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Abstract 

Singular railway track irregularities, such as squats and corrugation have a major impact on the ride 

stability, noise emission, comfort and safety of freight and passenger trains. Therefore, the detection 

and monitoring of such defects play an important role in railway track maintenance. Embedded 

low-cost sensors on in-service vehicles provide the opportunity of quasi-continuous condition 

monitoring of railway tracks and can thus enhance existing track maintenance strategies.  

In this paper we demonstrate a processing sequence to detect singular track defects from noisy 

axle-box acceleration (ABA) data. The data are acquired with a multi-sensor prototype measurement 

system on a shunter locomotive operating on the industrial railway network of the inland harbor of 

Braunschweig (Germany).  

A blind signal separation (BSS) algorithm based on non-negative matrix factorization is applied to the 

ABA data in the time-frequency domain. It is completely data-driven and hence does not rely on a priori 

knowledge or physical models. The algorithm makes use of different time-frequency characteristics of 

the signal components and is thus able to separate quasi-continuous band-limited signal components 

from transient broad-band components. The magnitude of the transient components reflects the 

strength of track singularities along the track and can hence be used to detect and quantify short track 

defects. Through georeferencing the identified defects can be localized, mapped on the track and be 

used to guide specific maintenance actions. Additionally, the BSS algorithm shows the potential to 

reduce the dimensionality of the data without significant loss of information.  
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1. Introduction 

Singular track defects can excite high wheel/rail forces that can cause further track and wheel 

deterioration and may lead to serious railway accidents. Therefore, the early detection of such defects 

is vital in order to ensure secure, stable, and economic operation. Monitoring the track using 

embedded sensors on in-service trains is considered to allow the timely detection of track defects. 

Additionally, this quasi-continuous monitoring builds the data basis for condition-based and predictive 

maintenance strategies. Due to their relatively low price and robustness to harsh environmental 

conditions, mainly inertial sensors (accelerometers and gyroscopes) come into consideration for in-line 

freight and passenger trains [1]. In the past, axle-box acceleration has been successfully measured 

and analyzed in order to monitor short track defects [1–4], such as squats [5], corrugation [6] and 

defective rail welds [7]. However, the detection of railway track defects from axle-box acceleration data 

is still challenging for several reasons. Simulation of the dynamic wheel-rail interaction using simplified 

models often fails due to the complexity of the physical system to be described and the superposition 

of different vibration signals. Vibrations originate mainly form the wheel and rail but also from the bogie 

and sleeper as well as from the engine and other rotating devices. Additionally, ABA measurements 

are influenced by environmental conditions and vehicle-specific and partly time varying vehicle 

parameters, such as train speed, load, suspension system etc. [8]. Information on these factors is often 

missing and/or their impact on the measured acceleration is not fully understood. Measuring ABA at 
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low vehicle speeds, as in case of e.g. monitoring tracks of industrial railway networks, results in poor 

signal-to-noise ratio [1] compared to measurements on main-line trains. Another challenge is the broad 

frequency range of the accelerometers that is required to detect short-wave track defects of a few 

millimeters to centimeters. The corresponding high sampling rate produces big datasets that can get 

too large for on-board processing with embedded computers, which often have limited CPU power and 

memory. Furthermore, the online data transfer may be restricted due to bandwidth and electric energy 

limitations. Therefore, feature extraction as a dimensionality reduction process might be desired, 

where the selected features are supposed to contain all relevant information from the original data, so 

that the reduced representation can be used for further analyses instead of the large input data.  

Features can be extracted in the time-domain (e.g. root-mean-square and maximum amplitude) [2, 3], 

frequency and time-frequency domain [2, 8]. Time-frequency techniques are widely used in noise and 

vibration analysis including rail track [9–11] and wheel condition monitoring [12].  

In this paper the authors present a BSS algorithm to separate the ABA signal in its different vibration 

components with the goal to extract features indicating track defects. 

2. Methods 

2.1 Data acquisition 

The German Aerospace Center (DLR) is developing and testing low-cost multi-sensor prototype 

systems based on components of the shelf (COTS) for in-service condition monitoring [2, 3]. The hard 

and software is modularly designed. The sensor setup used for this study includes a low-cost global 

navigation satellite system (GNSS) receiver (with GNSS raw data acquisition), an inertial 

measurement unit (IMU) at the car body (above suspension) measuring accelerations and turn rates at 

100 Hz sampling rate. The IMU and GNSS data are fused with a digital map of the railway 

infrastructure for georeferencing [13], which means the assignment of locations (track ID and distance 

on track) and train speed to the measured data. The ABA is gathered with a broad-band 

(0.8 – 8000 Hz) triaxial accelerometer at 20625 Hz sampling rate. A multiband antenna is used to 

acquire GNSS data, for communication and data transmission. The unit sends position and status 

information to a central data management system every second and can thus be maintained remotely. 

