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Abstract— Human teleoperation of robots and autonomous
operations go hand in hand in many of todays service robots.
While robot teleoperation is typically performed on low to
medium levels of abstraction, automated planning has to take
place on a higher abstraction level, i.e. by means of semantic
reasoning. Accordingly, an abstract state of the world has to be
maintained in order to enable an operator to switch seamlessly
between both operational modes. We propose a novel approach
that combines simulation-based geometric tracking and seman-
tic state inference by means of so called State Inference Entities
to overcome this issue. The system is demonstrated in real-world
experiments conducted with the humanoid robot Rollin’ Justin.

I. INTRODUCTION

Space assistant robots such as the humanoid robot Rollin’
Justin [1] have become mechanically capable to manipulate
their environment. Still, they do not provide full autonomy
and need a human operator. Thus, our research on telerobotic
manipulation focuses on direct teleoperation (e.g. Kontur-
2 [2]) and supervised autonomy (e.g. METERON SUPVIS
Justin [3]). In these missions, we learned that both control
modalities are necessary to operate a robot efficiently under
varying conditions (see Fig. 1).

Traded control is an approach that allows the operator to
switch between autonomous task execution and teleoperation
[4]. An open research question in traded control is the syn-
chronization of world states while switching from teleoper-
ation to autonomous mode. That is, planning in autonomous
mode requires an accurate semantic representation of the
world, but during teleoperation robots are not yet able to keep
track of the semantic state changes initiated by the operator.
Thus, the semantic world state at the end of a teleoperation
session is unknown, making it impossible for the robot to
operate autonomously afterwards.

We derived an intuitive analogy for this problem by com-
paring the robot with a sleepwalker whose motor capabilities
are intact while at the same time he/she does not perceive
the environment consciously [5]. Similarly, robots are active
during teleoperation without ”perceiving” the changes they
exert on the environment and they lack status updates during
teleoperation, leaving them “disoriented” afterwards. While
visual servoing may be used to track geometric state changes
during teleoperation [6], and concepts like anchoring try to
capture symbolic states from senor data [7], there is currently
no work known to the authors that employs physical simu-
lations for state inference. Simulation brings the advantage
of being able to represent changes of objects that, no matter
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Fig. 1: The humanoid robots Space Justin and Rollin’ Justin
remotely operated from the International Space Station using
direct control (Kontur-2 experiment left) and supervised
autonomy (METERON SUPVIS Justin experiment right).

why, are not perceivable by sensors. Accordingly, this paper
proposes an approach to derive semantic state transitions
from robot telemetry retrieved during teleoperation by means
of physics simulations and State Inference Entities (SIEs).

The contributions of this paper include a software architec-
ture to infer semantic state transitions during robotic teleop-
eration and the concept of SIEs that allow to extract semantic
knowledge from physics simulations. The developed methods
are validated based on real world robot telemetry recorded
during teleoperation of the humanoid robot Rollin’ Justin.

II. RELATED WORK

The lack of ability to operate fully autonomously lead to
the emergence of approaches that aim at blending human
and robot intelligence to ease human-robot interaction on
different levels of autonomy (see [8, Tab. 5.2]). Their
main idea is to ease human-robot interaction by integrating
autonomous features supporting the user. While, supervised
autonomy allows the operator to initiate tasks on a high
level of abstraction that are carried out by the robot au-
tonomously [8], shared control provides support for the user
who controls the robot via continuous input on a Human-
Robot Interface (HRI) [8], e.g. by means of safequarding.
Robots can also provide a mixture of supervised autonomy



and shared control, called traded control, as in [9].
Autonomously achieving predefined goals requires the

robot to be able to generate and execute plans. Since it is
common to human communication to define goals in terms of
symbolic states and it is easier to plan on the symbolic level,
robots usually employ symbolic planning, potentially with
refinement on the geometrical domain (e.g. hybrid planning
for example in [10], [11]).

