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Abstract— The coexistence of humans and robots in fence-less
robot cells requires robust safety precautions to prevent humans
from being injured. Currently, safety is ensured by limiting
the robot velocity, force and power. This results in large cycle
times and, hence, very inefficient industrial applications, where
no amortization of the robotic system can be expected. In this
paper, a novel method for improving the robot performance
is presented that still complies with the international safety
standards for collaborative robots. The approach of this paper
is based on a projection of a human arm motion into the
robot’s path to estimate a possible collision with the robot. This
idea is addressed in an optimization approach by minimizing
the time needed by the robot to reach the goal position
under human-in-the-loop constraints. The segmented path is
optimized by solving a nonlinear programming problem, and
the effect of crucial parameters is analyzed. To guarantee a
flexible motion of the resulting optimized path, a generalization
method using dynamic movement primitives and the compliance
of constraints are proposed. Experiments validate this new
method that significantly improves the efficiency of human-
robot coexistence.

I. HUMAN ARM MOTION PROJECTION APPROACH

In physical human-robot collaboration, safety is the most

important topic. Injuries of a human caused by a collision

with the robot are not acceptable and have to be avoided. For

this, robot motions are usually executed in a very slow man-

ner to prevent from injuring humans. The result is that the

applications tend to be rather inefficient, and the installation

of such a system is disadvantageous in direct comparison to

classical human work. Alternatively, the robots are separated

by fences that deteriorate the flexibility of the robotic system.

Therefore, a solution is envisaged that enables a flexible but

highly efficient collaborative robotic system for industrial

applications.

In Safe and Efficient Human-Robot Collaboration Part I

[1], a new approach towards human arm motion estimation

is presented, where human arm motion experiments were

executed by a human experimenter and transferred to a sim-

plified dynamic model of the human arm. With this dynamic

model, human arm motions are repeatedly projected into the

path of a moving robot considering the current velocities

of the robot and the human hand, in order to dynamically

simulate motions of minimal duration directed to the robot

path. The core idea of the human projection approach is

to maximize the performance by allowing for collisions

between humans and robots, complying with limits given by
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Fig. 1. Path optimization approach with human-in-the-loop constraints for
safe and efficient human-robot collaboration.

ISO/TS 15066, so that we can use every possible additional

velocity to maximize the efficiency of the application.

As – for safety reasons – the worst case scenario has to be

considered, the projection of the human arm motions focuses

on possible collisions that may happen in the shortest time

possible. Therefore, for every change of the robot or human

position or, alternatively, at every time step, it is checked

whether a collision may occur and what is the duration of

motion to a collision. To entirely ensure safety, in general the

whole motion of every body part has to be considered. As a

starting point, this paper focuses on the human arm motion

with a fixed human base. However, to minimize injuries, ISO

standards are used to determine the maximum permissible

robot velocity in case of a collision with a human. With this

information, the maximum robot velocity can be determined

online by
Rẋmax = vISO +R ẍmaxt̃, (1)

where t̃ is the estimated minimum time a human needs to

reach the robot’s path, which is obtained by a simulation

of the human arm motion. A maximum velocity vISO is

determined by a risk analysis and experiments measuring

the maximum force and maximum pressure acting on a

human body in case of a collision. The maximum robot

deceleration Rẍmax is defined by the robot dynamic con-

straints. In Fig. 1, the extension of the human projection

approach is illustrated that represents the main contribution

of this paper. Robots typically move on the direct path, the

yellow dashed line, in the shortest time possible w.r.t. a

given maximum velocity. Taking the human and its dynamic

behavior into account, however, ideal movements are not



possible because a movement close to the human leads to

a velocity reduction, or finally to a still-stand of the robot

with vISO = 0m/s, when no collision is allowed due to

safety reasons. Therefore, a path optimization under the

consideration of the human-in-the-loop is worthwhile. The

green line depicts the time-optimal path through the shared

workspace of both human and robot. Here, the distance to

the human and the time required to cover the distance are

balanced in such a way that a minimum-time path can be

found. Additionally, physical constraints like reachability,

robot performance, and Cartesian space limitation by objects

define the optimal path represented by the dashed orange

line. To achieve a flexible and efficient robot motion, our

approach includes the following steps:

1) Separating the desired path into multiple segments.

