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Abstract. This paper presents a new methodology to simulate the behaviour of flexible bodies in-
fluenced by multiple physical field quantities in addition to the classical mechanical terms. The
theoretical framework is based on the extended Hamilton Principle and an adapted modal multifield
approach. Furthermore, the use of finite element analysis for the necessary data preprocessing is ex-
plained. Numerical solution strategies for the coupled system of differential equations with different
time scale properties are mentioned. The method is applied to simulate a structure with distributed
piezo-ceramic devices inducing an additional electrostatic field. Two thermoelastic problems, which
have to consider the influence of spatial temperature distribution, also demonstrate the benefits of the
presented approach.
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1. Introduction

Multibody dynamics focuses on the more global behaviour of mechanical sys-
tems. As a result the modelling task is simplified because in principle only a
moderately detailed modelling level is required compared to the finite element
approach. However, this attitude makes it necessary to handle all engineering dis-
ciplines and problems which significantly influence the technical system under
evaluation.

In addition, the complexity of technical systems tends to increase involving more
and more technical domains. Thus, multibody dynamics is exposed as a continuous
work field. Important issues in this context are supplementary modelling capabilities
and interfaces to other computational engineering tools [1].

Besides this general background, the extended representation of flexible bodies
that will be introduced in the present paper is motivated by two specific fields of
application.



300 A. HECKMANN ET AL.

The first application example deals with so-called smart or adaptive struc-
tures. This concept has been developed to overcome the drawback of lightweight
structures, viz. their susceptibility to vibrations. In vehicle applications it is aimed
to achieve comfort improvements by the adaptive modification of the structure’s
response to various stimuli.

Thin piezo-ceramic patches, integrated into the structure, are one promising way
to achieve this purpose. As a result an additional electrostatic field is induced by
these piezo-ceramic actuators or sensors, which has to be considered for evaluating
the behaviour of the flexible body.

Since smart structures are mechatronic devices, their design involves sev-
eral engineering disciplines such as structural mechanics, electronics and con-
trol. The optimisation of such a complex system is a challenging task which
may be supported advantageously by multibody dynamics as a system dynamics
method.

The second application field refers to a classical problem of continuum
mechanics, namely thermoelasticity. Usually, thermal expansion may be ne-
glected in multibody dynamics, because the deformation of flexible bod-
ies caused by temperature fields is small compared to displacements caused
by mechanical forces. But such scenarios exist in which the consideration
of both temperature and displacement field makes sense or may even be
mandatory.

The specific importance of a combined thermal and elastic analysis can be
stated for problems with large membrane or normal stresses due to temperature
distribution. As a consequence, the natural frequencies of flexural vibrations and
the related stiffness terms will decrease or even drop down to zero so that thermal
buckling may occur.

A strong coupling between displacement and thermal field such as transient
contact problems with heat generating friction, e.g. between brake disc and pad,
also requires both thermal and elastic analysis.

The examples given in this paper were chosen to give an overview of these
application fields. They use moderately complex single body models to enable a
clear demonstration of the modelling particularities concerning thermoelasticity
on the one hand and those regarding adaptive structures on the other. The low-
dimensional representation of multiphysical, co-existent field quantities, achieved
by the geometric semi-discretisation with just a few global modes, is a powerful
novel approach to extend the simulation techniques of classical multibody dynamics
to a new class of problems.

The present exposition covers the issues theory, data provision and verification.
The application of the method to complex problems still remains an elaborate
task involving e.g. the definition of reasonable boundary conditions, see [2] for
a comprehensive simulation set up of industrial high-precision tooling machinery
with thermally-induced tool center point displacements.
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Table I. Glossary of standard quantities and symbols.

Basic quantities
t time m mass

V volume � density

B boundary area nB outer unit normal vector

Mechanical quantities

r position vector u displacement vector

v velocity ω angular velocity

E Young’s module ε strain tensor in vector format

x Lagrange co-ordinate f external force

a acceleration α angular acceleration

ν Poisson coefficient σ stress tensor in vector format

Thermal quantities

� absolute temperature q heat flux

η entropy density c specific heat coefficient

Λ thermal conductivity matrix α thermal expansion coefficient

S heat source density

Electrostatic quantities

ϕ electric potential e electric field strength

d electric displacement Qϕ applied electric charge

Indices and operators
( )V The index V specifies a physical quantity as defined per volume, e.g. fV denotes a volume force
( )B The index B relates a quantity to the boundary surface, e.g. fB symbolises a surface load
( )R The index R indicates motion terms of the flexible body’s reference frame, see Section 2.4
(˜) The tilde operator defines a vector matrix transformation used to replace the vector cross

product by a matrix multiplication: a × b = ãb = −b̃a

2. Theoretical Framework

2.1. NOTATIONS AND DEFINITIONS

The multifield description provides the governing equations for the mechanical,
thermal and electrostatic fields. As a result, there is a whole bundle of variables in
this section. The standard quantities are summarised in Table I.