If a broad-band internet connection is available, measurement data can also be transferred. The entire 

system is run with an open-source software framework based on the robotic middleware ROS, the 

programming languages Python and C++. The data presented here have been acquired at the 

Braunschweig (Germany) harbor industrial railway network on an operating shunter locomotive (Figure 

1) at maximum train speed of 25 km/h. At this railway network, over 5000 train journeys with a total 

duration of approximately 136 hours have been acquired and georeferenced till now. 

 

Figure 1: DLR prototype of multi-sensor-measurement system (right) installed on a shunter 
locomotive (left) with triaxial accelerometer at the front right axle box (middle), modified from 

[2]. 
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2.2 Blind signal separation  

Blind signal separation (BSS), also called blind source separation, is a machine learning technique to 

separate a set of mixed signals into their source components. A classic example is the so called 

Cocktail Party Problem, which describes the challenge to extract a single voice from a mixture of 

several superimposed voices at a crowded party. It can also be used to achieve a low-rank 

approximation or dimensionality reduction of the original signal and hence reduce the amount of data 

while keeping the same amount of information. This is a crucial aspect especially for on-board 

real-time monitoring where the amount of data that can be transferred from the train to the back office 

is limited. Principal component analysis (PCA) and independent component analysis (ICA) are among 

the most popular BSS techniques. Here, in contrast, a non-negative matrix factorization (NNMF) is 

used, which assumes that the data and its components are non-negative [14]. Unlike PCA and ICA, 

the NNMF represents the data in an additive fashion, by superimposing the components, without 

subtracting. Such additive models are especially efficient for representing images and text [14], but 

finds also applications in e.g. end-member analysis [15] and audio signal processing. The NNMF 

decomposes the non-negative input data matrix X into two matrices H and W of non-negative elements. 

The approximation of X by the matrix product HW is achieved by minimizing the objective function: 

1

2
‖𝐗 − 𝐇𝐖‖𝐹𝑟𝑜

2  , 

where ‖∙‖𝐹𝑟𝑜
2  is the squared Frobenius norm. 

In this study, the goal of BSS is to separate the unwanted vibration components of the vehicle from the 

vibration component related to track defects. Here, NNMF is applied to the vertical component of the 

ABA data in the time-frequency domain. The processing sequence is as follows: firstly, the data are 

transformed into the time-frequency domain by applying the short-time Fourier transform (STFT). Here, 

a time window of 1024 samples or approximately 0.05 s is used. The logarithm of the amplitude 

spectra is taken and its minimum value subtracted to achieve positivity. Then, NNMF is applied to 

separate the signal into 𝑁 components with characteristic amplitude spectra. The underlying mixing 

model can be expressed as 𝐗 ≈  𝐇𝐖, where 𝐗 is an 𝐹 × 𝑇  matrix containing the data in the 

logarithmic time frequency domain. The number of rows 𝐹 represents the number of frequency 

windows (i.e. half the time window length) and the number of columns 𝑇 represents the number of 

time windows. The 𝐹 × 𝑁 matrix 𝐇 with the column vectors 𝐡𝑖(𝑖 = 1, … , 𝑁) contains the amplitude 

spectra of the 𝑁 components and 𝐖 is an 𝑁 × 𝑇 matrix with row vectors 𝐰𝑗(𝑗 = 1, … , 𝑁) that hold 

the weights of the 𝑁 components. Thus, the logarithmic amplitude spectra of the data at each time 

window can be represented as a weighted sum of the spectra of the different signal components. In 

this study we set 𝑁 = 2 to separate the signal into two components. Since the ABA data are corrupted 

with noise, dedicated optimization need to be used. Here a mixture of L1 and L2 regularization, also 

known as elastic net regularization, is applied to the components and the weights. The problem to be 

optimized then reads: 

1

2
‖𝐗 − 𝐇𝐖‖𝐹𝑟𝑜

2 + 𝛼‖𝐇‖1 + 𝛼‖𝐖‖1 + 𝜌‖𝐇‖𝐹𝑟𝑜
2 + 𝜌‖𝐖‖𝐹𝑟𝑜

2  , 

where 𝛼 and 𝜌 control the elementwise L1 and L2 penalty, respectively.  

