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Abstract— In this paper we present an approach to combine
error state estimation with total state monocular simultane-
ous localization and mapping (SLAM) in a single Unscented
Kalman Filter (UKF). The map features use the inverse depth
parametrization for undelayed initialization and for the ability
to use low-parallax features with unknown depth information.
Furthermore, a new map feature initialization method is
presented using the Unscented transform (UT). This method
allows to capture all correlations between the map features
and the error state variables without the necessity to calculate
any Jacobian matrices.

I. INTRODUCTION

Estimating the motion of a moving object can be a
challenging task, depending on the available sensor data. A
widely used scheme is the combination of an inertial nav-
igation system (INS) based on measurements of an inertial
measurement unit (IMU) and an error state estimator. There,
the solution of the INS is corrected using the estimated
errors.

The estimation of the navigation errors is done by fusing
data of possibly multiple sensors, like GNSS, altimeter,
barometer, etc.. Another promising sensor for this purpose
is a monocular camera, which is a projective sensor that
measures the bearing of image features.

It is well known that it is possible to compute both a scene
structure and a camera motion from a given image sequence
of a rigid 3D scene, but with an unknown scale factor.
Visual Simultaneous Localization And Mapping (SLAM)
approaches that use a probabilistic filtering approach to
sequentially update estimates of the positions of features and
the current camera location in the total state space have been
developed over the past years.

In this paper we present an approach to combine error
state estimation with total state monocular SLAM in a
single deeply-coupled Unscented Kalman Filter (UKF). This
allows the calculation of high frequency inertial navigation
solutions, which are corrected using the low frequency error
estimates. Furthermore, a new map feature initialization
method is presented using the Unscented Transform (UT).
This method allows to capture all correlations between
the map features and the error state variables without the
necessity to calculate any Jacobian matrices.
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II. INVERSE DEPTH PARAMETRIZATION

In monocular SLAM a sparse map of 3D points is built on
the fly as the camera’s motion is simultaneously estimated.
Solving this problem in real-time for a 6 DOF motion has
been proven feasible since the work of Davison [1].

Over the years different solutions have been evaluated to
tackle the SLAM problem. One of the most widely used
methods is based on probabilistic Kalman filters, like the
Extended Kalman Filter [2], [3] or the Unscented Kalman
Filter [4]. These approaches usually use the straightforward
Euclidean XYZ parametrization of map feature as described
by Davison [1]. This parametrization suffers from the draw-
back that only features with a significant parallax during
the camera motion can be used. Therefore, distant features
can not be accounted for in the calculations. Additionally,
features have to be reobserved with a changed parallax to
initialize the representation of the feature within the map
or state. This introduces a delay in the initialization of the
feature. To overcome these drawbacks several authors pro-
posed alternative initialization schemes for parametrization
and initialization [5], [6], [7], [8], [9]. With the “inverse
depth” parametrization of map features Civera et al. proposed
a powerfull alternative to the Euclidean XYZ parametrization
[7], [8].

The “inverse depth” parametrization of the point pi ex-
presses that point by a ray from the position from which
the feature was first observed by the camera. Therefore, this
ray is defined by the position

[
xi, yi, zi

]T
, the normalized

directional vector m, and the inverse depth ρi. In this
parametrization scheme, a 3D point pi is represented by the
vector:

p′i =
[
xi, yi, zi, θi, φi, ρi

]T ∈ R6 (1)

This six dimensional vector models the three dimensional
point pi in space by the following equation:

pi =

Xi

Yi
Zi

 =

xiyi
zi

+
1

ρi
·m(θi, φi) (2)

Where Xi, Yi and Zi are the Cartesian coordinates of the
three dimensional point pi.

The directional vector m is encoded by the azimuth and
elevation angles (θi & φi), which are given in the world
coordinate frame:

m(θi, φi) =

cosφi sin θi− sinφi
cosφi cos θi

 (3)
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This parametrization improves the Gaussianity of the mea-
surement equation significantly for features at all depths;
even for features with potentially “infinite” depths. Addi-
tionally, the “inverse depth” parametrization allows direct,
non-delayed initialization of map features and therefore,
undelayed inclusion of orientation information from low-par-
allax features with unknown depths.

The only drawback of the inverse depth approach is the
number of parameters used to express the map features.
Because every map feature is encoded using six parameters
instead of the three parameters used in the more usual
Euclidean XYZ approach. This leads to a significant increase
in the computational costs, since computational complexity
for each update of an EKF or UKF scales at least with the
square of the total size of the state [10].