2.2. MATERIAL CONSTITUTION

This paper deals with three physical fields, each specified by a pair of field variable
terms. The mechanical state of a material particle is quantified by its stress and
its strain tensor, the electrical state by its electric field strength and the electric
displacement and the thermal state by its temperature and entropy density.

In order to describe the properties and influence of the material, a constitutive
relation has to be found to quantify the thermodynamical state of a material point
uniquely.
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If strain ε, electric field strength e and temperature � are chosen as independent
variables, the electric Gibbs potential arises as associate function [3, Chapter 5]:

dG = −εTdσ − dTde − ηd�. (1)

In praxis the introduction of a new variable ϑ , replacing the absolute temperature
� by the increment w.r.t. linearisation temperature �0 proved to be advantageous:

ϑ = � − �0. (2)

The electric Gibbs potential, approximated by its second-order Taylor expansion
at a natural state, in which ϑ , e and ε vanish, enables the formulation of a linear
constitutive equation in matrix form:1



σ

d

η


 =




Hc −HT
e −HT

λ

He Hε Hp

Hλ HT
p Ha







ε

e

ϑ


 = H




ε

e

ϑ


 . (3)

The main diagonal elements of H specify the material properties of the mono-
disciplinary effects. Hc can be identified as the classical 6 × 6 elasticity tensor
relating stress to strain, Hε consists of the permittivity coefficients and Ha = �c/�0

is the heat capacity coefficient, which relates temperature and entropy density.
In the un-coupled, isotropic thermoelastic problem the first row of (3) may be

rewritten to extract the widely used thermal strain εϑ [5, Vol. 1, (4.26)]:

σ = Hc(ε − εϑ ) with εϑ = H−1
c HT

λϑ = (α α α 0 0 0)Tϑ.

2.3. GENERALISED HAMILTON’S PRINCIPLE

Parkus [6] established the generalised Hamilton’s Principle for coupled thermoe-
lasticity, which was augmented for piezo-thermoelasticity by Nowacki [7]:

δ

∫ t2

t1

(T − � + A) dt = 0, δ

∫ t2

t1

�dt = 0. (4)

The integrals in (4), which are stated to become stationary, use the following defi-
nitions:

T = 1
2

∫
m ṙTṙ dm, A = ∫

V fT
V r dV + ∮

B(fT
Br − ϕQϕ) dB,

� = ∫
V (G + η�) dV, � = ∫

V (H − η��̇ − S�) dV + ∮
B qT

BnB� dB.

1 The indices of the material coefficient matrices are chosen analogously to [4, Chapter 24].
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In particular, the scalar potential H , called heat flux potential per volume, has to
be pointed out because of its close relation to the fundamental Fourier law of heat
conduction:

H = 1

2
(∇�)TΛ(∇�), =⇒ q = − ∂ H

∂(∇�)T
= −Λ(∇�). (5)

In (4), only the independent field variables r, e and � are varied while the other
quantities are kept unchanged. This procedure is only admissible if all external
quantities like fB or qB are monogenetic, i.e. could be derived out of a scalar
function. They do not necessarily need to be conservative [8, Chapter 1].

Separation of variations for the three fields, substitution of G in (4) using (1)
and the fundamental lemma of the variational approach yield the field equations in
weak form:

∫
V

[ − �δrTr̈ − σTδε + fT
V δr

]
dV +

∮
B

fT
Bδr dB = 0, (6)

∫
V

dTδe dV −
∮

B
δϕQϕ dB = 0, (7)

∫
V

[ − (∇δ�)Tq + (�η̇ − S)δ�
]

dV +
∮

B
qT

BnBδ� dB = 0. (8)

At first sight, the equations (6)–(8) look like three un-coupled field descriptions
from mono-disciplinary engineering textbooks. But the coupling becomes obvious
by eliminating the dependent field variables using (3).

2.4. MODAL MULTIFIELD APPROACH

The kinematics bases on a floating frame of reference formulation [9, Chapter 1]
and thus gets the form:

r = rR + x + u,

ṙ = vR + ω̃R(x + u) + u̇,

r̈ = aR + (α̃R + ω̃Rω̃R)(x + u) + 2ω̃Ru̇ + ü.

(9)

The displacement of a body particle within the reference frame u = u(x, t)
will be described with separated variables as the product of time-independent
modal functions Φu(x) by coefficients zu(t). Within this approximation, the eval-
uation of the strain field is feasible by means of the differential operator Dεu

[5, Vol. 1, (6.9)]:

u = Φuzu, ε = Dεuu = (DεuΦu)zu = Buzu . (10)
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Regarding the electrostatics, the trial functions Φϕ describe the electrical potential
field. Thus, the electrical field strength e results from a negative gradient operation:

ϕ = Φϕzϕ, e = −∇ϕ = (−∇Φϕ)zϕ = Bϕzϕ. (11)

The analogous approach is chosen for the scalar temperature field. Here, the appli-
cation of the ∇ operator is necessary to evaluate the heat flux vector q:

ϑ = Φϑzϑ, ∇ϑ = (∇Φϑ )zϑ = Bϑzϑ, =⇒ q = −ΛBϑzϑ . (12)

2.5. EQUATIONS OF MOTION

Now the matrices Kuu , Kuϕ and Kuϑ are introduced for volume-dependent integrals
which can be preprocessed and accessed during the time integration of the multibody
system:

Kuu :=
∫

V
BT

u HcBu dV ,

Kuϕ :=
∫

V
BT

u HT
e Bϕ dV , (13)

Kuϑ :=
∫

V
BT

u HT
λΦϑ dV .