2) Calculating the time a human needs to reach each seg-

ment, and consequently the maximum robot velocity

of each segment.

3) Solving the numerical nonlinear programming problem

to obtain a Cartesian robot path and velocity limits of

each segment to reach the goal in minimum time under

human-in-the-loop constraints.

4) Generate the necessary trajectory from 3), in particular

the desired time-minimal velocity and acceleration.

5) Generalize the optimal motion by generating dynamic

movement primitives from 4) to obtain flexible online

adaptable motions.

6) Guaranteeing human-in-the-loop constraints during on-

line motion generation.

The order of the steps three to five has to be maintained, to

obtain an online adaptable motion generation.

II. RELATED WORK

Human-robot collaboration was enabled by the develop-

ment of sensitive robotic systems. The DLR-Light-Weight

Robot, see [2], is able to measure torques in each joint and to

detect collisions in milliseconds. By using this technology in

combination with impedance control and a momentum colli-

sion observer [3], safety requirements could be specified and

improved, see [4] , [5] and [6], and international standards

could be defined in the ISO/TS 15066. Regarding safety and

efficiency, also trajectory generation has become a more im-

portant field in robotics research, in particular with a focus on

acceleration and jerk limitations. Usual methods are ramps,

cubic splines, polynomials, or B-Splines, which can be found

in [7], [8], [9], to generate trajectories through desired via

points subject to desired maximum velocity and desired

maximum acceleration. In [10], minimum-time trajectories

are generated using exponential functions to obtain a minimal

duration of movements. According to a desired behavior,

application-oriented nonlinear programming methods as well

as optimal control methods have been developed. In [11], the

solution of a nonlinear programming problem is presented for

the purpose of optimal control. As these numerical methods

can be only applied offline, online adaptation methods have

been developed by using nearest-neighbor and interpolation

approaches, see [12] and [13]. Another popular approach

to generate task-oriented motions has been developed by

the learning-by-demonstration community. Human motions

0 

�2 

�1 

���  
��� ��0 

���+1
=

��0 
��0 

Fig. 2. Robot path consisting of multiple segments with different allowed
maximum velocities.

are recorded and transferred into differential equations to

generate and adapt robot motions online, cf. [14] and [15],

and to realize an online collision avoidance [16].

In [17], these state-of-the-art methods were combined to

generalize robotic motions with minimal energy for variable-

stiffness elastic robots. This method defined a suitable gen-

eralization of optimal motions and will be further extended

in this paper.

III. OPTIMAL PATH GENERATION

To enable an efficient coexistence of humans and robots,

the maximum velocity is not the most relevant parameter

to look at. In our approach, the closer the robot moves to

the human, the lower is the corresponding velocity limit of

the robot, cf. Sec. I. This directly leads to the optimization

problem to find the best path regarding the shortest duration

of movement subject to the human-in-the-loop constraints.

In this section, a segmented path is calculated to determine

the shortest distance to the human in each path segment.

Thereby, an optimal trajectory to the goal position with the

shortest duration possible can be found. The cost function

and the constraints are described in detail, and the corre-

sponding results are discussed.

A. Path Segmentation

Given parameters for a robot motion – a point-to-point

motion or a straight-line motion, representing the direct path

to the goal – are usually the initial as well as the goal

position. To define different desired velocities, depending on

the distance to the human, the path is separated into multiple

segments.

For the path generation, we employ multiple auxiliary

points Rρi, or via-points, to define the robot path as shown

in Fig. 2. One segment is defined by two auxiliary points
Rρi and Rρi+1, where the straight line is given by

g = ρi + λg∆ρi, (2)

illustrated in Fig. 3. Here, λg and ∆ρi = ρi+1 − ρi define

the direction vector. To obtain the shortest distance to the

segment at a collision point HRxc, a standard point-to-

straight-line calculation can be used. The resulting shortest

distance to the segment follows as

∆xmin =

{

‖∆xmin(
Hx0,

HRxc)‖ , 0 < λg(
HRxc) < 1

‖∆xmin(
Hx0,ρi,ρi+1)‖ , else

, (3)

with

λg(
HRxc) =

HRxc − ρi

∆ρi

. (4)
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(a) Segment: shortest distance to a
straight line

�1 

�2 

�0�
 

∆����, �̃��� 

���
 

��+1�
 = ����

 

0 

�( �� , ��+1� )�
 

(b) Segment: shortest distance to an
auxiliary point

Fig. 3. Schematic illustration of path segments with minimum distance
to the human hand and, finally, shortest time for motions from the current
human arm position to the robot path.