3. Results and discussion 

BSS has been applied to the vertical component of a 370-second-long ABA data record (Figure 2). The 

data in the time-domain reveal distinct peaks with ABA of up to nearly 400 m/s
2
 between 100 s to 150 s 

(Figure 2a) that can be attributed to track irregularities. The logarithmic amplitude spectrum in the 

time-frequency representation (Figure 2b) shows high amplitudes for a wide frequency range in this 

region. This broad frequency spectrum corresponds to the impulsive wheel-rail contact force excitation 
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at the track defects. In contrast, at the end of the record (between 370 s and 376 s) a different type of 

vibration signal is present. From the time-frequency representation it can be seen that this signal is 

very band limited (roughly between 4000 Hz and 4500 Hz) and lasts for a few seconds. These high 

accelerations are caused by wheel vibrations during breaking of the train and produce high pitch 

squeal noise. The time-frequency representation also reveals horizontal bands of high amplitudes that 

appear at constant frequencies of up to 5000 Hz. The amplitude of these bands varies only slowly with 

time. It can be shown that these “long-wave-length” amplitude variations are directly related to the 

speed of the train. Since the horizontal bands represent quasi-stationary signal components they can 

be linked to vibrations caused by components of the vehicle, in particular wheel irregularities and 

wheel roughness as well as vibration of the engine of the locomotive. 

 

 
Figure 2: a) original ABA time series; b)-f): time-frequency representations of b) the original 

logarithmic ABA signal, c) the first component multiplied by the weights of the first component 

(𝐡𝟏  ×  𝐰𝟏), d) the second component multiplied by the weights of the second component 

(𝐡𝟐  ×  𝐰𝟐), e) the approximated signal, i.e. weighted sum of the two components (𝐇 × 𝐖), f) the 
residual (difference between original and approximated signal). The coloring of the 

time-frequency representations corresponds to the shifted logarithmic amplitude values. 

Simply speaking, the time-frequency image consists of two main patterns vertical lines and horizontal 

bands. The vertical lines are considered to be related to transient singularities, hence related to the 

track while the horizontal bands represent stationary vibration components related to the wheel and 

a) 

b) 

c) 
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other rotating components of the vehicle. The goal of the BSS algorithm is then to separate these two 

components, which was successfully done as shown in Figure 2c-f. The reconstructed time-frequency 

representation (Figure 2e) represents the original data (Figure 2b) well and the residual (difference 

between the original and reconstructed signal, Figure 2f) contains mainly white noise and only little 

coherent signal. This shows that the NMF can be used as a low-rank approximation of the original 

signal without loss of significant information and is therefore a powerful tool to reduce the 

dimensionality of the data, which can be very important for on-board processing and communication 

where the size of the data may be restricted. 

The representations of the individual components after BSS show that each component represents 

one of the two main patterns described above. The first component (Figure 2c) mainly consists of the 

horizontal bands that can be linked to the vibrations caused by the vehicle. This component could 

hence be further analyzed to detect for instance wheel defects. The second component (Figure 2d) 

consists of the vertical lines that represent the transient broad band components and hence indicates 

track singularities. The weights of this component provide an indirect measure of the magnitude of 

track irregularities and can thus be used to detect singular track defects. By means of georeferencing 

the identified defects can be localized, mapped on the track and be used to guide specific maintenance 

actions (Figure 3). The highest amplitudes in Figure 3 are indicated in red and appear at a track 

segment, which is one of the oldest segments of track with partly rotten wood sleepers and ballast in 

bad condition. The high amplitudes in the south-east of that indicated by the red arrow correspond to 

two welded rail joints with gentle depressions of the rail surface of several centimeter lengths [2]. 

 

 
Figure 3: Weights of the second component indicating track singularities. 

 

In this example the same regularization is applied to the components and the weights. Further fine 

tuning of the regularization by using different parameters for the components and the weights may be 

used to further constrain the results. For example, it might be desired to increase the sparsity of the 

weights of the transient component by adding additional constraints such as Lasso-regularization, 

while keeping the weights of the static components smooth through L2-norm-regularisation.   

 

 4. Conclusions 

We showed that the presented BSS algorithm based on NNMF is able to extract the main components 
of ABA data originating from different vibration sources. Continuous vibration signals could be 
separated from transient signals related to short track irregularities. The extracted features can be 
used to detect and quantify track singularities from ABA data acquired on in-service trains. Therefore, 
this approach might help to improve safety and reliability of train operations and reduce maintenance 



- 6 - 
 

costs. 
Additionally, the algorithm provides an accurate low-rank approximation of the original data and can 
hence be used as a dimensionality reduction process.  
Since the algorithm is completely data driven, it is independent from sensor specifications, sensor 
location and rolling stock and hence can be readily adapted to other kinds of wagon borne 
accelerometers.        
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