibration is needed
also for a scaling factor, if the dielectric law is not
known, since different dielectric laws will be almost
equivalent to a linear transformation of the moisture
axis. Whether the data themselves can tell us some-
thing about the local dielectric constant and which
is the impact of a spatially varying dielectric law are
still topics open for investigation. We observed differ-
ent behaviours for different land cover types. Future
work could also be directed at providing more ef�-
cient implementations of the algorithm and at reduc-
ing the spatial averaging to a minimum.

From the fact that the inversion works well over
forests we have speculated that closure phases are
sensitive to tree moisture level variations. This should
be investigated more and might be interesting for for-
est studies. Future work should also be directed into
validation with a network of moisture probes, to as-
sess the quality of the inverse product and the need
for external calibration.

Additional interesting research questions involve
the possibility to include backscatter and polarimet-
ric information in the inversion, the feasibility of the
inversion for shorter wavelengths, the applicability of
the inversion to different types of land cover.

Apart from all dif�culties working towards a mois-
ture product, the inversion allows a straightforward
correction of interferometric phases, which is inter-
esting for InSAR deformation applications, especially
to remove long-term trends.
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