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Abstract

A novel energy-based methodology to predict the flight performance within an entire aircraft fleet based
on flight data records is presented. It combines knowledge about the aircraft’s flight mechanics with
statistical methods and estimation techniques to solve the big data problem. Therefore, this method
provides a new smart way to analyze the flight data of modern aircraft during daily flight operations
(normal airline operation) to monitor the change of individual aircraft characteristics. The methodology is
described in detail first, validated with simulated flight data afterwards and finally applied to flight data
of more than 75000 flights with a Boeing B737 fleet. The corresponding very promising results show
that this distinct knowledge-based methodology allows to reliably predict the aircraft flight performance
variation and can easily overcome several shortcomings such as poor data resolution or limited quality.
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Subscripts

IAS indicated airspeed

LH left hand
max maximum
min minimum
opt optimal

ref reference
sim simulation
TAS true airspeed

tot total
Abbreviations

ATRA  Advanced Technology Research Aircraft

QAR Quick Access Recorder

1 INTRODUCTION

For today’s cost-efficient daily flight operations airlines
have to reduce the direct operating costs of their fleet.
Beside several other impact factors, the amount of fuel
required for typical flight scenarios is one main driver
of overall costs. The fuel consumption of a particular
aircraft is directly linked to its flight performance which
normally drives the airline’s decision to buy aircraft of
specific type. But even within a fleet of a single aircraft
type the flight performance characteristics of each indi-
vidual aircraft slightly differs. Some of the factors caus-
ing the flight performance variations across airplanes
from the same type are: production tolerances, aircraft
skin repairs, aircraft skin contamination (e.g. dirt), en-
gine aging causing reduced efficiency, or engine con-
tamination (e.g. dirt). For example, an aircraft is nor-
mally expected to show at least a drag increase up to
2% in five years [1]. But depending on e.g. the factors
given above this increase can be significantly higher.
Airbus provides in Ref. 1 some further drag-increasing
influences and corresponding scales for different air-
craft types in its portfolio. Therefore it is expectable
that for a given large flight data set the resulting perfor-
mance variation becomes visible. This knowledge about
the detailed deterioration of individual aircraft perfor-
mance further allows to e.g. plan necessary actions of
aircraft maintenance.

Figure 1 illustrates this expectable flight performance
with respect to the aircraft drag curve in the lift-drag-
coefficient plane as an area of varying drag coefficient
in the vicinity of the typical normal operation’s lift-to-
drag ratio. In cruise flight, its optimal value (L/D),, is

(L/D)opt
Ymin
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Figure 1: Expected flight performance variation within
an aircraft fleet illustrated as change of drag
coefficient

around 0.866 of the maximum lift-to-drag ratio’ result-
ing in a minimal fuel consumption [2]. The fight data
analysis of an entire aircraft fleet presented in this paper
reveals very comparable results in terms of the location
of the expected variation.

There has been several noticeable previous works re-
lated to the extraction of flight performance from flight
data recorder data sets, e.g. Ref. 3, or to estimate in
real-time, aboard the aircraft, the impact of aerodyna-
mics deterioration on the flight safety and on the safe
flight envelope [4-6]. However, these approaches are
not well suited for the considered case. For instance,
the proper estimation of dynamic derivatives (for ex-
ample roll and yaw damping coefficient) requires some
amount of excitation of the aircraft, which is usually
not present in data recorded on-board with the flight
data recorder (FDR) and even if some relatively aggres-
sive maneuvers would have been flown, the sampling
rate of FDR data is usually too low to permits this kind
of modeling. Note that even for on-board real-time
performance monitoring (for which the sampling rate
is sufficient), the need for dynamic excitation is a strong
disadvantage for the application to civil airliners in regu-
lar operations. Furthermore, there had been some work
on the prediction and evaluation of aircraft fuel con-
sumption based on flight data records [7-9], which is
directly linked to the flight performance.

This paper presents a novel energy-based methodo-
logy to determine the typical and abnormal flight per-
formance variation encountered during regular airline
operations (due to a real performance variation or sen-
sor errors) based on flight recorder data sets. For-
tunately, the performance monitoring technique pre-
sented in this paper does not require dynamic excita-
tions but relies on the information already contained in
the achieved steady state conditions. The goal and the
approach of Ref. 3 is very similar to the FDR data analy-
sis shown in this paper, but the analysis that is presented
herein focuses more on pure performance (no dynamic
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derivatives) and is more general, for example a 1 g flight
is not assumed whereas it is implicitly assumed in [3].
Ref. 10 deals with a comparable problem of detection
of flight performance variation, but mainly focuses on
the detection simulated faults instead of flight perfor-
mance variation itself.