Here, ∆xmin(
Hx0,

HRxc) represents the shortest distance

to a point on the segment between two auxiliary points, see

Fig. 3(a), or the collision point is not in between these two

points, then ∆xmin(
Hx0,ρi,ρi+1) holds, see Fig. 3(b). The

length of a segment si = ‖ρi+1 − ρi‖ allows to calculate

the time

tsi =
si

Rẋmaxi

(5)

the robot needs to pass this segment, where Rẋmaxi
(Hx0)

depends on the human position. These segments have to be in

the range of the robot and must not lie in between the human

body and the human hand. The segmentation strategy is used

to gain a fast optimization with low computation time.

B. Nonlinear Programming for Humans in the Loop

The given complexity of the optimization problem leads to

numerical optimization. The optimization problem is given

by

y = min
ρ∈Rn

Γ(ρ) Γ : Rn 7→ R
m, (6)

ci(ρ) ≤ 0 i = 1, ...mc, (7)

hi(ρ) = 0 i = 1, ...mh, (8)

with the cost function Γ(ρ) defined by a set of parameters ρ,

inequality constraints ci(ρ), and equality constraints hi(ρ).

1) Cost Function: The cost function

Γ(ρ) =
n
∑

i=1

tsi(
Rẋmaxi

, si), (9)

corresponds to a minimum-time to reach the goal position

with the robot, with Rẋmaxi
(∆xmin, t̃), which can be cal-

culated by Eq. (3) and Eq. (1). Approximately, the shortest

time to collision can be calculated assuming a maximum

human arm velocity, which minimizes the computation time

in an online scheme. In this paper, the maximum velocity of

the human arm is given by H ẋmax = 3.3m/s, which stem

from the arm motion experiments discussed in Sec. I. The

resulting time for each segment, hence, can be calculated by

t̃ ≈ t̃≈ = ∆xmin
H ẋmax

.
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Fig. 4. Optimization of robot motion with human-in-the-loop constraints.
The upper left plot depicts the path in the Cartesian space by solving
the optimization problem. The different lines correspond to different colli-
sion velocities (Case 1-3) determined by ISO standards for human-robot-
collaboration. The left bottom plot depicts the maximum robot velocity
for each segment under the human-in-the-loop constraints with a constant
robot deceleration of 10m/s2. The right plot shows the different costs of the
straight-line motion (yellow bar) and the optimized motion (green bar). The
necessary duration of movement is smaller than 50% of the direct motion.

2) Constraints: For the optimization problem, several

inequality constraints are defined

0 ≤Rẋ ≤ Rẋl, (10)
R
xmin ≤R

x ≤ R
xmax, (11)

R
x ≥ H

x0. (12)

The maximum robot velocity Rẋ shall not exceed the robot

velocity limit given by Rẋl, the Cartesian limitation R
x

is defined by the robot range R
xmin and R

xmax, which

prevents a movement through its own base. Finally, the robot

is not allowed to move below the human hand position, as

the reachability could let the robot collide with the human

body.

C. Results with Parameter Comparison

Given the properties of the robot and the geometric

constraints, the optimization may lead to different results. In

dependence on the maximum possible velocity of the robot,

e.g., the path may change significantly. Regarding a robot

without any velocity limits and any environmental limitation,

it would be able to move far beyond the reachability of the

human in arbitrarily short time. Since the initial position and

the goal position may be located inside the reachability of

the human, an optimal motion has to be found.

