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Abstract 

Developing condition monitoring techniques for monitoring ball bearings degradation is 

crucial to minimize unplanned down-time and maintenance costs. A recent monitoring ap-

proach is to maximize the useful service life of bearings by delaying their replacement after 

detecting an incipient fatigue defect, i.e. pitting/spall or wear. A variety of techniques have been 

investigated and reported in the literature to monitor defect size prior to a critical threshold. 

These studies focus on a single defect; nevertheless, the presence of multiple defects is practi-

cally experienced and its presence may introduce inaccuracies and result in wrong defect size 

estimation. In this paper, an autonomous fault detection technique is used to detect defect type 

and location, then the vibrational jerk method is extended to quantify multiple localized bearing 

defects. Operational spall size estimations are achieved for two defect conditions: natural run 

to failure defects from a test stand at University of Agder in Norway, and artificially seeded 

multiple spalls provided by DLR (German Aerospace Center) in Germany.  
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1 Introduction 

Rolling element bearings are typically used in rotating machinery to transfer shaft loads to 

stationary housings. Bearings are therefore subject to dynamic stress that results in fatigue. In 

fact, up to 41% of all rotating machinery problems are related to bearing fatigue wear [1]. Op-

erating a machine with damaged bearings increases the machine temperature, vibration, and 

friction losses. After further degradation, the faulted bearing may force the machine to an emer-

gency stop due to strong vibration energy. It is therefore beneficial to monitor the condition of 

the bearings using condition monitoring (CM) techniques to avoid unexpected stops. The bear-

ing vibration signal from an accelerometer is a widespread source of information for many CM 

techniques. Typical CM techniques involve analyzing the demodulated high-frequency reso-

nance vibration originating from the bearing, such as the envelope spectrum [2]. CM is not only 

related to fault detection, but also to predict the remaining useful life after the initial fault. Spall 

size estimation techniques [3] can also be used to predict the degradation trend. However, mul-

tiple faults may be present in the bearing at the same time, which make it difficult to estimate 

the spall size from the vibration signal.  

In this paper, the spall size for a bearing with multiple faults is estimated using a new tech-

nique based on monitoring the bearing unbalance. At first, the bearing vibration signal is ana-

lyzed to diagnose the bearing for faults. Afterwards, the emerging spall size is estimated for 



three possible fault types. A combined trend of the spall sizes is generated, which can be used 

for prognostics purposes. Experimental results from two test rigs are used to verify the effi-

ciency of the proposed method. The first test rig utilizes bearings with multiple pre-seeded 

faults at different spall sizes. The second test rig performs a real run to failure test, i.e. the test 

bearing is worn to fatigue through continuous load and operation, while vibration measurements 

are continually recorded.  

2 Fault diagnosis algorithm 

Fault diagnosis is achieved using the algorithm described in [4]. A short description of it is 

given here. At first, the vibration signal is order-tracked using encoder-data to transform the 

vibration data from the time-domain to the shaft-angle domain. The effects of speed fluctuations 

which smear the frequency spectrum are removed. Afterwards, the power-spectrum of the sig-

nal is obtained using the Fourier transform. Using the power-spectrum, several resonance-fre-

quency modes are identified. For each of the resonance modes, the following steps are applied: 

first, the vibration signal is band-pass filtered to retain the resonance mode frequency. Subse-

quently, the envelope signal is calculated using the absolute-valued Hilbert transform. The en-

velope spectrum is further estimated by applying the Fourier transform to the envelope signal.  

Faults in bearings are diagnosed by analyzing the envelope spectrum for prominent peaks 

at integer multiples (harmonics) of the characteristic bearing fault frequencies. With a given 

fault location (inner race, outer race, or roller), the envelope amplitude at integer multiples of 

the characteristic frequency is increased compared to the healthy state. Analyzing each enve-

lope spectrum for increases near the characteristic frequencies is a tedious job. The algorithm 

in [4] describes how an autonomous process is set up to analyze each frequency-mode envelope 

spectrum, and calculate a score for the three different fault types. The higher the score, the more 

likely the given fault has occurred in the bearing. Scores below 10 are considered as noise and 

indicate a healthy bearing, while values over 100 suggest that a fault is present. See [4] for more 

detailed information. 