Nevertheless, the “inverse depth” parametrization was
chosen because of the non-delayed initialization of map fea-
tures and the possibility to include features with potentially
“infinite” depths. These benefits play an important role in
possible high altitude scenarios like spacecraft navigation for
lunar landing [11], [12] or High Altitude Long Endurance
(HALE) aircraft [13], where the large distance to the surface
results in low-parallax.

III. STATE ESTIMATION
The purpose of the developed algorithm is to provide a

valid navigation solution. Since this algorithm is divided
into a high rate inertial navigation part and a low rate error
state estimation, there have to be defined two different state
representations.

The first state is the total state x, representing the naviga-
tion solution. It consists of the position rW, the velocity vW,
and the attitude qWB ; see (4). This total state is updated by
the INS with every new inertial measurement. The imple-
mentation is described in [11].

x =

rWvW
qWB

 ∈ R10 (4)

Since the resulting total state x is prone to errors due to de-
fective inertial measurements and other model uncertainties,
it has to be corrected to remain reliable. Therefore, the error
state δx, which is used to compensate the errors of the INS
is estimated. The error state δx is defined as shown in (5). It
consists of the position error δrW, the velocity error δvW,
and the attitude error1 δθWW to correct the estimated total
state x̃.

δx =

δrWδvW
δθWW

 ∈ R9 (5)

Additionally sensor and model errors might be included in
the error state as well; as can be seen in [11]. For the sake of
simplicity, these additional errors are left out of this paper.

1The attitude error δθW
W

is given as a slight tilt of the computation
frame W. This rotation is parameterized using the axis–angle representation
and can be easily converted to a rotation quaternion δqW

W
or a rotation

matrix δRW
W

. See [11] for more details.

For the estimation of the error state δx a UKF is used
to fuse the measurements from the IMU with additional
aiding sensor measurements, in such a way that the resulting
variance of the error state is minimal. This kind of filter was
described by Julier and Uhlmann [14], [15], [16].

The UKF has some advantages over the widely used EKF.
The EKF uses the non-linear state transition and observation
models for the state estimation but uses linearization to be
able to apply the standard Kalman Filter equations for the
covariance calculation. The UKF, on the other hand, uses a
deterministic sampling technique to calculate the state and
covariance using the non-linear models directly. Therefore,
the UKF is able to estimate the state of non-linear systems
more accurately than the EKF [14].

The process model f and the measurement model h of the
error state UKF have been described in [11]. This description
includes the estimated sensor and model errors as well as
the measurement models for position, attitude and altitude
measurements.

IV. UKF-SLAM

To include optical measurements from a monocular cam-
era into the state estimation, the estimated state vector, the
process model f and the measurement model h have to be
extended to be able to solve the SLAM problem.

At first, the error state vector δx from (5) is augmented by
the tracked map features p′i, which use the “inverse depth”
parametrization in the total state space. This leads to an error
state δx, which is defined as follows:

δx =



δrW
δvW
δθWW
p′1

...
p′n


∈ R9+6·n (6)

Where n equals the number of tracked map features.
For the UKF-SLAM algorithm the process model f and

the measurement model h have to be extended to support
updating of the tracked map features in the state and using
the measured feature positions in the camera image in the
correction step of the filter:

To correct the predicted error state in the UKF update step
the transformed sigma points χ are projected through the
observation function h : Rdim(δx)+dim(zk+1) → Rdim(zk+1).
This will compute the gamma points γk+1.

γk+1 = h (χ) (7)

= h

([
δx
vk+1

])
(8)

= h′ (δx) + vk+1 (9)

Similar to the sigma points, the gamma points have been
constructed in a way that each point can be divided into
different parts. The first part corresponds to the actual error
state vector δx and the second part corresponds to the mea-
surement noise vk+1. Equations (7) to (9) show how each



part is handled. The state vector part is projected through
the actual observation function h′, whereas the measurement
noise part is added to the predicted observation.

As mentioned the measurement models for position h′rW ,
attitude h′

qIB
and altitude h′alt have already been described

in [11]. Therefore only the measurement model for the
feature observations in the camera images h′c is presented
here.

For every visible feature in the camera image with index
i, which is also tracked in the state vector, the following
calculations are performed to get the predicted image coor-
dinate of that feature. At first, the tracked map feature pi
is transformed from the world coordinate frame W to the
camera frame C. Where pi ∈ R3 depends on the “inverse
depth” parametrization of that map feature p′i ∈ R6 in the
state vector.

h′′c (χ) = R
C

W
· (pi − (r̃W + δrW)) (10)

Where r̃W is the position from the total state x calculated by
the strapdown algorithm, δrW is the position error included
in the error state δx or in the sigma points χ resp., and RC

W
is the rotation matrix from the world coordinate frame W
to the camera coordinate frame C. It is the product of the
constant rotation matrix RC

B from the body frame B to the
camera frame C and the inverse of the attitude RW

B = δRW
W ·

R̃W
B .
Finally, the image coordinates are calculated from the

transformed map feature using the following equation:

h′c (χ) =

[
u
v

]
=

[
u0 − f

(h′′
c (χ))z

· (h′′c (χ))x
v0 − f

(h′′
c (χ))z

· (h′′c (χ))y

]
(11)

Where (u0, v0) is the principal point of the camera, and f
is the focal length.