Due to given physical limitations, every robot is subject

to a certain velocity limit. In Fig. 4, the optimization of the

path from an initial position R
x0 = [−0.4 0.15]T to the

goal position R
xg = [0.4 0.15]T , with a total distance of

0.8m, is illustrated. The human hand position is located at
H
x0 = [0.0 0.05]T , which means that the robot would pass
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Fig. 5. Solution of the optimization problem with different distances and
number of segments n: distances are 0.6m (upper left plot), 1m (left
middle plot), 1.4m (left bottom plot), with a different number of segments.
The right plots depict the cost changes in dependence on the number of
segments.

the human arm on a direct path in a distance of 0.1m. In the

upper left plot of Fig. 4, the resulting Cartesian motion is

illustrated for three different cases and a number of n = 10
path segments. The first case (C1) shows a motion with a

maximum allowed collision velocity of 0.33m/s determined

by ISO/TS 15066, C2 with 0.66m/s and C3 with 1m/s.

The faster the robot is allowed to move with a both force-

and power-limited robot, the closer the movement is to

the human, which is the result of a balance between robot

velocity and distance to move.

The chosen method using segments also affects the path

and the cost depending on the number of segments. In

Fig. 5, results are presented for different motion distances

and alternative segment numbers. In the upper left plot, three

paths are depicted with n = 1, n = 2, and n = 9 segments

defining the path. The motion distance for the robot is 0.6m

in the left plot, 1m in the middle plot and 1.4m in the

left bottom plot. The right row illustrates the final costs

depending on the number of segments. It becomes obvious

that for n > 4 the number of segments has only a minor

influence on the costs, which implies that a highly resolved

incrementation of the path is not necessary.

From the optimization we obtain the desired path infor-

mation and the corresponding velocity constraints for each

segment. In a subsequent step, the path has to be converted

into a trajectory to provide a suitable input to the robot axis

controllers. Therefore, in the following section a minimal-

time trajectory generation is presented.

IV. ADAPTED TRAJECTORY GENERATION

By analyzing the resulting velocity profile and existing

trajectory generating methods based on splines, see [18],

[19], [9], commonly used polynomials or B-Splines are

found to be incompatible with the requirements of minimum-

time motions. The optimization routine only provides the

path positions. Therefore, desired velocities and accelerations

have to be generated by a trajectory module to enable a
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Fig. 6. Trajectory generation to obtain desired velocities and acceleration
on the path calculated by solving the nonlinear programming problem.

smooth robot motion. As the trajectory generation is not in

focus of this paper, it is summarized as follows:

The trajectory generation regarding minimum-time mo-

tions is inspired by [10], where an exponential function is

used to define the velocity profile. In our case, an exponential

function of third order is chosen to define the acceleration

according to

Rfẍ(t) =
Rẍmax − Rẍmaxe

−η∗t3 , (13)

with Rẍmax as the maximum acceleration of the robot. The

parameter η defines the maximum slope of the acceleration,

i.e., the jerk. Similar to [10], we divide the path into multiple

motion segments, i.e., jerk phases and phases with constant

acceleration. In Fig. 6, the trajectory generation is illustrated:

the curves depict the position, velocity and acceleration

obtained by numerical integration according to

Rfx(t) =

tf
∫

0

Rf ẋ(t)dt =

tf
∫

0

tf
∫

0

Rf ẍ(t)dtdt. (14)

Note that no velocity limits are violated. Here, the velocity

at the end of the current segment (magenta dashed-dotted

line) in the middle plot is identical to the maximum velocity

of the following segment. The maximum values for velocity

and acceleration are indicated by red dashed lines.

V. GENERALIZATION OF MOTIONS

Usually, the optimization of the path is executed offline,

which would result in an inflexible motion generation scheme

due to a high computational load. Since typical collaborative

robot applications involve dynamic environments – for exam-

ple the motion of humans or changing goal or initial positions

– the robot motions have to be adapted online accordingly. In

Fig. 7, two robot motions are illustrated. The blue solid line

depicts the optimized motion of the robot passing the shared

workspace. The orange dashed line depicts a new motion

which has different initial and terminal conditions.

A more flexible online motion generation can be achieved

by using movement primitives. As described in [17], op-

timized motions serve as input to a learning algorithm

of DMPs. In the following section, DMPs are described.

Moreover, a path adaptation is presented similar to via-point

motion primitives that contribute to a higher path stability

and, finally, to the compliance with specified maximum

velocities.
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Fig. 7. Generalization of robot motions: the blue solid line depicts the
optimal robot path for the given human reachability. The orange dashed
line shows the changed path with different initial and goal positions.

