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Abstract

We consider the numerically reliable computation of reachability and observability Kalman de-
compositions of a periodic system with time-varying dimensions. These decompositions generalize
the controllability/observability Kalman decompositions for standard state space systems and have
immediate applications in the structural analysis of periodic systems. We propose a structure ex-
ploiting numerical algorithm to compute the periodic controllability form by employing exclusively
orthogonal state-space similarity transformations. The new algorithm is computationally efficient
and backward stable, thus fulfils all requirements for a satisfactory algorithm for periodic systems.

Keywords: Periodic systems, discrete-time systems, time-varying systems, Kalman decompo-
sition, numerical methods.

1 Introduction

Among the important open computational problems which we listed in a recent survey [15], the
computation of periodic reachability and observability Kalman decompositions is one which has
many useful applications. Besides characterizing the structural properties of the system (reachabil-
ity/controllability, observability/reconstructibility), properties as stabilizability and detectability
can be checked by computing the non-reachable and non-observable characteristic multipliers. Fur-
thermore, by computing the periodic reachability form and the dual periodic observability form of
the reachable subsystem, minimal realizations of periodic systems can be easily computed. This
computation is a basic step in a recently developed algorithm to evaluate the transfer-function
matrix of a periodic system [13].

We consider periodic time-varying systems of the form

x(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) (1)

where the matrices Ak ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk , Ck ∈ IRpk×nk , are periodic with period
N ≥ 1. This periodic system will be alternatively denoted by the periodic triple (Ak, Bk, Ck).

For the definition of the periodic reachability/observability Kalman decompositions it is im-
portant to consider the more general case of time-varying dimensions. Note that the Kalman
decompositions even of constant dimension periodic systems may lead to reachable/observable and
unreachable/unobservable subsystems with time-varying dimensions [4]. Thus, the minimal real-
izations of periodic systems (i.e., reachable and observable) have, in general, time-varying state
dimensions [2, 3]. Periodic systems with time varying input and output vector dimensions have
been considered in [6] and arise in a natural way in some computational problems [13].
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Periodic systems with time-varying state dimensions have been already considered earlier in
[5, 3]. However, numerically reliable algorithms for systems with time-varying dimensions have
been developed only very recently. Notable examples are the algorithms for the computation of
minimal realizations [12], the evaluation of the transfer-function matrix of a periodic system [13],
and the numerically stable algorithms to compute the zeros of periodic systems [16, 14]. Note that,
the development of general algorithms able to address the case of time-varying dimensions, is one of
the requirements which we formulated for a satisfactory numerical algorithm for periodic systems
[15].

The computation of Kalman decompositions by using orthogonal similarity transformations was
one of the first numerically stable algorithms developed to solve system theoretic problems. In a
survey [9], six distinct groups of authors are cited who proposed around 1981, almost simultaneously,
numerically reliable algorithms to compute the Kalman controllability decomposition via the so-
called controllability staircase form. Although the corresponding theoretical results have been
extended to the periodic case by Grasselli already in 1984 [4], and subsequently have been refined
in the works of various authors [8, 3, 2], until now there exists no computation oriented algorithm
to compute the periodic Kalman decompositions.

In this paper, we propose a structure exploiting numerically reliable algorithm to compute the
Kalman reachability decomposition for discrete-time periodic systems using exclusively orthogonal
state-space similarity transformations. A dual algorithm can be used to compute the Kalman ob-
servability decomposition. With these two algorithms, the minimal realization problem of periodic
systems can be solved in a numerically reliable way. The new algorithm is computationally efficient
and backward stable, thus fulfils all requirements for a satisfactory algorithm for periodic systems.

2 Periodic Kalman decompositions

The transition matrix of the system (1) is defined by the nj×ni matrix ΦA(j, i) = Aj−1Aj−2 · · ·Ai,
where ΦA(i, i) := Ini . In the case of a null dimension, say nj , by convention the product AjAj−1 is
a nj+1×nj−1 matrix of zeros. The state transition matrix over one period ΦA(j+N, j) ∈ IRnj×nj is
called the monodromy matrix of system (1) at time j and its eigenvalues are called the characteristic
multipliers at time j. Note that the spectrum of ΦA(j + K, j) contains always at least nj − n
zero elements, where n := mink{nk}. The rest of n eigenvalues are independent of time j and
form the core characteristic multipliers [5]. The periodic system (1) is asymptotically stable if all
characteristic multipliers belong to the open unit disk.