In the presented case, the available flight data records
are obtained from the aircraft’s quick access recorder
(QAR), which records the same information as the well
known flight data recorder (FDR) for accident investi-
gation but can be accessed post-flight by the airline to
analyze the flight and monitor the aircraft characteris-
tics. As this data have only limited quality (e.g. con-
cerning sample rate) typical and common system iden-
tification methods (see [11] for further information on
these techniques) to evaluate the aircraft aerodynamic
characteristics cannot be applied for this analysis. In
general, the determination of an aircraft flight perfor-
mance variation based on numerous flight data records
is a big data problem, which is nowadays often faced by
the application of machine learning or statistical meth-
ods. For example, such problem based on flight data
records was addressed in [12] to e.g. monitor the air-
craft speeds during approach. But in the presented
case, the big data problem should be solved by utiliz-
ing as much general knowledge about flight mechanics
as possible. Therefore, the big data is transferred into
smart data?, which eases the subsequent analysis. Note
that no distinct knowledge about the individual system
but only the physics of flight is required.

In section 2 of this paper, the energy-based metho-
dology used to evaluate the flight data set resulting
from normal airline operations is described. Section 3
presents a first feasibility study which was done with the
presented methodology on simulated flight data simi-
lar to the real aircraft data sets. Finally, the evaluation
results of data® recorded by the German airline TUIfly
during their regular operations are given in section 4.

2 METHODOLOGY

The aircraft flight performance can be seen as follows
Nominal A/C Flight Performance

A/C Flight . .
= + Nominal Engine Influence
Performance .
+ Variation
whereby the

« “Nominal A/C Flight Performance” represents the
aircraft’s expected performance at the given flight
condition (e.g. steady horizontal flight),

Zsubset of data extracted from big data with certain algorithms
containing only the information desired for a distinct analysis

3these flight data records were completely anonymized and did
only contain flight parameters without any information on the distinct
aircraft or crew.

4for a representative aircraft of given type

+ “Nominal Engine Influence” is the additional influ-
ence of thrust due to a different engine parameter
setting than the nominal one required for the given
flight condition,

« “Variation” part gathers the effects mentioned
previously and is here the part that need to be an-
alyzed.

By having a deep knowledge about the aircraft to be in-
vestigated, the analysis of flight performance is an easy
task: if all the influencing factors — for example aircraft
aerodynamics, engine thrust, atmospheric conditions —
are perfectly known, the variation can be directly cal-
culated by solving a corresponding set of equations,
which describe the individual aircraft’s forces and mo-
ments equilibrium, for the searched " Variation" as e.g.
an additional part of the total drag force. But without
such detailed individual system knowledge assumptions
and simplifications have to be made to allow a com-
bined evaluation of the big data collected with an en-
tire fleet of specific aircraft type. As the determination
of one individual aircraft’s distinct aerodynamic charac-
teristics and engine status® late after the actual flight
is not possible by only analyzing flight data recorded
with the QAR during normal operations, another reli-
able approach to reliably calculate the searched " Varia-
tion" must be found.

The methodology proposed in this paper to allow
combined evaluation of the flight data from a fleet of
same aircraft type is based on the variation of the air-
craft’s total energy during quasi-steady flight. It con-
nects knowledge about the fundamental flight me-
chanics with statistical methods. A detailed description
of this analysis is given in section 2.1 hereafter includ-
ing an approach to determine the “Nominal Engine In-
fluence” by introducing a linear thrust-related power
imbalance model. A feasibility study on this modeling
approach to find a suitable representation for the un-
known thrust influences is presented in section 2.2.