A. Dynamic Movement Primitives for Optimal Motions

By inserting the generated desired trajectory into a second-

order differential equation as described in [17], a force can

be calculated by

f∗(t) = τ2Rf ẍ(t)+DτRf ẋ(t)+κ(t)(Rfx(t)−g(t)), (15)

reproducing the motion in each Cartesian direction. Here,

τ denotes the duration of motion and κ(t) a time-varying

stiffness function. Moreover, g(t) is a time-varying goal

function, generated by Gaussian kernels, which are described

below, and D characterizes a damping term in the differential

equation. In a next step, this force is approximated by

Gaussian basis functions

f∗(t) ≈ f≈(sc) =

N
∑

i=1

wiψi(sc)

N
∑

i=1

ψi(sc)

sc. (16)

Here, a set of weights w ∈ R
N , Gaussian kernels ψi(sc),

and a canonical system

sc(t) = e−
α
τ
t (17)

are introduced, which can be described as a function with a

continuous decrease from 1 to 0, parameterized by the slope

α > 0. The final trajectory can be calculated online by

Rxd(t) =
1

τ2

tf
∫

0

tf
∫

τ

[f≈(sc) + κ(t)(g(t)− Rx)

−DτRẋ(t)] dt dt+ Rx(0)

(18)

to obtain the online generated desired position. In order

to comply with all given constraints, we developed novel

methods presented in the following sections.

B. Path Adaptation for Via-Point Movement Primitives

By changing the goal position of the robot, the common

dynamic movement primitive maintains the principle shape

of the path but adapts it as required. This may lead, however,

to a violation of a spatial limit, e.g., moving through its own

base. In Fig. 8, the upper plot shows the original motion (blue

solid line) with the initial position at Rx0 = [−0.6 0.15] and
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Fig. 8. Via-point path generation using DMPs with spatial limitation.
Upper plot depicts the motion with a changed goal position and no spatial
constraints. The bottom plot illustrated the constraint motion with the
presented method.

Rxg = [0.6 0.15]. Then, the goal position was changed to
Rxg = [0.7 0.25], and the corresponding optimization results

are depicted as black dashed line. The optimization with

the same starting point but different goal position keeps the

shape of the DMP motion, which is depicted as red dashed-

dotted line. While the shape has not changed, the spatial

motion has been extended significantly. Since the robot base

is located in Rxb = [0.0 0.6] in this example, the robot would

have to move through the own base, which is impossible.

Therefore, spatial constraints are integrated in such a way

that the maximum y-position defined by Rxy ≤ 0.45m is not

violated. In the bottom plot of Fig. 8, the constrained motions

are compared to each other. The blue solid line represents

the original motion, the black dashed line the optimized path,

and the red dashed-dotted line the resulting DMP. Obviously,

the spatial limits are not violated by both paths, the optimal

and the DMP path. We achieved this behavior, by developing

goal functions with an auxiliary point on the original path,

similar to via-points, that can be changed as well. As we

directly change the goal, it is necessary to use a function

which is more than two times continuously differentiable like

exponential functions. A simple ramp, however, would lead

to an unwanted behavior and cause jumps in the velocity.

The goal functions are calculated according to
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Fig. 9. Via-kernel trajectory for a more robust path generation with different
initial conditions. An auxiliary point is placed at turning point of path.

g(t) =

m
∑

i=1

ψ̺i
(sc)g̺ i = 1, ...m, (19)

where g̺ defines the via-goals of the motion. The Gaussian

basis functions are given by

ψ̺i
(sc) = e−h̺i

(sc(t)−s̺i )
2

. (20)
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The positions of the basis functions can be determined by

s̺i
= e−α̺i , where ̺i denotes the percentage of the time

duration, given in a range of 0 ≤ ̺i ≤ 1. The width of each

kernel is finally calculated by

h̺i
= β̺(e

−α(̺i−
∆t
τ

) − e−α̺i)−1, (21)

with a width parameter β̺. To obtain a smooth behavior

between the auxiliary goals and the final goal, the varying-

stiffness function κ =
m
∑

i=1

ψ̺i
is weakened during goals

shifts.
In Fig. 9, the results are illustrated. The magenta dashed

line depicts the stiffness function κ(t), the red dash-dotted

line the goal function for the y-coordinate, and the blue solid

line stands for the goal function for the x-coordinate. To

summarize, using these goal and stiffness functions, spatial

constraints for DMPs can be easily met.