For the definitions of reachability, observability and minimality of periodic systems we rely on
[1] (see also [3] for a more detailed exposition).

Definition 1 The periodic system (1) is reachable at time k if

rankRk = nk, (2)

where Rk is the infinite columns reachability matrix

Rk = [Bk−1 Ak−1Bk−2 · · · ΦA(k, i + 1)Bi · · · ]. (3)

The periodic system (1) is completely reachable if (2) holds for all k.

Definition 2 The periodic system (1) is observable at time k if

rankOk = nk, (4)
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where Ok is the infinite rows observability matrix

Ok =




Ck

Ck+1Ak

...
CiΦA(i, k)

...




. (5)

The periodic system (1) is completely observable if (4) holds for all k.

Definition 3 The periodic system (1) is minimal if it is completely reachable and completely ob-
servable.

Let Sk ∈ IRnk×nk be an N -periodic nonsingular matrix. The reachability, observability and
minimality properties are invariant under a state-space similarity transformation of the form

Ãk = S−1
k+1AkSk, B̃k = S−1

k+1Bk, C̃k = CkSk

The reachability and observability Kalman decompositions of periodic systems have been intro-
duced in [4] for systems with constant dimensions and extended recently to the case of time-varying
dimensions [6]. We recall below the main results of [4, 6]:

Theorem 1 Every N -periodic system (Ak, Bk, Ck) is state-space equivalent to an N -periodic sys-
tem (Ãk, B̃k, C̃k), with

Ãk =
[

Ar
k ∗

0 Ar
k

]
, B̃k =

[
Br

k

0

]
, C̃k = [ Cr

k Cr
k ] (6)

where Ar
k ∈ Rrk+1×rk , rk = rankRk and the periodic pair (Ar

k, Br
k) is completely reachable.

The decomposition of the system matrices in the form (6) is called the periodic Kalman reachability
decomposition (PKRD). The transfer-function matrices of the corresponding linear time-invariant
lifted representations (see [7]) of the reachable subsystem (Ar

k, Br
k, Cr

k) and of the original periodic
system (Ak, Bk, Ck) are the same [2]. The unreachable characteristic multipliers of the system (1)
are the eigenvalues of ΦAr (N, 0).

Definition 4 The periodic system (1) is completely controllable if all unreachable characteristic
multipliers are zero.

It is interesting to note that every periodic system having at least one null state vector dimension
is completely controllable. This follows easily, since the set of core characteristic eigenvalues being
empty, only zero characteristic multipliers may appear.

The dual result to Theorem 1 is the following one:

Theorem 2 Every N -periodic system (Ak, Bk, Ck) is state-space equivalent to an N -periodic sys-
tem (Ãk, B̃k, C̃k), with

Ãk =
[

Ao
k 0
∗ Ao

k

]
, B̃k =

[
Bo

k

Bo
k

]
, C̃k =

[
Co

k 0
]

(7)

where Ao
k ∈ Rqk+1×qk , qk = rankOk, and the periodic pair (Ao

k, Co
k) is completely observable.

The transfer-function matrices of the corresponding lifted systems of the observable periodic subsys-
tem (Ao

k, Bo
k, Co

k) and of the original periodic system (Ak, Bk, Ck) are the same [2]. The unobservable
characteristic multipliers of the system (1) are the eigenvalues of ΦAo(N, 0).

Definition 5 The periodic system (1) is completely reconstructible if all unobservable character-
istic multipliers are zero.

3



3 PKRD algorithm

In this section we show that the periodic reachability form (6) can be computed using orthogonal
state-space similarity transformations and we develop an efficient computational algorithm which
generalizes the algorithm of [10] and similar algorithms cited in [9].