2.1 ANALYSIS OF AIRCRAFT POWER IM-
BALANCE

The methodology used to derive the aircraft perfor-
mance from the recorded data is based on the total en-
ergy of the airplane or rather its time-derivative. As the
flight performance of an aircraft is driven by its char-
acteristics to move through the surrounding air, the in-
fluence of large scale atmospheric disturbances such as
horizontal and vertical wind must be considered within
this energy-based approach. The methodology to ac-
count for such wind influences is depended on the
choice of the reference system which is used to make

>related to the engine’s ability to produce a certain amount thrust
with a given system state at a certain flight point



up the balance of the total energy®. Within the pre-
sented approach the aerodynamic system is chosen to
calculate the total energy removing the need of a com-
plex wind correction in the equation and giving directly
an information about the aircraft flight performance it-
self. The total energy of the aircraft with respect to the
surrounding air is
1 2
Etotzi'mAC'VTAS+mAC'g'H )
and the time-derivative of the energy E.: describes the
aircraft’s real power imbalance, e.g. whether the total
energy level is increasing due to an excess of engine
thrust for the current flight situation. The power im-
balance further describes the actual deviation of the
aircraft performance from its nominal expected perfor-
mance, containing both of the previously given influ-
ences on flight performance (“Nominal Engine Influ-
ence” and the “Variation”) in one value. The difficult
task is to discriminate these influences from each other,
especially when no distinct engine model is available.
But such engine model can be derived out of all the
data by searching the model structure and parameter
values that minimizes the error between the model-
based computed power imbalance Etot,modd(p) (with P
being the parameters of the engine model) and the ac-
tual power imbalance E.,. Basically, the problem can
be formulated as:

) . N
Popt = argming (Z (Etot,modeI(P) - Etot) > (2)

data

Later, the vector of optimal parameter values Pept
is estimated and the corresponding power imbalance
(E'tot,mode.(pom)) will be compared to the actual power
imbalance Ei.: to obtain the searched variation.

In practice, before being able to find P, by solving
the problem of equation (2) the flight data need to be
preprocessed. This preprocessing includes the detection
and cleanup of erroneous data (which can for instance
happen at times when some of the onboard comput-
ers are being reset) as well as bringing the individual
channels to the same constant sampling rate and time
base. Then, the data are searched for steady engine and
quasi-steady flight conditions for which several engine
and flight parameters only slightly vary within prede-
fined boundaries. According to these conditions the
flight data are segmented resulting in time slices of
steady conditions with an individual length between
60s and 120s. Note that such duration is required
to guarantee that local small scale effects (e.g. short
gusts) do not falsify the resulting flight performance

6conventionally a body-fixed inertial system would be used to bal-
ance the total energy which would require a determination and con-
sideration of the current 3D wind vector

variation. For each time slice mean values of altitude,
speed or Mach number, temperature, gross weight, en-
gine fan speed, fuel flow and energy change are calcu-
lated and used for further evaluation. Using only mean
values over data segments with steady flight conditions
allows to reduce the data significantly although all nec-
essary information is still available. Furthermore, the
resulting segments are presorted in categories of simi-
lar operating points (e.g. altitude, speed, gross weight
and engine status). Eventually, Eiot modei(p,,) (the ref-
erence power imbalance corrected from some of the
unknowns affecting the engine thrust) can be written
as

Etot,modeI(Popt) = Etot,nominal
+ AF(Ny, Na, EGT, EPR, ritger, (3)
Tetat, Vras. Ma, ... ),

with Af being the optimal affine adjustment of the en-
gine thrust model on the considered category. A more
detailed description about the modeling approach used
to define the thrust influence Af is given in section 2.2.
The remaining deviations between the expected power
imbalance E'tot’modd(/:vopt) and the actual power imbal-
ance Ey (rate of change of the aircraft total energy)
are the variations of the flight performance within the
considered aircraft fleet.

While the chosen energy-based approach encom-
passes all aspects of the flight performance and es-
pecially the couplings between the involved physi-
cal parameters, the scaling of the power imbalance
Etot model(P,) — Etot into @ nondimensional equivalent
drag coefficient variation ACy eases the physical in-
terpretation (same order of magnitude for different
speeds, current lift, or even aircraft type). This scaling is
realized as follows:

Etot,modeI(Popt) — Etot

AC= = 4
5 Viras - G+ Sw @

The equivalent drag coefficient AC computed using
equation (4) describes the aircraft flight performance
variation inside the fleet, mostly but not only resulting
from variation of the aircraft aerodynamic performance
(e.g. due to dirt, structural deformation and repairs,
or ice accretion). Other possible causes for this vari-
ation are sensor errors, unaccounted wind influences
(e.g. downdrafts), and variations in the actual engine
performance.