C. Velocity-Constrained Movement Primitives

Dynamic movement primitives are generated by a second-

order differential equation. Consequently, a direct determina-

tion of the maximum velocity is not possible. The trajectory

is generated by forces and changing the forces by, e.g.,

potential fields affects the behavior of the trajectory in an

unforeseeable way. This includes changes in the velocity

profile of the movement. As we limit the velocities to ensure

human safety in a close coexistence of robots and humans,

the maximum velocity must not be exceeded during the

robot motion but should be changeable over time. The same

problem arises when changing the goal position Rxg of the

robot. To finally keep the velocity below the maximum, a

force vector is added as follows

fc(
R
ẋ) =

{

−Kc(
Rẋt − (ẋmax − µ))Rẋ , Rẋt >

Rẋmax − µ

0 , Rẋt ≤
Rẋmax − µ

(22)

Here, the current robot velocity is given by Rẋt = ‖Rẋ‖. The

parameter µ is a threshold for the velocity potential and Kc

x

y

z

Fig. 11. Experimental setup including a Vicon tracking system and an 8-
DoF light weight robotic system. During the experiments, the experimenter
is sitting on the left hand side in front of the workbench.

the potential value. The velocity can be limited by adapting

the DMP input force

f̃≈(sc) = f≈(sc) + fc(
Rẋ) (23)

by a regulation force fc(
Rẋ). The two parameters µ and

Kc can be determined by fulfilling the inequality constraint

fc(
Rẋ) ≥ f≈(sc) + κ(t)(g(t)− Rxd)−DRẋmax.

In Fig. 10, the results are illustrated. The upper plot depicts

the Cartesian path of the adapted motion (green dashed line)

and the original motion (blue solid line). In the bottom

plot, the velocities of the different motions are compared to

each other: the maximum allowed velocity (magenta dashed

line) and the original motion (blue dotted line). The red

dashed-dotted line shows the velocity profile with a not-

regulated DMP force input. Obviously, the DMP motion

velocity significantly exceeds the allowed maximum velocity.

Theoretically, safety is no longer guaranteed and the ability

to stop with the deceleration. The green solid line shows the

adapted behavior of the DMP with a regulated force vector.

Now the velocity limits are not violated anymore, and the

safety requirements for this motion can be met.

VI. EXPERIMENTS

In this section, selected experimental results are presented:

The setup is described in detail, the experiments are ex-

plained and, finally, the corresponding results are discussed.

A. Experimental Setup

The octagon collaborative workbench consists of a DLR

light-weight robot mounted on a linear axis with a maximum

reachability of 2.6m × 1.6m as shown in Fig. 11. The

experimental setup is surrounded by a Vicon tracking system,

which enables position measurements at a frequency of 100

Hz – using special markers that are placed on the back of

a human experimenter’s hand. For the considered tasks, the

human is sitting in front of the workbench with the hand

placed on the surface of the table. The position of the hand

is changed or moved during the task. The overall 8-Degree of

Freedom (DoF) robotic system is controlled by a Cartesian

impedance controller with a stiffness of 800N/m. The online

trajectory generation to realize the velocity limited direct

motions is realized according to [20].
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Fig. 12. Experimental results including three different types of motion, with a focus on complying with the velocity constraints.

B. Experimental Results

For the experiments, the robot is allowed to move at

vISO = 0.15m/s, which has been determined in collision

experiments with the robot end-effector, taking into account

the maximum forces and pressure caused by a collision.

With this velocity-limit the requirements of ISO/TS 15066

are fulfilled. The final acceleration is Rẍmax = 3m/s2,

which has been determined by simple motion executions.

Within the experiments, the robot is using the entire 8 DoF

system with the linear axis and is moving from an initial

position x = 0m to a goal position x = −1.2m. Due to

safety reasons, the overall maximum velocity is limited

to 0.6m/s. For the experiments three main scenarios are

compared in the sequel.