3 Jerk-based quantification - principles 

State-of-the-art studies, e.g. [5], [6], and [7], have shown that the vibration response of a 

spalled bearing comprises features reflecting two events that are associated with the spall width 

and how a ball enters and exits the spall. These events are initiated at two points: the entry point 

into the spall, and the exit from the spall as shown in Figure 1. Two different forms of entry/exit 

observations have been cited; namely, step-impulse observations and double-pulse observations 

[7].  

In the first observation, as shown in Figure 1, the entry event induces a weak low frequency 

excitation, i.e. a destress. Subsequently, the ball was found to strongly strike the spall (an im-

pact), giving rise to an impulse response, at the exit. On the other observation, the ball rolls off 

the leading edge and onto the exit edge of the spall with similar excitations, creating two similar 

pulses. The fault quantification challenge for both observations is influenced by accurately 

identifying the entry/exit points [5]. 

 A recently developed approach has been developed using a Savitzky-Golay differentiator 

(SGD) to transform an acceleration response to a jerk response. The jerk response has better 

energy balanced excitations for the entry/exit events; thus making them better recognizable in 

comparison to raw acceleration responses. Once the fault has been detected and confirmed us-

ing well-approved methods such as envelope analysis [8], the fault size is calculated on the jerk 

response by the time difference between the entry and exit peaks after appropriate scaling based 
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on the bearing geometry, the sampling frequency and the rotational speed. A detailed investi-

gation of jerk-based quantification has been published in [7].       
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Figure 1. Vibration response of a spall defect illustrating entry/exit events and jerk-based quantification princi-

ples 

4 Calibrated unbalance – a new physical degradation indicator 

It was experienced that typical run to failure degradations of bearings involve multiple de-

fects especially at advanced degradation levels [9]. Multiple defects can be multiple localized 

defects, e.g. pits and spalls, and may also include a distributed wear in addition to localized 

spalls. These defects have different vibration signatures and several health monitoring tech-

niques have been investigated [8]. Reliable health indicators for fault prognosis demands mon-

otonically measuring of the overall health condition.  

A new concept is proposed in this paper, which monitors excessive unbalance due to bearing 

faults. The unbalance level can be extracted from the vibration response of the bearings in the 

FFT spectrum. Using the bearing unbalance as a health indicator has been investigated previ-

ously [10]; however, current methods lead to a dimensionless unbalance indicator which is in-

fluenced by the location and characteristics of the vibration sensor. Here, we propose the 

following steps in order to estimate a physically calibrated unbalance as a health indicator as 

depicted in Figure 2. 
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Figure 2. Proposed calibrated unbalance approach 

- At an early degradation stage,  

o Localized defects are most likely to be induced. The jerk-based quantification tech-

nique is used to estimate localized defect size. 

o Localized defects create an excessive clearance and increase bearing unbalance. De-

fect sizes estimated by the jerk technique is fed to a bearing geometric model in 

order to calculate defect-related clearance.  

o The FFT spectrum of the vibration response involves a dimensionless measure, i.e. 

the FFT magnitude at the unbalance frequency, for defect-related clearance. The 

term "dimensionless measure" indicates that it is hard to physically map this value 

to the actual unbalance, because it depends on the unknown transmission path be-

tween the vibration sensor and the bearing elements.  

o This dimensionless measure can be calibrated by the defect-related clearances to 

approximate the mechanical transmission path. 

- At an advanced degradation stage:  

o Multiple localized defects may be initiated in addition to a surface wear. These de-

fects increase clearances between the bearing elements and the overall unbalance. 

The measured FFT magnitude for unbalance will be scaled by the aforementioned 

calibration to measure excessive clearances by a physical quantity.  