Depending on which kind of measurements are available
at time k, the dimensions of the measurement vector zk, the
measurement noise vk as well as the observation function h
itself are adjusted accordingly.

V. LANDMARK INITIALIZATION

As described in the last section, the measurement for each
visible feature in the camera image, which is also tracked
in the state vector, is predicted using the measurement
model h′c. But before a feature can be tracked in the state
vector, each feature has to be initialized. This includes the
augmentation of the error state δx by the six parameters per
feature like described in (1), as well as the augmentation of
the corresponding covariance matrix P .

Several papers deal with the problem of undelayed map
feature initialization for the monocular SLAM problem [5],
[7], [8], [17], [18]. All these publications share one common
aspect: All estimated state variables are defined in the total
state space, which is the same for the map features. In this
paper however, the estimated state includes variables defined
in the error state space along with the map features, which
are defined in the total state space.

Therefore, we propose a new method for initializing new
features. The proposed initialization method is based on the
Unscented Transform (UT) and uses the full state vector and
covariance matrix to capture all possible correlations between
the error state variables and the total state map features.

The calculation is devided into four steps; similar to the
augmented Unscented Transform described in [19]:

1) The estimated error state δx and covariance P are
augmented with the image coordinates [ui, vi]

T ∈ R2

of every new feature with index i which should be
included into the state vector. Additionally, an initial
guess for the inverse depth ρ ∈ R for all new features
observed in the current image is added to the aug-
mented state as well. See Civera et al. [7] for details
on how to choose ρ.

δxa =
[
δxT, [u1, v1]

T, . . . , [un, vn]
T, ρ
]T

P a =

P 0 0
0 Ruv 0
0 0 Rρ


2) A set of 2L + 1 sigma points is derived from the

augmented state δxa and covariance P a, where L =
dim(δx)+2 ·n+1 is the dimension of the augmented
state. With

[√
(L+ λ)P a

]
j

is the jth column of the

matrix square root2 of (L+λ)P a the sigma points χj ,
with j ∈ [0, 2L] are defined as follows:

χ0 = δxa

χj = δxa +
[√

(L+ λ)P a
]
j
, j ∈[1, L]

χj+L = δxa −
[√

(L+ λ)P a
]
j
, j ∈[1, L]

3) The sigma points χj are propagated through the ini-
tialization function m : RL → Rdim(δx)+6·n.

γj = m
(
χj
)
, j ∈ [0, 2L]

This function is defined as follows:

m (δxa) :=
[
δxT, p′

T
1 , . . . , p

′T
n

]T
(12)

Where p′i is calculated from δxa like:

p′i =


r̃W + δrW

atan2((zW,i)x, (zW,i)z)

atan2

(
−(zW,i)y,

√
(zW,i)

2
x + (zW,i)

2
z

)
ρ


(13)

With zW,i = RW
C ·

[
ui, vi, 1

]T
and RW

C being the
rotation from the camera frame C to the world frame
W.

2The matrix square root A of matrix B satisfies B , AAT. This
could be calculated using the numerically efficient and stable Cholesky
decomposition.



4) The gamma points γj are weighted and recombined to
calculate the new state δx and covariance P including
the new initialized map features.

δx =

2L∑
i=0

W j
s γ

j

P =

2L∑
i=0

W j
c

[
γj − δx

][
γj − δx

]T
Where the weights are given by:

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ (1− α2 + β)

W j
s =W j

c =
1

2(L+ λ)

with λ = α2(L+ κ)− L.
The parameters α, β, and κ control the spread of the
sigma points [10].

The new state δx now includes the newly initialized
map features and the covariance matrix P has the correct
correlation between the error state space variables and the
total state space map features.

This method can also be used for the normal cases
described in [5], [7], where both, the state variables and the
map features are defined in the total state space.

VI. RESULTS

To show the functionality of the proposed initializa-
tion method and the complete UKF-SLAM algorithm an
open-loop Matlab/Simulink-based simulation environment
has been used. It simulates a landing trajectory of a space-
craft from the powered descent initiation maneuver to land-
ing. The trajectory begins in approximately 11 km above
ground with a flight speed of 1600 m

s . After a flight time
of around 52min the spacecraft touches down at the final
landing site.