Typical motion with constant velocity (Fig. 12 row 1):

The first scenario follows the usual approach with a fixed

maximum velocity of vISO = 0.15m/s. For an intuitive

interpretation, the motion was executed only in x-direction,

which is depicted in the right column. Nevertheless, the

motion can be executed in every direction. In the left

column, the Cartesian position is depicted in x-y-plot.

The red marker ’×’ shows the constant hand position

at x ≈ −0.5m. The middle plot depicts four different

values: The red solid line stands for the desired velocity

given as input to the robot, the blue dashed line depicts

the resulting velocity measured at the robot end-effector,

the red dashed-dotted line indicates the maximum allowed

velocity under human-in-the-loop constraints with the given

maximum deceleration ability of the robot, and the black

solid line depicts the distance of the robot to the human. The

resulting motion requires a duration of movement of more

than 8 s for a motion in just one direction. This justifies the

assessment that this application is very inefficient and the

potential of robotic system is not exploited.

Adaptable velocity on a direct path (Fig. 12 row 2-3):

The upper second row in Fig. 12 illustrates the motion with

the proposed calculation of an allowed maximum velocity

from Eq. (1). This allowed velocity depends on the time the

human needs to reach the robot path and accounts for the

maximum deceleration ability. The marker is again placed

at the same constant position. Obviously, the measured

robot velocity is violating the maximum allowed velocity

a little – which is a result of the low-stiffness impedance

control of the 8 DoF system. This could be fixed by either

a controller with a higher control bandwidth as well as a

higher stiffness, or by adding thresholds to the maximum

desired velocity. What becomes visible in the second row is

that the total time needed for the motion is now only 3.4 s.

The performance improvement is 2.47 times the motion

limited by ISO – with an identical risk of injury. This

also holds in the case of a moving human hand, which is

illustrated in the third row. A small distance of the human to



the robot leads to the minimum velocity. There, a collision

may occur but the risk of an injury caused by a collision is

eliminated by the collision experiments.

DMP with human-in-the-loop constraints (Fig. 12 row 4-5):

In a third experiment, movement primitives with an

optimized motion as presented above are shown in the

fourth row of Fig. 12. As can be seen in the left plot, the

robot does not move on the direct path anymore but on an

optimized path. The marker is placed at x ≈ −0.5m and

y ≈ 0.2m. Using DMPs, the goal positions can now be

easily changed, which has already been proven in many

other publications. The more important questions are the

achieved reduction in the duration of movement and whether

the constraints are satisfied. Comparing the motion with the

first two experiments, the significant efficiency improvement

becomes obvious, while safety is still ensured. The duration

for the motion is further reduced to 2.8 s, which exploits the

potential of the robotic system. In the bottom row, the same

motion was executed but with a smaller marker distance to

the original path of the robot. This implies lower velocity

limits during the motion. In the bottom middle plot, it is

shown that the limits decrease and the desired maximum

velocity is always below the admissible limits during the

motion.

This proves that the presented method – optimized

and generalized motions generated with DMPs – is suitable

even with human-in-the-loop constraints as well as spatial

constraints. To achieve a more adaptable optimal motion

generation – especially considering human arm changes –

multiple DMP motions can be generated and the weights

can be interpolated as presented in [17].

VII. CONCLUSION

The contribution of this paper is an efficiency improve-

ment in tasks with a coexistence of humans and robots.

The approach is based on a projection of the human arm

motion to predict possible collisions between the robot and

the human. This information is exploited to increase the

robot velocity if possible. With this method, however, the

direct path from an initial position to a goal position turns

out to be inefficient regarding the duration of movement.

Therefore, the path is segmented, and the auxiliary points

are optimized by nonlinear programming. The resulting

optimal path defines the maximum admissible velocity for

the robot, that reduces the duration of movement significantly

in comparison with the direct motion. To enable a flexible

real-time usage, dynamic movement primitives are used for

a generalization, which are extended to via-point primitives

to guarantee the compliance with Cartesian constraints as

well as the maximum velocity. Since only the human hand

position is considered, further developments have to include

the whole human body. In future research, moreover, the pro-

posed method has to be extended considering restricted areas

and additional worst case situations have to be analyzed.
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