From the mechanical point of view, the thermal and the electrostatic field generate
internal, distributed mechanical loads. Obviously, there is no direct influence on
the inertia properties of the body. That is why the mass, gyroscopic and centripetal
terms within the equations of motion can be adopted from literature. Shabana in [10,
(5.140)] and Schwertassek and Wallrapp in [9, (6.308)] specified the generalised
Newton–Euler equations for the unconstrained motion of a deformable body that
undergoes large reference displacements.

A comparison of (6) with these references yields the extended equations of
motion:




Maa Maα Mau

Mαα Mαu

sym. Muu







aR

αR

z̈u


 =




ha

hα

hu


 +




0

0

−Kuuzu + Kuϕzϕ + Kuϑzϑ


 .

(14)

The mass matrix on the left-hand side of (14) is formulated as 3 × 3 block matrix
such that the sub-matrices specify the inertia coupling between acceleration terms
due to translational, angular and elastic motion, denoted by ( )a , ( )α and ( )u . The
right-hand side terms ha , hα and hu summarise all inertia, damping and external
forces.
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The added products Kuϕzϕ and Kuϑzϑ represent the influence of the electro-
static and the thermal field respectively on the equations of motion. They may be
interpreted as modal forces acting on the elastic body.

Although the thermal and electrostatic loads do not alter the inertia quantities
in (14), the displacements caused by these loads do, since the mass matrix and the
vectors ha and hα depend on the deformation state of the body.

2.6. ELECTROSTATIC EQUATION

With

Kϕϕ :=
∫

V
BT

ϕHεBϕ dV ,

Kϕϑ :=
∫

V
BT

ϕHpΦϑ dV , (15)

Qϕ :=
∮

B
ΦT

ϕ Qϕ dB.

Equation (7) can be rewritten:

Qϕ = Kϕϕzϕ + KT
uϕzu + Kϕϑzϑ . (16)

The algebraic sensor equation (16) is needed to calculate the electric quantities,
e.g. the electric charges Qϕ , if the piezo-ceramic components are used as sensors
or, more generally, if they are part of arbitrary electric circuits, see [11, Chapter 3]
and [12]. Analogously to (14), the terms Kϕϑ and KT

uϕ = Kϕu represent coupling
matrices, which transform the thermal and the displacement quantities into the
electrostatic field equation.

2.7. THERMAL EQUATION

In (8), the natural boundary conditions are represented by the heat flux through the
boundary surface. It depends on the physical circumstances how this term has to
be introduced into the thermal equation. For Neumann conditions, the boundary
heat flux qB is given explicitly. If convection occurs on the boundary surface, a
Robin or mixed boundary condition is imposed, specified by the film coefficient hf

and the bulk temperature ϑ∞ of the fluid [13, Section 4.1]. Although this list is not
complete, we confine ourselves to these two cases:

qT
BnB = −qB − hf(ϑB − ϑ∞). (17)

Besides the thermal-mechanical coupling matrix Cϑu = �0KT
uϑ and the thermal-

electrostatic coupling term Cϑϕ = �0KT
ϕϑ , which may be derived from their
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corresponding transposed quantities, the following notations are used for geometric
integrals:

Cϑϑ :=
∫

V
�oΦT

ϑHaΦϑ dV, Kϑ R :=
∮

B
hfΦT

ϑΦϑ dB,

Kϑϑ :=
∫

V
BT

ϑΛBϑ dV, Qϑ R :=
∮

B
ΦT

ϑhf dB,

QϑS :=
∫

V
ΦT

ϑ dV, Qϑ N :=
∮

B
ΦT

ϑ dB.

(18)

Finally, the coupled, linearised thermal equation can be stated:

Cϑϑ żϑ + Cϑϕ żϕ + Cϑu żu + (Kϑϑ + Kϑ R)zϑ
(19)= QϑS Su + Qϑ N qB + Qϑ R ϑ∞.

The generalised velocities żu in (19) indicate that the temperature field de-
pends on the displacements and the strains. Whereas the thermal effect on the
displacements is well known and widely accounted for in finite element analysis,
the retroaction from displacements on temperatures, called the Gough–Joule effect
[14], is very frequently neglected because of its limited influence on the tempera-
tures compared to the other terms.