To justify our approach, we consider the periodic pair (Ak, Bk) and let Uk be periodic orthogonal
state-space transformations such that each Uk+1 compresses Bk to a full row rank matrix. If νk+1

is the rank of Bk, then we can write

UT
k+1Bk :=

[
Ak,10

0

]
νk+1

ρk+1

mk

, (8)

where Ak,10 has full row rank. We apply the transformation to Ak and partition UT
k+1AkUk as

follows

UT
k+1AkUk :=

[
Ak,11 Ak,12

B̃k Ãk

]
νk+1

ρk+1

νk ρk

(9)

Note that some dimensions can be zero, depending on the ranks of the matrices Bk, k = 1, . . . , N .
We now apply to the reduced pairs a second state-space transformation Vk of the form Vk =

diag (Iνk
, Ũk). These transformations will affect only B̃k, Ãk and Ak,12. This time we choose Ũk+1

to compress the rows of B̃k to a full row rank matrix and repeat the partitioning in form (8) and
(9) for the matrices ŨT

k+1B̃k and ŨT
k+1ÃkŨk. We obtain globally

V T
k+1U

T
k+1AkUkVk :=




Ak,11 Ak,12 Ak,13

Ak,21 Ak,22 Ak,23

0 B̂k Âk




νk+1

ν̃k+1

ρ̃k+1

νk ν̃k ρ̃k

(10)

where some submatrices have been redefined. This reduction process continues until ν̃k = 0 for
k = 1, . . . , N , that is, all B̂k = 0, or ρ̃k = 0, for k = 1, . . . , N , that is all B̂k have full row rank.

The following implementable algorithm formalizes the above ideas:
PKRD Algorithm: Periodic Kalman Reachability Decomposition
Given Ak ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk and Ck ∈ IRpk×nk for k = 1, . . . , N , this algorithm

computes the orthogonal matrices Qk, k = 1, . . . , N , such that the transformed periodic system
(QT

k+1AkQk, QT
k+1Bk, CkQk) is in the periodic Kalman reachability form (6).

1. Set j = 1 and rk = 0, ν
(0)
k = mk, A

(0)
k = Ak, B

(0)
k = Bk, Qk = Ink

for k = 1, . . . , N .

2. For k = 1, . . . , N , compute the orthogonal matrices Uk+1 to compress the matrix B
(j−1)
k ∈

IR(nk+1−rk+1)×ν
(j−1)
k to a full row rank matrix

UT
k+1B

(j−1)
k :=

[
Ak;j,j−1

0

]
ν

(j)
k+1

ρ
(j)
k+1

ν
(j−1)
k
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3. For k = 1, . . . , N , compute UT
k+1A

(j−1)
k Uk and partition it in the form

UT
k+1A

(j−1)
k Uk :=

[
Ak;j,j Ak;j,j+1

B
(j)
k A

(j)
k

]
ν

(j)
k+1

ρ
(j)
k+1

ν
(j)
k ρ

(j)
k

4. For k = 1, . . . , N and i = 1, . . . , j − 1, compute

Ak;i,jUk := [ Ak;i,j Ak;i,j+1 ]
ν

(j)
k ρ

(j)
k

5. Qk ← Qkdiag(Irk
, Uk), Ck ← Ckdiag(Irk

, Uk), for k = 1, . . . , N .

6. rk ← rk + ν
(j)
k , for k = 1, . . . , N ;

if ρ
(j)
k = 0 for k = 1, . . . , N , then ` = j, Exit 1.

7. If ν
(j)
k = 0 for k = 1, . . . , N , then ` ← j − 1, Exit 2; else, j ← j + 1 and go to Step 2.

After performing the PKRD Algorithm, each pair (Ak, Bk) is in the periodic reachability
form (6), where the pair (Ar

k, Br
k) is in a staircase form

[ Br
k | Ar

k ] =




Ak;1,0 Ak;1,1 Ak;1,2 · · · Ak;1,`

O Ak;2,1 Ak;2,2 . . . Ak;2,`

...
...

. . . . . .
...