While humans are able to employ commonsense, robots
require a detailed specification of a problem. The task of pre-
dicting the symbolic world state after teleoperation includes
lots of physical knowledge that is not specified explicitly.
Humans presumably possess an inherent ability to predict
and assess physical phenomena, called naive physics [12],
an idea that was adopted to AI by Hayes [13] by formalizing
everyday physics knowledge. Instead of creating a formaliza-
tion, todays physic simulations enable us to exploit their rich
intrinsic physical knowledge in order to solve robotics tasks.
Multiple approaches have succeeded at employing physics
simulations to planning problems in robotics, allowing for
physical commonsense reasoning [14], [15], [16], [17].

Coradeschi and Saffioti proposed a system of anchoring
sensory stimuli to symbolic representations [7]. This is in
line with work from Lemaignan et al. [18] that allow to
extract simple symbolic predicates from visual percepts.
Since our focus is on the interface between teleoperation and
supervised autonomy, goal inference and plan recognition are
not considered.

III. SYSTEM CONCEPT

The proposed framework, running on Rollin’ Justin [1],
augments the current hybrid planning system that is based
on action templates [19]. Action templates describe robot
actions by means of a symbolic header defined in Planning
Domain Definition Language (PDDL), and a geometric body
grounding the action geometrically to the robot.

Center to the current system is the world representation
module that holds the geometric and symbolic world state,
both being essential for hybrid planning. Before performing
expensive geometrical planning, the semantic planner gen-
erates a high level plan based on the symbolic world state
which is finally refined on a geometric level. A deviation in
the symbolic world state might, thus, result in an incorrect
plan that cannot be executed by the physical robot.

While being teleoperated, the robot is commanded on a
low level and does not possess a symbolic representation
of the action the user executes. Thus, the symbolic state of
the world cannot be updated automatically. The resulting
deviation in the symbolic world state prevents the robot
from further autonomous operation. In order to resolve
this issue it is necessary to update the geometric world
representation during teleoperation via a subsequent mapping
of the geometric state to a symbolic state as it is described
in the following section.

A. Inference Framework
The proposed framework is mainly designed to be active

during teleoperation of the robot, thus, modules that cope
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Fig. 2: Overview of the framework consistin of world rep-
resentation, simulation engine, state inference module and
object database.

with planning do not need to be considered. A schematic
overview is provided in Fig. 2 showing the interaction
between world representation, simulation engine, inference
module, and the Object Database (ODB). Forming a closed
loop, the framework starts from a known world state, and
finishes in a state where the world state is known again. This
corresponds to the situation of switching from autonomous
control to teleoperation and back again.

Switching on teleoperation mode, the world representation
initializes the simulation environment with the current world
state. Next, the simulation continuously receives real-robot
telemetry and mirrors it on the simulated robot, computing
interactions between the robot and the environment. Thus,
the simulation maps the initial world state world and a time
series of telemetry to a resulting geometrical world state.

Once the teleoperation finishes, the results of the simula-
tion are forwarded to the state inference framework where
they are evaluated based on SIEs. Sending the evaluated
predicates to the world representation ensures that the world
state is updated accordingly whenever the robot switches
back to autonomous mode. The knowledge necessary for
inferring symbolic states from geometrical information is
attached to the objects in the ODB.

The loop-structure further allows the system to be em-
ployed in order to generate on-line estimates of the world
state during teleoperation. Intermediate world states can
be inferred by invoking the inference during teleoperation.
Executing this process recursively, any temporal resolution,
only limited by the temporal resolution of the sensors and the
real-time capability of the resulting system, can be achieved.
Experiences with the framework indicate that the simulation
engine forms a bottleneck for the overall speed.

B. Simulation Environment

For simulation we use the robot simulation environment
Gazebo [20] in conjunction with the open dynamics engine



(ODE)1. At the beginning of a teleoperation session, infor-
mation from the ODB and the world representation is used to
initialize the simulation with the current state of the world.

Once initialized, the robot in the simulation starts to mirror
the movements of the real world robot by following the
transmitted telemetry (here joint angles). As soon as the
teleoperation finishes, the results of the simulation are for-
warded to the inference module. For the sake of modularity,
the simulation module can easily be replaced by another
simulation, only requiring a new adapter for communication
with the other modules.