If it is intended to identify the well-known un-coupled heat conduction equation
of solids, (19) can be rewritten assuming Cϑu ≈ 0 and Cϑϕ ≈ 0, cf. [5, Vol. 1,
Section 17.2].

2.8. TOPOLOGICAL ASPECTS

Equations (14), (16) and (19) are to be posted for each body of the articulated mech-
anism under consideration. For a global representation (14) and (19) are rewritten
in condensed form for a general elastic body ( )(i) with electrostatic and thermal
properties:

M(i)z̈(i) = h(i)
o + h(i)

m

(
z(i)
ϕ , z(i)

ϑ , z(i)
u

)
, (20)

ż(i)
ϑ = c(i)

(
ż(i)
ϕ , z(i)

ϑ , ż(i)
u

)
. (21)

Besides the mechanical description (20) the set up of a piezo-thermoelastic body
requires the definition of two additional, uniquely assigned elements. The thermal
element reflects (21) and evaluates the thermal state of the body.

The electrostatic element stands for the measurement capabilties of the piezo-
ceramic devices attached to body ( )(i) and calculates the electric charges Q(i)

ϕ , i.e.
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the sensor output of the piezo-patches according to (16):

Q(i)
ϕ = d(i)

(
z(i)
ϕ , z(i)

ϑ , z(i)
u

)
. (22)

The actuation capabilties of the piezo-patches are reflected by the input variable
z(i)
ϕ in (20). From that point of view the elastic body ( )(i) may be interpreted

as a controlled plant, whereas z(i)
ϕ represents its input and Q(i)

ϕ its output. These
quantities are supposed to be used for the set-up of an appropriate control law such
as z(i)

ϕ = z(i)
ϕ (Q(i)

ϕ ), see the piezoelectric application in Section 4.
Mechanical interactions between separated bodies of a mechanism are to be

modelled either as applied forces or by kinematical constraints. However, (20)–
(22) presume that the electrostatic and thermal field of body ( )(i) do not interfere
with those of other bodies.

The model equations of a general elastic body with electrostatic and thermal
features have been implemented in a developer version of the industrial multibody
code SIMPACK.

In SIMPACK, the use of relative joint co-ordinates p enables an efficient recursive
assembly of the equations of motion for the complete multibody system by an
explicit O(N )-formalism [15].

For tree-like structures the relative co-ordinates p are defined as minimum set
of generalised mechanical co-ordinates. The pure mechanical part of the equations
of motion reads [16]:

∑
(i)

[
z(i)

p

]T [
M(i)z̈(i) − h(i)

o − h(i)
m

] = M̄p̈ − h̄ = 0. (23)

M̄(p, t) represents the symmetric inertia matrix of the complete multibody sys-
tem. The generalised Coriolis and applied forces together with the generalised
loads due to thermal and electrostatic influences are included in h̄(ṗ, p, z̄ϑ,

z̄ϕ, t).
For closed-loop systems, Equations (23) are extended by kinematical constraints

and the associated passive forces, see [10, Section 5.9]. Additional differential state
equations result from the thermal features, see (21).

In its most general form the model equations of the complete system are given
by:

M̄(p, t)p̈ = h̄(ṗ, p, z̄ϕ, z̄ϑ, t) − ḠT(p, t)λ,

˙̄zϑ = c̄(ṗ, ˙̄zϕ, z̄ϑ ),

0 = ḡ(p, t)

(24)

with the constraint matrix Ḡ := ( ḡ
p )(p, t).
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3. Solution Methods

3.1. DATA PREPROCESSING

3.1.1. Electrostatic Field Data

It is state-of-the-art of industrial multibody tools to incorporate the results of an
appropriate finite element analysis to obtain the mechanical data of a flexible body.

This approach may not yet be carried over to the data of smart structures. Al-
though the finite element modelling of piezoelectric devices on shell elements is a
field of active research [17], it is not yet introduced in an industrial finite element
tool. To enable nevertheless the simulation of lightweight structures with shell ele-
ments, the following technique uses only purely mechanical data which are readily
available.

Imagine a finite element model with shell elements. A modal analysis yields
discrete mode matrices for every node k, located at the position xk ∈ R3 which
specify the displacements Φu,k ∈ R3,m and rotations Ψu,k ∈ R3,m as functions of
all observed modes j , 1 ≤ j ≤ m. The aim is to obtain the matrices Kuϕ and Kϕϕ

for a piezo-ceramic patch, located upon a shell element, defined geometrically by
the four nodes k = 1, . . . , 4, one at each corner.

For interpolation the shell mid-plane is mapped on a normalised (ξ, ζ )-area. The
interpolation functions may be organised by defining a matrix N ∈ R3,12:

N = ( N1I3 N2I3 N2I3 N4I3 ), (25)

N1 = 1

4
(1 − ξ )(1 − ζ ), N2 = 1

4 (1 + ξ )(1 − ζ ), I3 = diag{1, 1, 1},
N3 = 1

4
(1 − ξ )(1 + ζ ), N4 = 1

4 (1 + ξ )(1 + ζ ), −1 ≤ ξ, ζ ≤ 1.