From this trajectory, sensor data for an IMU, a star tracker,
and an absolute positioning sensor are generated. In contrast
to [20], the optical features used for the SLAM algorithm are
projections of randomly distributed points on the surface of
an ellipsoid representing the Moon. This allows for an direct
evaluation of the mapping. For the projection the pinhole
camera model is used, with the camera pointing downwards.

While measurements from the IMU and the star tracker
are available during the whole simulation run, absolute
position measurements are only available at some stages
of the first half of the trajectory and shortly prior to the
landing. This is due to the availability of a valid crater
catalog for the entire surface as well as for all altitudes.
Therefore the SLAM algorithm is used to compensate the
drift of the navigation solution during the phases without
absolute position measurements.

A simulation run generates ground truth data for the
position, velocity, and attitude of the spacecraft as well
as the true position of the randomly chosen points used

Fig. 1. Partial plot of the simulated landing trajectory. The trajectory is
visible from the powered descent initiation maneuver to the touchdown at
the landing site.

as optical features. Furthermore, the estimated state vector
including the position, velocity, attitude, and the mapped
optical features is logged along with its covariance.

Fig. 1 shows a partial plot of the simulated landing
trajectory. The trajectory is visible from the powered descent
initiation maneuver to the touchdown at the landing site.
Due to the order of magnitude of the position the difference
between the ground truth and estimate is not visible at this
scale. Therefore, additional error plots give a more detailed
picture of the performance.

The resulting position error of one simulation run is given
in Fig. 2. The plot shows the position error during the last
32min of the landing trajectory. The error is plotted for
the x, y, and z axes in the colors red, green, and blue
respectively. The estimated sigma bound of the error is
plotted with dashed lines in the corresponding colors.

One can clearly see the corrections of the sensor fusion
as a result of the available absolute position measurements
in the time from 1200 s to 2200 s. Each correction results
in a decrease of the sigma bound and a sudden change of
the position error. Also shortly prior to the landing in the
time from 3050 s to 3150 s absolute position updates can be
observed. Between these absolute position updates a slight
drift of the position error can be seen. The resulting position
error is in a range of ±600m at the beginning of the plot
and converges to less than 50m at the end. Also the sigma
bound increases during these phases.

Compared to previous SLAM implementations (see [20])
the observed drift has been decreased significantly with
the presented UKF-SLAM implementation. Furthermore, the
uncertainties have been integrated properly in this approach
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Fig. 2. Plot of the position error during the last 32min. The error is plotted for the x, y, and z axes in the colors red, green, and blue respectively. The
estimated sigma bound of the error is plotted with dashed lines in the corresponding colors.

resulting in a more precise estimation of the variance.
To evaluate the mapping of this UKF-SLAM implementa-

tion a snapshot of the estimated map is presented in Fig. 3.
The plot shows the current position of the spaecraft marked
in black, the true position of the features marked in pink,
and the estimated feature positions marked in green with the
spread of the standard deviation indicated by the blue dots.
The three dimensional position of the features is calculated
using (2).

The difference between freshly initialized features or fea-
tures with low-parallax and features with a converged inverse
depth can be seen. Also it can be seen that the estimated
features converge to the true feature positions as the inverse
depth converges.

VII. CONCLUSION

In this paper we presented a way how to augment an
error state vector with total state space map features. The
adjustments to the measurement model of the used UKF have
been documented as well as a new initialization method used
for the integration of new map features to the state vector.
This method is based on the UT and has some advantages
over other approaches:
• It is easy to implement, since no multi-hypotheses and

not even Jacobian matrices have to be calculated.
• The complete state including position, attitude, and

other possible sensor errors are included in the calcula-
tion of the new map features and their covariance.

• The correlation between the total state map features and
the error state variables can be easily determined.

The results have shown proper functionality of the initial-
ization and the complete UKF-SLAM algorithm. Also the
inverse depth parametrization has been proven to be a good

fit for such high altitude scenarios as the landing trajectory
of a spacecraft.

Further evaluation of this UKF-SLAM algorithm should be
performed based on realistic optical data. Such evaluations
have already been performed with a decoupled SLAM algo-
rithm earlier in the project. These tests have been conducted
using a simulation of a lunar landing scenario with realistic
image rendering [20] as well as offline and online realtime
processing of flight test data from an unmanned aerial vehicle
(UAV) in a simulated lunar environment [11] and [12].
These steps should be repeated using this improved and
coupled UKF-SLAM algorithm. Also other scenarios like au-
tonomous driving or indoor navigation would be interesting
testing scenarios.
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