C. Inference Module

After receiving data from the simulation, the inference pro-
cess starts with the goal to extract semantic predicates from
the simulated geometric state of the world. The inference
process is based on the position of objects, collisions between
objects, and the corresponding forces. The predicates (unary
or n-ary) that are to be evaluated are bound to the objects in
the ODB and so is the information used for the evaluation of
predicates. We implement the inference knowledge in terms
of SIEs stored per object in the ODB.

In order to reduce the computational costs of the inference
process, inference is only performed on objects that have
either been manipulated during teleoperation or that are in
collision with a manipulated object. The results from the
inference are collected and used to update the world state.

D. State Inference Entities (SIEs)

The SIEs form a central aspect of the state inference pro-
cess. They consist of executable Python code and implement
a common method executeSnippet() that is called
from the state inference module. Following the principle of
modularity, this method can be implemented freely. In case
of space applications, it is preferable to have hand-coded
snippets that produce reproducible results, but the snippets
might also execute a probabilistic classifier in other setups.

The executeSnippet method returns a list of predi-
cates that have been evaluated. In case a predicate does not
hold, its corresponding SIE returns an empty list.

IV. EVALUATION

In order to achieve a proof-of-concept, the system was
used to infer the semantic state in the boxworld environment,
which consists of two boxes of different size placed on
a table. Teleoperation was simulated by moving the robot
manually in compliance mode (see Fig. 3). Ground truth
data was generated by localizing objects before and after
teleoperation by means of APRIL-tags [21].

A. Experiment

The inference capabilities of the framework were tested by
implementing two predicates, namely on and upright for
the two boxes. A common problem of robotic simulation is
the reality gap, that describes the phenomenon of divergence
between real world and simulated world. The parameters

1http://ode.org/, last retrieved on May 8, 2018

Fig. 3: Overview of the experiment setup.

mainly responsible for the reality gap in our simulation were
the friction coefficients of the boxes (µ1, µ2), the constraint
force mixture (CFM), and the error reduction parameter
(ERP), the last two are specific parameters of the simulation
engine ODE. Parameters were estimated by employing an
evolutionary strategy, similar to Laue and Hebbel [22].

Fig. 4 shows the simulation of the recorded telemetry
of pushing over the blue box and the resulting change in
the world representation, both for a simulation with good
and bad parameterization. In both cases the transition from
the simulated geometrical world state to the symbolic world
state is performed correctly but the geometric world state is
incorrect in the upper row.

B. Discussion

The proposed framework enables us to keep track of the
symbolic world state during teleoperation. Geometric and
symbolic reasoning are split up into two modules, allowing
us to employ a physics simulation and its inherent physical
commonsense knowledge to infer geometric state changes.
Using a physic simulation enabled us to use highly advanced
physical knowledge without the need to re-implement it. The
modular design of the framework allows for integrating a
new simulation engine with minimum effort.

Overall, the framework is able to extract the predicates
on and upright successfully provided only with robot
telemetry and the initial world state state.

V. CONCLUSION AND OUTLOOK

The proposed framework brings us a step closer to
“awake” the sleepwalking robot and enable it to keep track
of the changes it induces in its environment, thus, allowing
for transmissions between teleoperation and (supervised)
autonomous behavior. The framework can be used for tele-
operation scenarios where the objects in the scene are well
known and where the physics of the overall scene are rather
stable. It does not rely on constantly monitoring object
positions visually but predicts their behavior based on a
physical simulation. The strength of this concept lies in the
robustness against failure of sensors, however, it requires
physically accurate models of the objects in the scene and its
accuracy is limited by the precision of the simulation engine.

Following this first step we see some opportunities and
open questions that can be investigated further. Firstly, the
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Fig. 4: Results from two runs with different parametrization with bad parameterization (first line) and good parameterization
(second line): (a) and (e) before the recorded telemetry is replayed, (b) and (f) during replay, (c) and (g) after the replay
has finished, and (d) and (h) the extracted symbolic world state. Generally the transparent blue box marks the ground truth
position of the blue box after the experiment.

open simulation should be augmented by feedback from
sensors to minimize the prediction error. Secondly, instead
of assuming absolute discrete states, the framework should
be extended to being able to cope with noise and uncertainty.
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