Now an iso-parametric approximation of the geometry xs and the displacements
us of a shell point, specified by ξ = (ξ, ζ, ts)T, can be formulated:

xs(ξ) = Nxe + tsNne, us = Φu,s(ξ)zu = (NΦe − tsNΨe)zu, Φu,s ∈ R3,m .

(26)

Here, the vector xe organises the four-node positions, ne summarises the unit nor-
mals to the shell mid-plane in the node points nk and the matrices Φe and Ψe

represent the pre-described node displacements and rotations:

Φe =




Φu,1

Φu,2

Φu,3

Φu,4


 , Ψe =




ñ1Ψu,1

ñ2Ψu,2

ñ3Ψu,3

ñ4Ψu,4


 , xe =




x1

x2

x3

x4


 , ne =




n1

n2

n3

n4


 .
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Using this approximation of the displacements in modal description, the strain
field may be evaluated using a differential strain-displacement operator Dεu , e.g.
according the Reissner–Mindlin assumption [5, Vol. 2, Chapter 8].

If it is additionally assumed that the electric potential varies linearly between
the two electrodes of a piezo-patch, the related volume integrals (15) are feasible
for evaluation, see [18] for further details.

3.1.2. Thermal Field Data

The analysis of temperature fields and the application of thermal loads on mechani-
cal structures are widely used operations of the finite element method. The strategy
to describe here organises the access to existing finite element data and the trans-
fer into the multibody representation. The four steps to be done are additionally
visualised in Figure 1:

1. Firstly, the thermal finite element description has to be reduced. Therefore, the
modal approach in (12) is rewritten in discretised form denoting the number
of thermal degrees of freedom of the finite element system by nϑ and of the
multibody system by mϑ :

ϑ = Φϑzϑ with Φϑ = [ · · · ai · · · ], 1 ≤ i ≤ mϑ, ai ∈ Rnϑ . (27)

Each vector ai represents a discrete thermal mode, i.e. assigns one temperature
to each finite element degree of freedom. A mode may be a solution of the

Figure 1. Thermal response modes (thermal deflections are assumed to be quasi-stationary).
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thermal eigenvalue problem [C f
ϑϑκi + K f

ϑϑ ]ai = 0 or a solution of a frequency
response or steady-state problem.2

2. The second step consists of a static analysis of the mechanical system. Each
selected thermal mode ai constitutes one mechanical load vector f f

i and results in
one corresponding displacement solution bi , further on called a thermal response
mode:

f f
i = f f

i (ai ), K f
uubi = f f

i , bi ∈ Rnu . (28)

3. In the third step, additional displacement modes have to be evaluated and se-
lected that represent the native mechanical behaviour of the system. See [19]
for appropriate mode selection techniques. Equation (10) can then be rewritten
in discretised form:

u = Φuzu, (29)
Φu = [· · · bi · · · b j · · ·], mϑ < j ≤ mu, bi , b j ∈ Rnu .

If the column vectors of Φu are linearly dependent, a maximum subset of linearly
independent column vectors is selected to meet the demands of the Ritz approach.
But the verification examples given later show that this situation is not likely
to occur since both kinds of displacement solutions are of completely different
nature.

4. Equations (27) and (29) enable a modal transformation of the thermal and the
mechanical system out of their finite element formulation into the multibody
description [9, Chapter 6]. The thermal-mechanical coupling matrix can be pro-
vided as the reorganisation of the thermal load vectors f f

i :

Kz
ϑu = ΦT

u K f
ϑu, with K f

ϑu = [· · · f f
i · · ·]. (30)

Finally, all data needed to run electrostatic-mechanical and thermal-mechanical
multibody simulations were made available.

3.2. TIME INTEGRATION

The numerical solvers for time integration benefit strongly from the modal re-
duction in the preprocessing step: modal reduction decreases the number of de-
grees of freedom by several orders of magnitude. Furthermore, the full finite el-
ement models have high-frequency solution components that are physically not
relevant because of structural damping and damping in joints. Modal reduction

2 The superscripts ( ) f and ( )z are used to distinguish corresponding terms in finite element and
multibody representation, if they could be mixed up.
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eliminates these high-frequency components analytically and avoids in this way
numerical instabilities that would result in strong restrictions of the time step size
�t .

Today, the selection of trial functions Φu , Φϕ , Φϑ relies on the intuition of the
engineer and on simplified linear considerations [19]. First attempts to select Φu ,
Φϕ , Φϑ adaptively use the truncation error in a fully nonlinear flexible multibody
system model that is based on a formulation as saddle point problem in Sobolev
spaces [20].

The model equations (24) form a second-order differential–algebraic equation
(DAE). Classical time integration methods from computational mechanics like
Newmark’s scheme exploit this second-order structure explicitly. Industrial multi-
body system simulation packages do not follow this approach but transform (24)
to an equivalent first-order system introducing the velocities w := ṗ.