5 Experimental Evaluations 

The proposed method is evaluated using two different data types. First, seeded multi-spall 

defects, from DLR, that involve only an early stage as described in Figure 2. Second, a natural 

run to failure bearing degradation data, from University of Agder, that involve both early and 

advanced degradation stages.      
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5.1 Seeded multi-spall defects 

5.1.1 Data description  

Multiple seeded faults in the bearings under test (four-point FAG QJ212TVP aerospace bear-

ings) were created by spark erosion. This formed an oval fault geometry defined by its depth 

and the spall width. Three different faults have been analyzed as listed in Table 1 of 500 RPM 

operating speed and 5 kN axial load. More details of the testing conditions and test stand can 

be found in [7]. 

Table 1. Dataset description of the multi-seeded spalls case. Additionally, the fault score for the three datasets 

are calculated and shown to the right in the table. 

Dataset Outer race defect 

[mm] 

Inner race defect [mm] Fault score 

 Width Depth Width Depth Roller Outer race Inner race 

D0101 1.4 0.05 1.0 0.05 1.38 54442.35 52389.55 

D0303 2.4 0.15 2.1 0.15 10.26 131958.76 54123.44 

D0707 4.0 0.40 3.8 0.40 0.00 229388.64 11306.71 

5.1.2 Fault diagnosis performance 

The algorithm discussed in Section 2 is used to calculate the fault score of the three datasets in 

Table 1, the results are given in the right-most columns in Table 1. The results indicate that the 

three vibration datasets were recorded on fault-seeded bearings with an outer race fault and an 

inner race fault. The resulting fault diagnosis score confirms that the two defects are present in 

the bearing. However, the score is not monotonically increasing with larger fault size, and it is 

therefore necessary to quantify the fault size using the spall size estimation method.  

5.1.3 Fault quantification performance 

A fault quantification has been implemented for vibration datasets after confirming fault 

existence and its type, i.e. localized defects. Based on the jerk quantification method which is 

discussed in Section 3, examples of quantification results are depicted in Figure 3.  

Displacement [mm]Displacement [mm]

N
o
rm

al
iz

ed
 V

ib
ra

ti
o
n

N
o
rm

al
iz

ed
 V

ib
ra

ti
o
n

(a)

SGD Env.

Raw Signal

(b)

Figure 3. Examples form jerk quantification performance  

Figure 3a shows two exit-spikes that are located by the raw envelope and entry-peaks that 

are identified by the SGD signal.  The average entry-exit spacing is 1 mm which matches the 

average defect widths of 1.0 and 1.4 mm for the inner and outer defects respectively. Figure 3b 

shows three exit-spikes that are located by the aw envelope and entry-peaks that are identified 



by the SGD signal.  The average entry-exit spacing is 3.8 mm which matches average defect 

widths of 3.6 and 4.0 mm for inner and outer race defects respectively. The vibration response 

of D0303 includes strong background noise. The exit-spikes cannot be identified accurately in 

the raw vibration signal; thus the jerk method cannot be applied. The process of monitoring 

localized defects with the jerk method is not sufficient for monitoring multi-spall defects be-

cause indistinguishable entry/exit events.  

5.2 Run to failure defects 

5.2.1 Data description  

The accelerated life-time data used in this paper are acquired using the test rig detailed in [11] 

and shown in Figure 4. The rig has been modified for this test by removing the planetary gear-

box. This resulted in a less stable motor speed aiding to mimic a more realistic practical ma-

chine. A 6008 type ball bearing is naturally worn from healthy state by applying heavy radial 

and axial loads at a high speed of 1000 RPM. Two electric linear actuators apply a 4 kN axial 

load and a 9 kN radial load for the bearing. In this test, the bearing lasted roughly 41.9 million 

revolutions before initial damage occurred, and 42.7 million revolutions before the test was 

stopped due to high vibration energy. Every 30 minutes during the test, the test rig controller 

reduced the shaft speed to 250 rpm and measured the bearing vibration and shaft encoder pulses 

for the duration of 100 rounds. After the test, the bearing was disassembled to identify the faults. 

Pictures of the bearing are shown in Figure 5. 

 

 

Figure 4. The bearing test rig used in the run to failure test. 

