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1. Climate Change – Driver for Renewable Fuels? 
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Source: https://www.co2.earth/daily-co2 

Thousands of Years ago 

• Historic natural fluctuation between 180 and 280 ppm CO2 concentration 

• undeniable break-out since 1960’s 

• No visible impact of renewables introduction since 2000’s 



1. GHG emission trend in Europe  

• European GHG reduction behind target (slow reduction in Germany) 

• Transport GHG emissions grow considerable   
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1. Growth in Aviation Sector 
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Source: Thess et al., DGLR-Mitgliedermagazin „Luft- und Raumfahrt“ edition 2/2016, p.20 

(in billion passenger kilometers /a) 
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1. IATA Technology Roadmap 
4. Edition, June 2013 
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[1] FuelsEurope “Statistical Report“ 2010 

CO2 emission  forecast without reduction measures 

Improvement of technologies, operations, infrastructure 

Economic measures (CORSIA signed 2016) 
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Source: iata.org 
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 Operations 

 Airport 

Infrastruct. 

European Aviation fuel demand: 

ca. 56.5 Mt[1] in 2010 

 

(optimistic) assumption until 2050: biofuels are 100% CO2-„neutral“ 

demand of ≈ 56 - 60 Mt kerosene equivalent EU 

-50 % CO2 

by 2050 

 Aviation  

 Self-commitments: 

 Improvement of fuel 

 efficiency 

 ≈ 1,5 % p.a. until 2020 

 Carbon-neutral growth 

 from 2020 

 CO2 emission  reductions 

 of 50 % by 2050  

 (comp. to 2010) 
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2. Sources & Routes for Alternative FT-Kerosene 

Biofuel 1. Gen. 
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 Fuel synthesis (2nd generation): 
                                        Fischer-Tropsch    /    Methanol-to-Gasoline    /   Mixed Alcohol   /   etc. 
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electricity  
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water) 
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electricity 

generation 
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Optional production route 
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Purge

- Low usable raw material potential 

- RED II restriction? 

- Too large CO2 footprint 

The supply of large quantities of alternative kerosene within low GHG emissions is possible by 

coupling the sectors electricity generation and fuel markets (without biomass imports). 
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2. Renewable Energy Potential for Europe 
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[1] Eurostat database, 2015 

[2] European Environment Agency, “Europe's onshore and offshore wind energy potential,” 2009. 

Potential for Europe? – e.g. jet fuel from wind power 

 

 

• Current jet fuel consumption: ≈ 56 Mt/a[1] 

 

• Power demand for exclusively power based kerosene  

in Europe:  ≈ 1,410 TWh (ƞxtL ca. 50 %) 

 

• European wind power potential[2]: 12,200 – 30,400 TWh  

≈ 8.6 - 22 times of power based kerosene demand! 
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3. Process Evaluation @ DLR 
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DLR-evaluation and 

optimization tool 

 Efficiencies (X-to-Liquid, Overall) 
 Carbon conversion 
 Specific feedstock demand 
 Exergy analysis 



3. Multiple Options for Power-to-Liquid 
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3. Process Evaluation @ DLR 
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DLR-evaluation and 

optimization tool 

 CAPEX, OPEX, NPC 
 Sensitivity analysis 
 Identification of most economic 

feasible process design 



3. Techno-Economic Assessment (TEA) Methodology 

 • Adapted from best-practice chem. eng. methodology  

• Meets AACE class 3-4, accuracy: +/- 30 % 

• Year specific using annual CEPCI Index 
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3. TEA: Base Case definition 
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PtL Plant capacity: 

 

 Power Input: 293 MWe  

 Fuel Production: 100 kt/a 

 
 

 

 

 

 

[1] G. Saur, Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study, Technical Report NREL, 2008 

[2] Peters M, Timmerhaus K, West R. Plant design and economics for chemical engineers, New York, 2004 

[3] I. Hannula and E. Kurkela, Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass, Espoo: VTT Technical Research Centre of Finland, 2013 

[4] Eurostat, Preise Elektrizität für Industrieabnehmer in Deutschland, 2016 

[5] NREL,“Appendix B: Carbon Dioxide Capture Technology Sheets - Oxygen Production,“ US Department of Energy, 2013 

[6] Own calculations based on natural gas price from Eurostat database 

 

720

1,350 €/kW

17.44 Mio.€/(kmolfeed/s)
  [3]

Year: 30 years

Full load hours: 5%

Investment costs:

PEM-Electrolyzer (stack): €/kW [1]

PEM-Electrolyzer (system):

Steam (export): 14.7 €/t [6]

Fischer-Tropsch reactor:

Raw materials and utility costs
German Grid Power: 83.7 €/MWh [4]

factors according to [2]

Oxygen (export): 23.7 €/t [5]

General economic assumptions:

2016 Plant lifetime:

8,260 h/a Interest rate:



3. Base Case Results of TEA 
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Power-to-Liquid (PTL) 

Investment:     ca.  742 mio. € 

Fuel production:  100 kt/a 

Fuel costs :      ca. 2.25 €/l 

Electrolyzer 

Fischer-Tropsch 

Remaining (CAPEX) 

Power[3] 

Remaining (Utilities) 

Maintenance 

Labor costs 

Remaining (OPEX) 

CAPEX:  

17.0 % 

65 %  

(1.47 €/l) 

 Renewable kerosene can‘t compete against fossil kerosene 

 

 Renewable electricity price has to decrease tremendously  

in order to make PtL fuels competitive 

 

 How to reduce the costs for renewable kerosene? 