Following a proposal of Gear et al. [21], the DAE (24) is furthermore transformed
to the analytically equivalent stabilised index-2 formulation (31) to avoid numerical
instabilities in DAE time integration:

ṗ = w − ḠT(p, t)η,

M̄(p, t)ẇ = h̄(w, p, z̄ϕ, z̄ϑ, t) − ḠT(p, t)λ,

˙̄zϑ = c̄(w, ˙̄zϕ, z̄ϑ, t), (31)

0 = ḡ(p, t),

0 = Ḡ(p, t)w(t) + ḡ,t (p, t).

This formulation makes explicit use of the constraints

0 = dḡ(p, t)

dt
= ∂ ḡ

∂p
(p, t) ṗ(t) + ∂ ḡ

∂t
(p, t) = Ḡ(p, t) w(t) + ḡ,t (p, t)

on the level of velocity co-ordinates w and introduces an artificial correction term
ḠT(p, t)η with auxiliary variables η in the kinematical equations ṗ−w = 0. These
variables η vanish identically for the analytical solution and remain in the size of
the discretisation error during time integration.

The stabilised index-2 formulation (31) can be solved by any standard DAE
time integration method like BDF or (implicit) Runge–Kutta methods. The in-
dustrial simulation packages MSC.ADAMS and SIMPACK offer adapted ver-
sions of the variable step-size variable order BDF-code DASSL [21] as default
integrators.

These basic strategies for time integration in industrial multibody system simula-
tion emphasize again that multibody system tools are suitable integration platforms
for multiphysical problems. First-order differential equations like (19) and alge-
braic equations like (16) that describe the behaviour of non-mechanical system
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components may be added to the equations of motion (23) without any modifica-
tions of the BDF time integration method.

The standard time integration methods of multibody dynamics may even be
applied if the modal approach involves a large number of trial functions, e.g. to
resolve local effects in elastic structures. But in this special case co-simulation
techniques combined with semi-analytical methods for the time integration of the
modal equations proved to be substantially more efficient [1, 22, 23].

4. Piezoelectric Application

A metal sheet equipped with piezo-elements to control the vibration is presented as
an example to demonstrate the feasibility of the proposed methodology for mod-
elling of piezo-elements in multibody systems. The description of piezo-elements
has been implemented in the multibody simulation package SIMPACK [24].

4.1. SIMULATION ENVIRONMENT

The elastic structure of the metal sheet is modelled in ANSYS and transformed to
its modal representation, which can be used as an elastic body representation for
SIMPACK and which also serves as a base for controller design in MATLAB.

The metal sheet and the piezo-patches are modelled and simulated in SIMPACK.
The controller design and simulation is performed in MATLAB/Simulink. SIM-
PACK and MATLAB/Simulink are connected via an inter-process communication
interface [25].

4.2. MODEL DESCRIPTION AND SIMULATION SCENARIO

The model of an elastic metal sheet (E = 2.1×1011 Pa, ν = 0.3, � = 7850 kg/m3)
of size 1 m × 1.3 m and 0.9 mm thin is studied. The displacements on the four
corners are constrained to be zero. The model considers 14 eigenvalues ranging
up to 20 Hz. The structural damping is set to 0.01. The piezo-elements, 0.4 mm
thin (Hε,33 = 1.3 × 10−8 F/m, He,31 = −6.5 C/m2), are attached on both sides
of 140 finite elements visualised by the mesh in Figure 2. Such piezo-elements
provide approximately linear behaviour up to the voltage of 400 V. If higher
voltage is applied, the piezo-elements behave nonlinearly and expose hysteresis
effects.

Transformation of the model to a state space form is of advantage for the con-
troller design:

χ̇ = Aχ + Bυ,

ι = Cχ + Dυ, (32)



A MODAL MULTIFIELD APPROACH 313

where χ is the state, υ the input and ι the output vector. A, B, C and D are the
system matrices defined as follows:

A =
( O I

−M−1
uu Kuu −M−1

uu Duu

)
, C =

(
KT

uϕ O
)

,

B =
(

O
−M−1

uu Kuϕ

)
, D = (

KT
ϕϕ

)
,

(33)

where matrices Muu , Kuu , Kuϕ and Kϕϕ are defined in (13), (14) and (15), matrix
Duu represents the structural damping, matrix I is the identity matrix and matrix O
is the zero matrix.

The elastic metal sheet is excited at time 0.1 s with a force impact in the
centre position. The force impact is characterised by the amplitude of 20 N and
length 0.01 s. The goal is to minimise the acceleration at the centre of the metal
sheet.

4.3. CONTROL DESIGN AND SELECTION OF PATCHES

Traditional LQR control has been applied to design a controller for the metal sheet.
The model has in its initial version 280 piezo-patches, which serve as actuators and
as sensors, i.e. the system has 280 inputs and 280 outputs. Since the model contains
14 modes, the state space model is of 28th order. The states are fully controllable and
observable, but the output vector includes output voltage of piezo-patches instead
of states, which are needed for the LQR design. However, one can construct a
state estimate χ̂ such that the control law retains similar closed-loop properties
[11].