 

Figure 5 Faults in the de-assembled bearing after the accelerated life-time test. a) Two damaged rollers. b) Large 

spall area on inner race. c). Small spall on outer race with a measured width. 
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5.2.2 Fault diagnosis performance 

The bearing fault diagnosis algorithm described in Section 2 has been used to analyze the da-

tasets from the accelerated life-time test. The normalized fault diagnosis score is shown for the 

last 1.8 million revolutions in Figure 6.  

 

Figure 6. Normalized fault diagnosis score of the accelerated life-time dataset  

The normalized fault scores (divided by maximum value as indicated in the legend) are shown 

for the roller fault (green), outer race fault (blue), and the inner race (red). According to this 

figure, a roller fault has surfaced after roughly 41.9 million revolutions as indicated by the high 

roller score of 139. Not long after the roller fault occurred, the outer race fault score increased. 

From 41.95 million revolutions to 42.5 million revolutions, the outer race fault dominates the 

vibration signal. Finally, an inner race fault is visible in the vibration spectrum after 42.6 million 

revolutions. At this stage, the bearing is very close to complete failure. The vibration recordings 

that are marked with numbers in Figure 6 are used for spall size estimation in the next subsec-

tion. Datasets 1 through 8 represent a healthy case, while datasets 9 through 18 represent the 

different damaged states. 

5.2.3 Fault quantification performance 

According to the diagnosis results in Figure 6, dataset #13 has been selected to evaluate the 

calibrated unbalance method described in Section 4. This is because the diagnosis score of da-

taset #13 indicated a high contribution of a localized outer race defect. Assuming that the un-

balance is almost due to an outer race defect, the run to failure unbalance trend, shown in Figure 

7, can be calibrated by dataset #13.  
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Figure 7. Run to failure unbalance levels is shown based on FFT spectrum of the vibration envelope.  

 



The jerk performance of dataset #13 is shown in Figures 8 and 9. The average entry/exit spacing 

is 0.7 mm. The relation between spall-width and the radial unbalance is not linear due to differ-

ent curvatures of ball diameter and bearing races. A geometric model for the bearing has been 

developed to map the detected spall-width (in mm) to the radial clearance (in mm). This model 

is shown in Figure 10. A radial clearance of 13.6 µm is present for a 0.7 mm spall width as 

depicted in Figure 9. The calibrated run to failure unbalance is shown in Figure 11, where nom-

inal healthy level is less than 1 µm radial clearance, and a full failure shows at 42.45 µm clear-

ance. This unbalance quantity does not involve the nominal clearance of ball bearing.  
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Figure 8. Vibration sample of dataset 13: a pattern recognition is used to locate most periodic outer-defect spikes 

(vertical dashed lines) based on zero crossing detection in the time domain. 
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Figure 9. Vibration responses zoomed at spike ID=1, 3. Vertical dashed lines have been used as described in Fig-

ure 8 to locate spall-exit points because they are indistinguishable by raw vibration signal 
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Figure 10. Simulated calculation between a spall width and the corresponding radial clearance for a bearing type 

6008 assuming that the spall has a homogenous oval shape. 

Dataset ID

R
ad

ia
l 

C
le

ar
an

ce
 [
µ

m
] 

 

Figure 11. Run to failure unbalance after calibration 

6 Conclusion 

Condition monitoring of rolling element bearings is necessary to avoid sudden machine break-

down due to incipient faults. However, determining if a fault has surfaced in the bearing is not 

enough to quantify the severity of the fault. The spall size can be estimated using the vibrational 

jerk method. The referenced methods all assume that a single defect is present in the bearing. 

In this paper, a new method for spall size estimation of a bearing with multiple defects is pre-

sented. A radial clearance indicator is introduced, which shows how much the bearing moves 

from center due to multiple faults. The efficiency of the proposed method was verified using 

experimental datasets from two sources. The first dataset is for bearings with multiple pre-

seeded faults, while the second one is a run to failure experiment where the bearing suffers from 

faults in all components at the end. It was shown that the radial clearance increases as the bear-

ing wears out over time. This quantified physical indicator can be used for prognostics purposes 

and remaining useful lifetime estimation. 
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