2.2 LINEAR ENGINE THRUST MODEL

The thrust of modern jet engines is dependent on sev-
eral internal states and external influences. Basically,
calculating thrust is a difficult task even with com-
plete system knowledge and detailed actual state infor-
mation and almost impossible without both of them.
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Figure 2: Relative influence of different internal and ex-
ternal parameters on engine thrust (adapted
from [13, 14])

Hence, any approach to model the searched engine in-
fluence in E'tot,modd(pm) (see equation (3)) based on the
limited information available in QAR data is only an ap-
proximation of the actual thrust conditions. Using a
linear engine model for the herein presented analysis
of flight performance variation is the best trade-off be-
tween model accuracy, simplicity and available informa-
tion. In general, the thrust Fynust iS @ thermodynamical
process inside the engine depending e.g. the airspeed
and the current atmospheric conditions. Figure 2 gives
and overview on the several internal and external pa-
rameters affecting engine thrust and the corresponding
change of thrust with their variation.

Due to the different nonlinear effects of several pa-
rameters on thrust, local linear models at certain op-
erating points are the best approach to reliably cover
the engine thrust influence on the flight performance.
Nevertheless, the linear regressors must be well chosen
to prevent overfitting but ensure good data coverage
at the same time. For example, as the power imbal-
ance is directly dependent on the airspeed, Vras could
not be a regressor of the linear thrust model in that
case: the true airspeed is able to mathematically ex-
plain the power imbalance — as it is part of equation (1)
and consequently directly related to the resulting Eior —
and therefore the flight performance variation and con-
seguently mask the actual thrust effects. Hence, the
Mach number will be used because it physically contains
a similar information about the aircraft’s speed but is
not part of power imbalance calculation in equation (1).

To define a suitable set of regressors describing the
internal engine parameters, a first study was made
based on an existing engine model used for real time
aircraft simulation. An arbitrary data set of varying in-
ternal engine parameters was defined and the corre-
sponding time history of engine thrust was generated
(see Fig. 3). These data were fitted with the linear re-
gression model

Fthrust,mode/ = Af (le N2y EGT, EPR, mfuel) ) <5>

and provide a more realistic scenario for the evaluation.
Measurement errors were added to the input data in
form of white noise with corresponding maximum am-
plitudes as given in table 1.

|AEPR|| 0.001
||Amfue|H 0.0005 kg/S
|AEGT| 5K

AN 0.1%
AN 0.1%

Table 1: Amplitudes for signal noise

All possible combinations of regressors were used to
fit the given thrust data with the corresponding lin-
ear model. The results were then evaluated concerning
their goodness of fit respectively the linear model’s ca-
pability to accurately reproduce the thrust data. There-
fore, the coefficient of determination R? was calculated
in each case. It allows to define the goodness of fit
in one single value between 0 (no correlation between
used the regression model outputs y and given mea-
surements z) and 1 (perfect fit with completely linear
correlation). It is defined as

R2 =1— Zk J% (6)
>y (2 —2)*

where Z denotes the mean value of given k measure-
ments, z, the k-th measurement and o the residual of
k-th simulation and measurement.

As an example, Fig. 4 contains the resulting coeffi-
cients of determination for 5 different regression mod-
els containing a different number of regressors. The
example shows that even with two well chosen regres-
sors (e, N1) @ good fit is possible. Taking additional
regressors into account and therefore adding more in-
formation to the regression problem results in a slightly
better fit for the given example. But this increases also
the risk of overfitting when using real flight data later
on because the simple linear model structure is only a
rough approximation of the real engine/aircraft behav-
ior and more regressors do not necessarily enhance the
accuracy in that case. This shows that a trade-off be-
tween the accuracy of the model (data fitting) and the
model complexity is necessary. The analysis of all other
combinations revealed that the most of the regressor
combinations did not result in a satisfactory fit of the
measured data. Direct correlation between fan speed
or engine pressure ratio and thrust — as it is commonly
known — is clearly noticeable in the subset of combi-
nations which contains the highest values of R?. As
the fan speed and fuel flow are able to describe the
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Figure 3: Time history plots of engine thrust simulation: example case for determination of suitable regressor

combinations
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Figure 4: Results of engine thrust regression: coeffi-
cient of determination R? for regression mod-
els with different combinations of regressors

thrust variation in general, Ni, mae and Ma seem to
be a good choice for regressors of the linear model in
Equation (3).