The first step in the control design process is the selection of parameters of the
weighting matrix Q in the LQR design cost function:

J =
∫ ∞

0

(
χTQχ + υTRυ

)
dt. (34)

The Q matrix has the block structure:

Q = kQ

(
Q11 O
O O

)
, (35)

where kQ is a scalar parameter and Q11 is a diagonal matrix. The main diagonal
entries of Q11 are the z co-ordinates in matrix Φu,k (see Section 3.1.1.) multiplied
by the corresponding eigenfrequencies ωi .

In the beginning, it is necessary to identify the eigenmodes which are to be
controlled, i.e. which have influence on the motion of the centre of the metal sheet.
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(Figure 2) (Figure 3)

Figure 2. Mesh with piezo-patches, grey scaled according to their importance for control.

Figure 3. Patches selected for control.

According to the matrix Φu,k the modes 1, 4, 7, 11 and 14 contribute to the motion
in the z-direction. The other elements in z-direction of the matrix Φu,k for the centre
of the sheet are zero.

In the second step, the piezoelectric patches will be selected, which will be
used for the controller of the metal sheet. The selection criterion directly bases
on the feedback gain K of the LQR controller υ = −Kχ. The matrix K is an
r × n matrix, where r is the number of inputs and n is the number of states of the
controlled system. Since the inputs represent the piezo-patches, the most important
patches should have the largest norm ζi of the corresponding column vector in the
matrix K, e.g.:

ζi =
(

n∑
j=1

|ki, j |2
) 1

2

, 1 ≤ i ≤ r. (36)

Since the system is symmetric w.r.t. two main axes and the patches are located on
both sides of the metal sheet (collocated patches), the final number of patches will
be a multiple of eight. The contribution of the patches to the control of the sheet’s
centre point is illustrated in Figure 2. According to the results presented in Figure 2,
the most important patches are selected, see Figure 3. Because of feasibility, the
final configuration has 24 patches, 12 most important patches on each side of the
plate.

In the third step, after selection of the reduced set of patches, a new LQR design
and observer design should be performed and the parameter kQ should be tuned
in order to use the patches as efficiently as possible, i.e. the controller should use
the whole linear range of the piezo-element. The Simulink block diagram of the
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Figure 4. Simulink block diagram of the control loop.

control loop including the state estimator is presented in Figure 4. To drive the
piezo-actuators within the linear range, the saturation block is proposed.

4.4. SIMULATION RESULTS

A comparison of the accelerations in the centre of the metal sheet is presented in
Figure 5. The thin, light-grey line shows the response of the sheet without control.
The only existing damping is the structural damping. The thick line represents the
controlled systems from the Figure 4, which contains a state estimator and LQR
feedback controller.

Figure 5. Acceleration in the centre of the metal sheet.
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Figure 6. Voltage applied to the patches.

The corresponding voltages applied to the piezo-patches are presented in
Figure 6. The controller would remain within the linear range of the piezo-elements
except for the maximum values during the force impact.

5. Thermoelastic Applications

In Section 3.1.2., an advanced modal reduction technique is proposed to represent
coupled thermal and mechanical fields. The intention of the first case study, given
later, is to justify this approach by example.

The second application in this section was chosen to give a comprehensible
demonstration how normal stresses due to temperature distributions may influence
the deflections of a body significantly.

5.1. THERMAL DISC DEFORMATION

A two-dimensional temperature and displacement field was simulated with the
model illustrated in Figure 7. On one sector of the circular disc (7 mm thick, outer
radius 0.15 m) a constant heat flux qB = 3000 W/m2 was defined, the opposite
sector was cooled by a fluid with a bulk temperature of 200 K below reference �0

(hf = 10 W/(m2 K)). The displacements of the points of the inner circle (radius
0.075 m) were set to zero. The material parameters are chosen as follows: E =
2.1 × 1011 Pa, ν = 0.3, � = 7800 kg/m3, α = 12 × 10−6 K−1, c = 465 J/(kg K),
λ = 43 W/(m K).

The light-grey areas in Figure 7 give an impression of the induced displacement
field at te = 18,000 s. The bars visualise the temperature distribution.

For verification, this scenario was evaluated in three set ups, a transient finite ele-
ment simulation with 540 degrees of freedom and two different multibody models.
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Figure 7. Definition, temperature and displacement results of the SIMPACK model
Thermodisc.

Figure 8. Transient displacements at node 101.

The first one consists of seven thermal modes to represent the temperature field
and 18 preselected, plane mechanical eigenmodes. The second multibody model
uses the same thermal eigenmodes, but for the displacement field the corresponding
thermal response modes were selected.

