Supported by:

Federal Ministry

on the basis of a decision by the German Bundestag

Computing energy system transformation pathways with high spatial and temporal resolution

EURO2018, Valencia, July 11th 2018

Manuel Wetzel

German Aerospace Center (DLR)

Systems Analysis and Technology Assessment

The energy system model REMix

Increasing energy system complexity

Dimensionality of REMix problems

120 100 100 80 60 40 20 0 6. Feb. 7. Feb. 8. Feb. 9. Feb. 10. Feb. 11. Feb. 12. Feb.

60 geographical regions, 86 AC transmission lines, 128 HVDC transmission lines

~ 30 technology levels with 8760 time steps per year

- Typical problems with up to 120 E6 variables and constraints
- Hourly dispatch is the computationally most demanding feature

Manuel Wetzel

EURO2018, Valencia

Representing time in ESMs

Target-year optimization using full hourly time resolution

- + fluctuating renewable energies
- + flexibility options
- + hourly security of supply
- transformation path is implied
- sensitivity analysis to show robustness

Multi-year planning horizons

using representative weeks / hours / days

- + avoids technological lock-in
- + integral carbon budgets
- flexibility options
- delayed invests with technological learning

What is the systematic bias introduced by the two approaches?

ightarrow Solve the integrated problem as a reference

EURO2018, Valencia

Plotting the matrix structure

 $\min c \cdot x$ $A \cdot x \le b$

Manuel Wetzel

EURO2018, Valencia

The limits of linear optimization

Planning horizon	1 year	4 years	8 years	12 years
Variables	54.5 E6	218.2 E6	429.0 E6	640 E6
Constraints	47.2 E6	188.2 E6	371.6 E6	560 E6
Nonzeros	199.8 E6	795.5 E6	1585.6 E6	2400 E6
XPRESS barrier: 2 TB RAM, 26 h CPLEX simplex: 500 GB RAM, 24 h+				
No barrier run possible with 2 TB RAM				
GAMS reports -1,9 k				L,9 bio. non-zeroes

Identifying matrix structures

Disintegrated problem Simultaneous solving of individual blocks

Stochastic problem

Individual blocks connected by first stage decision

Block stuctured problem Blocks connected by linking variables and constraints

A parallel solver: PIPS-IPM

- Petra et al. 2014: "Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers"
- Ongoing solver development during the BEAM-ME project
- Structure of decomposition (annotation) required

Problem specific structures for PIPS-IPM

Permuted matrix revealing block structure

Manuel Wetzel

EURO2018, Valencia

July 11th 2018

Annotation – temporal decomposition I

Linking by time: storage, load shifting, annual constraints

EURO2018, Valencia

Annotation – temporal decomposition II

 \rightarrow 1 link per time step

ightarrow multiple links per time step

Manuel Wetzel

EURO2018, Valencia

Annotation – planning horizon decomp.

Linking by years: construction and decommissioning of power plants, CO₂ budets

Current performance and outlook

• Largest model optimized with PIPS-IPM

SIMPLE instance with **91 million variables**, **90 million constraints**

CPLEX Using 16 threads Aborted after 12 hours PIPS-IPM@JURECA 2000 Cores Finished in 33 minutes

- Systematic evaluation of **solver performance** with different annotations
- Systematic **reduction of temporal resolutions** to evaluate adequate resolution

→ Smart modelling is always better... (... if you know the error you make!)

Project BEAM-ME

Contact:

Manuel.Wetzel@dlr.de

DLR – German Aerospace Center Institute of Engineering Thermodynamics Systems Analysis and Technology Assessment Pfaffenwaldring 38-40 70569 Stuttgart Germany

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

A PROJECT BY

н

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