3 METHODOLOGY VERIFICATION

The herein presented approach for the determination of
the flight performance variation within an aircraft fleet
is independent of the aircraft type analyzed. Hence,
simulated flight data of any arbitrary large transport air-
craft can be used to verify the methodology prior to
the final flight data analysis. Therefore, simulated flight
data with a known variation was generated with a sim-
ulation model of DLR's research aircraft Airbus A 320
ATRA (”Advanced Technology Research Aircraft”). The
operation point for the following example was chosen
as steady horizontal flight at an altitude of 15000 ft and
320kt indicated airspeed. Based on this condition, sev-
eral small variations of altitude, airspeed and flight path
angle (see table 2) were introduced to obtained a data
base similar to the flight data records at the chosen
aircraft operating point in the aircraft flight envelope.
All data sets contain time histories of aircraft inputs
and outputs necessary for the previously presented ap-
proach of flight performance evaluation. With a mini-
mum simulation time of 90 it is possible to extract time
slices of steady conditions with a length of at least 60s
as described in section 2.1. For all these simulations no
flight control system of the A 320 was activated.

Beside the slight variation of the aircraft trim condi-
tions, a change of engine state was introduced to fur-

step  maximum
parameter cize chan
ge
altitude (H) 50ft  4+100ft
velocity (Vias) 1kt  +6kt
flight path angle (y) 0.25° 40.75°

Table 2: Variation of trim points around one example
operating point to generate a wide range of
simulated flight data for method validation:
ranges and step sizes of altitude, airspeed and
flight path angle variation

ther create a subset of simulated flight data with a dis-
tinct power imbalance. Therefore, the engine throttle
Othrottle Was varied 3 % around the value obtained for
the trimmed horizontal flight conditions:

(5throttle)sim - (5throttle)tr,‘m N k W|th k 6 [097, ]., 103]

With the additional thrust variation most of the sources
of an aircraft power imbalance during normal operation
should be covered. But the presented methodology is
developed to determine an aircraft’s flight performance
within a fleet and consequently an additional data set
with changed aircraft flight performance characteristics
is needed to validate this approach. This change of
characteristics was done with a distinct variation of air-
craft drag coefficient during the first 20 s of the aircraft
flight simulation by constantly fading in an additional
drag coefficient ACp (from zero to its maximum prede-
fined value). Eight different cases of drag variation were
used, defined by

ACp = +k-Cpy with k €[0.05,0.1,0.15,0.2].

Consequently, the goal of the presented validation at-
tempt to reliably predict this change of aircraft drag
with the proposed methodology.

As an example, the results of several of these differ-
ent aircraft simulations (at given speed and altitude) are
presented in Fig. 5 as time history plots of flight path
angle, altitude, speed, engine fan speed and power im-
balance. The direct comparison of the different cases
shows the individual influence of each case (change
of flight path angle, throttle command and additional
drag coefficient) on the resulting power imbalance as
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Figure 5: Example of (simulated) flight data from differ-
ent cases: baseline simulation (reference trim
point), change of flight path angle, engine
thrust variation (throttle change) and change
of aircraft drag coefficient; time history plots
of flight path angle, left hand engine fan
speed, true airspeed, altitude and total power
imbalance for different dynamic aircraft simu-
lations starting from a reference trim point

well as comparable magnitude of the power imbalance
in all cases. Within this example it gets clear that com-
pletely different sources have similar effects on Ey. and
the challenge of the analysis is to reliably split the influ-
ences.

The results of the 1950 different simulations were
pre-processed for the flight performance evaluation:
data segments with (nearly) steady conditions were ex-
tracted and corresponding mean values of observation
calculated. Figure 6 shows the time histories of several
simulation outputs for one example (additional drag in-
fluence) in Fig. 5 and in addition the extracted data in-
dicated through horizontal lines of mean values in the
time histories.