Figure 9 distinguishes six thermal eigenmodes, whereas light areas represent
lower temperatures. The corresponding thermal response modes are illustrated by
the deformed mesh compared to the undeformed outer circle contour. The first mode,
representing a spatially uniform temperature distribution, and the corresponding
radial displacements are omitted.

Figure 8 compares the transient displacements at node 101. The finite element
simulation and the multibody simulation with seven thermal response modes yield
identical results, but the displacements caused by inhomogeneous temperature fields
could not be represented by 18 purely mechanical eigenmodes.
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Figure 9. Thermal modes and corresponding thermal response modes.

5.2. THERMAL BUCKLING OF A BEAM

To demonstrate the mechanism of thermal buckling, an axially restrained beam,
length l = 1 m, was modelled in SIMPACK. The model considers the first bending
eigenmode at 63 Hz and one linear axial expansion mode supposed to reflect the
displacements caused by a uniform temperature distribution. Concerning its thermal
properties, the beam was modelled as block capacity specified by one discrete
temperature. It is assumed that the deformations remain completely within the
realm of elasticity and small deflection theory.

The simulation scenario consists of a temperature rising linear in time. For
illustration purposes, the beam was dynamically excited by a small lateral force,
acting at the middle of the beam. In Figure 10 the response of the beam is represented

Figure 10. Simulation results of the SIMPACK model Thermobeam.
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by the amplitude at the beam’s mid-point. As long as the absolute temperature is
close to the reference temperature the reaction of the beam to the force excitation
remains small. When the axial thrust force caused by the blocked thermal expansion
reaches the critical value, the beam buckles into a new state of equilibrium. Later
on the block force remains constant except for a small excitation response.

For verification, the differential equations governing the bending and axial de-
formation w and u are derived analytically on the basis of the work functions T ,
the kinetic energy, and V , the potential energy, specifying an axially unrestrained
Rayleigh beam with additional thermal expansion (cf. [26, Section 13.3] and [27,
Section II, C, 3]). The formulation includes an axial thrust force F and its influence
on u and w. Symbol A denotes the section area of the beam. I is its geometrical
moment of inertia. ( )′ represents the partial derivative w.r.t. the co-ordinate x :

T = �

2

∫
l
[A(u̇2 + ẇ2) + I ẇ′2]dx, (37)

V = 1

2

∫
l
[E Au′2 + E Iw′′2 + F(2u′ − w′2) − (E Aαϑ)2u′]dx . (38)

Furthermore, a Ritz approach for both distributed variables is used and the magni-
tude of the load F in (38) is determined by the condition that the displacement at
the end of the beam is zero:

w = sin
πx

l
q(t), u = x

l
q̄(t), u(x = l) = 1

2

∫ l

0
w′2dx . (39)

This approach enables the formulation of a single equation for the variable q, which
describes the behaviour of the restrained beam including buckling:

�

2

[
Al + Iπ2

l
+ Aπ4

6l
q2

]
q̈ +

[
�Aπ4

12l
q

]
q̇2 +

+ E

2l

[
Iπ4

l2
− Aπ2αϑ + Aπ4

4l2
q2

]
q = 0. (40)

Figure 11 presents some properties of the analytical system as function of the
imposed temperature. The parameters are identical to those used for the SIMPACK
simulation: l = 1 m, A = 7.6×10−5 m2, I = 4.585×10−9 m4, E = 2.1×1011 Pa,
� = 7850 kg/m3, α = 12 × 10−6 K−1.

The bifurcation point at 50 K in Figure 11 is marked with circles. Within the
considered temperature range, the bending amplitude reaches values below 9 mm,
which is small enough to justify geometrical linearisation. Figure 11 corresponds
well with the results of the SIMPACK model in Figure 10.
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Figure 11. Properties of the analytical buckling model in state of equilibrium.

6. Conclusions and Open Problems

A general concept for the simulation of multiphysical phenomena in a multibody
dynamics environment has been presented. Its feasibility has been demonstrated
on examples. The proposed concept, the modal multifield approach, enables a low-
dimensional description of bodies with multiple distributed properties. The capa-
bilities of multibody dynamics, in particular its numerical efficiency, can now be
used to design, optimise and control systems with adaptive devices or thermoelastic
behaviour.

The specific challenge of smart structure evaluation may be found in the fact
that the physical description is only one part of the actual task. At least the same
importance may be attached to the design optimisation problem and the set up of
appropriate control concepts. It should also be noted that the presented theory is
based on linear piezoelectricity. Therefore, the present paper does not account for
piezo-patches which are driven in large signal mode and expose saturation and
hysteresis effects.

Regarding thermoelasticity, additional investigations are necessary on the lim-
its of the linear temperature field description and the influence of the Gough–Joule
effect, particularly concerning high-frequency excitations. However, in most indus-
trial applications, transient temperature field simulation is not requested anyway
because of very long simulation time periods. These applications will be handled
favourably under quasi-stationary thermal conditions, provided that reliable strate-
gies are available to define these conditions.
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