• Increasing and subsidizing renewable power production 

• Increase efficiency (e.g. electrolyzer) 

• Reduce PtL CAPEX (e.g. electrolyzer, FT synthesis) 

• System integration (Sector coupling and multiple products: Fuel, 

chemicals, district heat, steam, oxygen, power-storage, etc.) 
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3. Process Evaluation @ DLR 
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DLR-evaluation and 

optimization tool 

 CO2-footprint 
 CO2-abatement costs 
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3. CO2-Footprint Calculation - Methodology 

PtX - Concept 

Power footprint 

Carbon dioxide footprint 

Footprint of products: 

Fuel/Heat/H2 etc. 

Carbon footprint of feedstock and energy sources 

defines carbon footprint of product! 
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𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
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3. CO2-Footprint calculation - Bounderies 

Power Carbon dioxide Oxygen 

Functional unit [kgCO2eq/MWh]a [kgCO2eq/t]b [kgCO2eq/t] c 

Low boundary 10 5 100 

Average 272.5 77.5 250 

High boundary 535 150 400 

a Low boundary value for pure wind electricity taken from[1]. High value corresponds to the actual CO2-footprint of the German electricity sector [2]. 
b Based on own calculations. The carbon footprint represents emissions arising from sequestration of CO2 from flue gas. Flue gas from cement 

industry and coal fired power plants were investigated. The probably fossil nature of the flue gas was not taken into account. Low/high value: 

energy demand of CO2-sequestration is covered with wind energy/German electricity mix.  
c Taken from ProBas databank [1]. Low/high value due to different electricity sources. 

 

[1] Umweltbundesamt, “Prozessorientierte Basisdaten für Umweltmanagementsysteme,” http://www.probas.umweltbundesamt.de/php/index.php. 

[2] Umweltbundesamt, “Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 – 2016,“ Dessau-Roßlau,2017. 
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PtL 
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3. CO2-Footprint - Results 

Fossil fuel 

reference: 

Ca. 83.8 gCO2/MJ 

CO2- emission reduction 

PtL-concepts only viable using CO2-neutral power! 

CO2-Abatement costs: 

Case 1 – Status quo: 

Price of fossil kerosene:    ca. 0.5 €/l 

Power price:             83.7 €/MWh 

CO2-Abatement costs     € / 𝑡𝐶𝑂2
 

Case PtL-Low 

1 827 

2 155 

Case 2 – Pressure on fossil energy: 

Price of fossil kerosene:      ca. 1.0 €/l 

Power price: 30 €/MWh 

Current CO2 price of EU Emissions Trading System: 

ca. 5-15 €/tCO2.eq 

𝑪𝑶𝟐 𝑨𝒃𝒂𝒕𝒆𝒎𝒆𝒏𝒕 𝑪𝒐𝒔𝒕𝒔 
€

𝒕𝑪𝑶𝟐

 =    
𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒊𝒏 𝑭𝒖𝒆𝒍/𝑯𝒆𝒂𝒕/𝑯𝟐 𝑪𝒐𝒔𝒕𝒔

𝑪𝑶𝟐 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 
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Option 9 

Option 10 
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Green Fuel 2 ??? 

Goal: CO2 reduction @ minimized GHG-Abatement cost,  
either by reducing GHG footprint or costs! 

 
Standardized and verified methodology for LCA and TEA required!   

 

 

 

 
 

 

 

 

 

 

EU instrument to reduce 
GHG emissions: 
CO2-certificates 

Green Fuel 1 ??? 

3. Long-term Target: Merit-Order of Carbon Mitigation Technologies 
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4. Summary & Outlook 

• European GHG emission reduction by 1 % p.a. required – only 5 EU28 countries on track

 

• Renewable kerosene will be long-term required for aviation 

 

• Transparent and standardized methodology for cost estimation and GHG-footprint calculation available @ DLR  

 

• European green fuels have large potential to contribute to GHG emission reduction 
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German Aerospace Center (DLR) 

Institute of Engineering Thermodynamics, Stuttgart 

Research Area Alternative Fuels 

 

ralph-uwe.dietrich@dlr.de 

http://www.dlr.de/tt/en 

THANK YOU FOR YOUR ATTENTION! 

 

VISIT US @ HALL 5.1, BOOTH C41 
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