Application of the method described in section 2 with
the regression model of nominal thrust influence de-
fined in section 2.2 allows to split the total measured
power imbalance Ei: into the thrust related influence
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Figure 6: Example of selected (simulated) flight data
segment with steady flight conditions: time
history plots of left engine fan speed, true air-
speed altitude and total power imbalance for
a simulation with variation of drag coefficient
(ACp = 0.1 - Cpy); illustration of mean values
as horizontal lines for the selected data seg-
ment

Eengine and the remaining variation £, 5. The latter con-
tains the applied drag variation as well as a combination
of all errors introduced through the simplifications and
approximations with the proposed methodology. For
example, the assumption of a linear thrust model is a
good approximation but does not fully cover the com-
plexity of the engine model used during simulation on
the one hand, and the regressors used for the predic-
tion of EEngine cannot complete describe the thrust be-
havior on the other. Also the approach of using the
mean values of the observed aircraft parameters does
further introduce some errors in the analysis.

Figure 7 shows the split of the power imbalance of all
1950 analyzed segments and the energy change is plot-
ted against the combined engine fan speed’. The left
plot shows that for Ei: a linear dependency of some
data is clearly visible, but also contains some data with-
out any visible correlation (which results from the drag
change). This dependency is fully covered by the pre-
dicted thrust related power imbalance EEngine in the
center plot. The remaining (not predictable) variation
E 5 inthe right plot is related to the drag change which
was introduced to several of the aircraft flight simula-

“mean value of both engine within one segment; due to the sym-
metric thrust and similar engine states of left and right engines, this
combination of information does not affect the results, but simplifies
the data evaluation
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Figure 7: Power imbalance variation for simulated flight data segments: fan speed N versus total power imbalance
Etor as well as separation into estimated thrust-related power imbalance Egngine and the remaining not-
assignable variation (in this particular example related to the introduced drag change ACp)
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Figure 8: Comparison of predicted drag-change related
aircraft power imbalance EA5 and drag co-
efficient AC5 with actual drag change (ACp)
in simulation: measure for flight performance
variation around a certain example trim point

tions and also contains the above described additional
effects and errors. Similar plots result for the remaining
two regressors (ms,e and Ma) used in the linear model
for EEngine-

The illustration of the drag change ACp versus the
remaining variation EA5 in the left plot of Fig. 8 shows
the searched dependency with the drag change. The
right plot in Fig. 8 further compares the predicted equiv-
alent drag coefficient AC with the actual drag change
in the simulation. The direct correlation validates the
proposed methodology to determine the flight perfor-
mance variation within a large flight data set with only
some small remaining variation caused by the used ap-
proximations and simplifications.

4 FLIGHT DATA EVALUATION

In order to determine the real typical flight perfor-
mance variation encountered during daily flight opera-
tions, data of 75, 689 flights with Boeing B 737-700 and

Figure 9: TUIfly Boeing 737-800 during final approach®

B 737-800 aircraft operated by TUIfly (see Fig. 98) are
analyzed. The data of each flight was recorded with the
quick access recorder (QAR), which receives the same
signals as the flight data recorder, and downloaded by
the airline after the flight. The data time resolution of
the individual signals ranges from 8Hz (e.g. accelera-
tions) to 1/64 Hz (e.g. gross weight).

No direct information about the aircraft thrust was
recorded in the data and no engine simulation model
permitting the calculation of these values out of mea-
sured engine parameters was available. This would nor-
mally posed some difficulties for the intended flight per-
formance analysis due to the major role played by the
engines. But this problem could be overcome accept-
ably well thanks to the proposed methodology with es-
timation of engine influence from fight data and the
huge quantity of data available itself.

Unfortunately the data used for this analysis were
anonymized such that the correspondence between a
particular airplane and a recorded flight data was not
available. As a consequence, all available information
of each fleet (B 737-700 and the B 737-800 separately)
is used together to estimate a global engine influence
and predict the flight performance variation. Note that

8 ©TUIfly, with permission for publication;
https://www.tuifly.com/downloads/Boeing_737_-_800_
bereit_zur_Landung_gr.JPG (download: October 11th, 2016)
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Figure 10: Flight data analysis:

two step approach
to predict the flight performance variation
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within a fleet

for this analysis it is crucial to consider the data from all
the aircraft of the same type since the aim is to com-
pensate the missing engine data/information but not
to adjust the performance for each individual aircraft.
The unavailability of the correspondence information
prevented the detection of outliers in the data, which
for instance happens if one of the airplanes has a sig-
nificantly better or worse performance than the others.
Eventually, this process enabled to obtain an acceptable
estimate of the missing information on the engines, but
a real engine model would probably have been signifi-
cantly more precise.

The herein presented flight data evaluation contains
of two different steps: first the a-priori data analysis and
segmentation and second the prediction of the aircraft
flight performance variation. As illustrated in Fig. 10,
the data was first checked and validated to remove er-
roneous data sets from the subsequent analysis con-
taining unreliable sensor measurements, unexplainable
data jumps or missing time segments. The data was
automatically segmented in relatively short time-slices
during which the aircraft was flying in a quasi-steady
state (see section 2): stabilized flight path (cruise, but
also climb or descend) and possibly steady turns. One
key requirement for each segment was a well compa-
rable engine state, which is required by the evaluation
method applied afterwards. Data segments with very
dynamical maneuvers (e.g. high roll rate or rapid vari-
ation of load factor) were ignored in this first analysis
but could be considered in future evaluations as well.
Later on, the segments were categorized according to
their average speed, altitude, fan speed, gross weight
and outside air temperature. Each category describes
an engine operating point allowing the estimation of
the linear model describing the engine influence on the
flight performance similar to the validation example in
section 3. Calculation of the necessary values for each
segments completed the first evaluation step. In a sec-
ond step, the data segments of each evaluated category
were analyzed and the flight performance variation rep-
resented by the equivalent drag coefficient AC5 was
predicted. This procedure is very similar to the method-
ology validation presented in section 3.
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Figure 11: Example of automatically selected flight data
segments with nearly steady flight condition

An example of such extracted flight data segments
is given in the time histories of several aircraft observa-
tion variables in Fig. 11. In the case shown in this fig-
ure, segments during cruise flight right after the aircraft
climbed to 24 000 ft (7315 m) are selected. With stabi-
lized engine conditions the aircraft speed only contains
small variations and the quasi-steady flight assumption
is valid. This applies also to the resulting power imbal-
ance, which shows only small oscillations around zero,
indicating no significant change of the flight condition.

With this method 202 797 segments were extracted
from the B737-700 data set and 5161814 segments
from the B 737-800 data set. These segments contain
mainly parts of the en-route flight but climb to and de-
scend from the cruise flight levels are also represented
within the extracted data sets. The estimation of the lo-
cal engine influence on the recorded aircraft flight per-
formance in each category of the above mentioned five-
dimensional domain (V,H,Tsat, N1,mac) is performed
using a regression technique on a subset of the data.
It is possible to reliably estimate the engine model pa-
rameter values within a category only if each evaluated
category contains enough segments. In the B737-700
data set the 340 categories with the highest number of
segments were selected, which resulted in the above
given number of extracted segments. Similarly, in the
B 737-800 data set the 750 categories with the highest
number of segments were selected. The lowest num-
ber of segments in these categories were respectively
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Figure 12: Quasi-steady flight points of evaluated flight
data segments in altitude-Mach diagram
within the limits of the B 737 flight envelope

271 in the the B 737-700 case and 572 in the B 737-800
case. In both cases, an affine adjustment of the perfor-
mance based on only three engine parameters (the fan
speed Ny, the fuel flow rie, and the Mach number
Ma) was found sufficient for the presented case, but
must be eventually extended in future applications e.g.
considering data of different points of the flight enve-
lope. Note that when an affine adjustment with only 3
linear terms (one per parameter) on data sets contain-
ing several hundreds of data points is applied, there is
no real risk of overfit.

In Fig. 12, all quasi-steady flight points of the ex-
tracted data segments are plotted together with the
limits of the B 737 flight envelope in the altitude-Mach
diagram. Most of selected data is related to cruise
flight points which is logical as the en-route flight phase
mainly contains quasi-steady flight conditions with the
required duration of more than 60s. Note that due to
the large number of flights available for the B737-800
the corresponding segments are all located in the up-
per right corner of the flight envelope after limitation
to 750 categories as the presented analysis was not en-
titled to cover all data available or the complete flight
envelope.

The second step of the evaluation was the segment
data analysis and prediction of the flight performance
variation within the fleet of same aircraft type. The esti-
mation of engine influence and calculation of remaining
power imbalance was conducted similar to the example
in section 3 and Fig. 13 contains the combined engine
fan speed versus the power imbalance for one example
category (B 737-700). Comparison of the left and right
plot reveals that considering the thrust related power
imbalance allows to explain several outliers and a gen-
eral linear trend and can reduce some of the variation.
It gets visible again that without the estimation and re-
moval of the engine thrust influence the resulting pre-

dicted flight performance variation would be deficient.
The removal of engine thrust influence turns the scat-
tered distribution of power imbalance points (compari-
son of left and right plot) which reduces the predicted
variation except for the fact that some outliers cannot
be explained with this method at all. The remaining
power imbalance £,z was then used to calculate the
equivalent drag coefficient AC per category as defined
in Equation (4).

In order to represent the complete data (millions
of data points) in an intelligible way, convex hulls (in
the (Cp,C)-plane, nominal drag polar extracted from
“Base of Aircraft Data” Family 3 [15]) corresponding to
several quantiles of the data were computed and rep-
resented graphically in Fig. 14 for the B737-700 (left)
and B 737-800 (right). On these individual figures

- the black line represents the nominal drag polar of
the aircraft,

- the dot-dashed gray lines are defined as by shifting
the nominal drag polar by steps of 25% Cpe and
serve as grid in this figure,

- the gray area represents schematically the accu-
racy that the author expects to be able to reach
with better resolution of flight data and more
detailed knowledge about the individual aircraft,
which could be used to track a single aircraft’s per-
formance degradation in operational service,

the areas defined by the dashed dark, dot-dashed
dark, dotted gray and solid light gray polygon lines
are the convex hulls of the selected data quantiles
(95 %, 99 %, 99.9 % and 100 %).

Most of the variation is found around the optimal
cruise flight point (L/D),,, where most of the data is
available. The distribution of the different convex hulls
show that less than 0.1 % of data contains the majority
of predicted variation. The Pgg-line indicates that 99 %
of the flight performance variation lies below 10 % of
zero lift drag. Moreover, the predicted Pgs-variation of
ACg is even lower and similar to the values of normal
drag increase for in-service airplanes given in [1].

There are several sources of errors affecting this anal-
ysis and presumably causing the large predicted varia-
tion of the small subset of data: a limited knowledge
on the engine power characteristics of these two air-
craft types, a low resolution (sampling-time and quanti-
zation) of the recorded data, a missing vertical wind in-
formation (which can hardly be recovered from the data
available). In addition, the B737-800 data include air-
craft equipped with different types of winglets. More-
over, the results are further affected by missing infor-
mation about e.g. large scale atmospheric effects, sen-
sor miscalibration, engine deficiencies or aircraft icing.
After considering the knowledge gained from the data
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Figure 13: Power imbalance variation for different analyzed data segments in one example category (B 737-700):
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and the sensitivity of the results to the different sources
of errors, an educated guess was made for the perfor-
mance estimation uncertainty that can be reached in
practice by using the methodology and the standard
aircraft instrumentation (air data and inertial reference
systems) but with higher sampling rate and more de-
tailed knowledge about the individual aircraft history.
This estimate on the achievable precision is represented
by the gray areas in Fig. 14.

The results of this QAR data analysis support the ini-
tial guess that it is possible to monitor the aircraft per-
formance of all aircraft from a complete fleet using the
regular sensors and with a level of precision that per-
mits to detect a flight performance variation and con-
sequently degradation. The way the QAR data was
processed in the analysis presented in this section was
strongly tailored to a long term big data analysis, but
a slightly adapted version of the methodology might

be used for post-flight or even on-board flight perfor-
mance monitoring.

5 CONCLUSION

A novel methodology to determine and monitor the
aircraft flight performance during regular airline opera-
tions within a fleet of same aircraft type was presented.
The validity and applicability of the approach is sup-
ported by two separated analysis. First, the method-
ology was tested and validated with simulated flight
data of DLR’s Airbus A 320 research aircraft ATRA. It was
proven that an artificially introduced flight performance
variation could be reliably and accurately predicted by
the evaluation of the large flight data set. Second, the
analysis of a very large real flight data set indicated that
the searched flight performance variation could be pre-
dicted with the presented methodology and that it is



feasible to extract the flight performance information
with very limited system knowledge. The overall results
are very promising and in the methodology will be fur-
ther developed in future projects to consider more data
within all flight phases and aircraft configurations or
also track the individual flight performance change of
a single aircraft within the fleet.
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