O O O Ak;`,`−1 Ak;`,`


 (11)

and Ar
k ∈ IRρ

(`)
k+1×ρ

(`)
k . In (11), Ak;i,i ∈ IRν

(i)
k+1×ν

(i)
k , i = 1, . . . , `; Ak;i,i−1 ∈ IRν

(i)
k+1×ν

(i−1)
k and

rankAk;i,i−1 = ν
(i)
k+1 for i = 1, . . . , `.

The above algorithm basically constructs, in a step-by-step manner, orthogonal bases for the
images of the reachability matrices Rk. These bases are formed from the leading rk columns of the
resulting orthogonal transformation matrices Qk. The periodic system (1) is reachable at time k if
rk = nk. The following result summarizes this important fact.

Theorem 3 For each periodic pair (Ak, Bk) there exists a periodic orthogonal matrix Qk such
that the transformed periodic pair (Ãk, B̃k) := (QT

k+1AkQk, QT
k+1Bk) is in the periodic Kalman

reachability form (6).

Proof. We apply the PKRD Algorithm to the periodic pair (Ak, Bk) (assuming Ck = 0) and
obtain orthogonal periodic Qk such that the periodic pair (QT

k+1AkQk, QT
k+1Bk) is in the form (6)

with each pair (Ar
k, Br

k) in the form (11). We need to show that this periodic pair is reachable.
Consider the matrix pair (Ar,Br), where

Ar =




0 · · · 0 Ar
N

Ar
1 · · · 0 0
...

. . .
...

...
0 · · · Ar

N−1 0


 , Br =




Br
N 0 · · · 0
0 Br

1 · · · 0
...

. . .
...

...
0 0 · · · Br

N−1




We can easily extend the proof of Lemma 1 of [8] to the case of time-varying dimensions and show
that the periodic pair (Ar

k, Br
k) is completely reachable if and only if the pair (Ar,Br) is reachable.

Thus, by using the Popov-Belevich-Hautus test, to prove reachability we need only to show that
the pencil [Ar − zI Br ] has full row rank

∑N
k=1 rk for all z ∈ |C.
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By column and row permutations we can bring this pencil in the form

R(z) =




S1 −zT1 O · · · O
O S2 −zT2 · · · O
...

. . . . . . . . .
...

O SN−1 −zTN−1

−zTN O · · · O SN




(12)

where, for k = 1, . . . , N ,
Sk := [ Br

k Ar
k ], Tk := [ O Irk+1 ]

Note that by construction (see (11)), each Sk has full row rank rk+1 =
∑`

i=1 ν
(i)
k+1. Thus, by

performing ` cyclic block column reductions using block column operations, we can bring R(z), for
any finite z, in the form diag (S1, . . . , SN ). However, this matrix has full row rank, because each
Sk has full row rank. 2

Remark 1. For each pair (Ar
k, Br

k) we can define the time-varying reachability index µk as the
largest value of i such that ν

(i)
k 6= 0. Let hk be the least integer such that ν

(hk)
k+1 = 0. Then, it is

easy to see that the trailing
∑`

i=hk
ν

(i)
k+1 ×

∑`
i=hk

ν
(i)
k block of Ar

k is in a block upper trapezoidal
form with all diagonal blocks having full row rank. It follows that the resulting matrices B̃k and
Ãk of the PKRD (6) have, in general, the forms

B̃k =
[

Br
k

0

]
=




Br
k,1

0
0


 , Ãk =

[
Ar

k ∗
0 Ar

k

]
=




Ar
k,11 Ar

k,12 ∗
0 Ar

k,22 ∗
0 0 Ar

k


 ,

where Ar
k,22 has full row rank. Note that in the single-input case, the leading block Ar

k,11 is in an
unreduced upper Hessenberg form, while the trailing block Ar

k,22 is full row rank upper trapezoidal.
2

Remark 2. It is possible to further reduce Ar
k by separating the zero and nonzero character-

istic multipliers in the product ΦAr (N, 0). This can be done once again by employing exclusively
orthogonal state-space transformations. The resulting periodic matrix after this separation has the
form

Ar
k =

[
A0

k ∗
0 Ac

k

]
,

where all characteristic values of the periodic matrix A0
k are zero, and the periodic matrix Ac

k ∈
IRnc×nc has constant dimension, is square and nonsingular. The eigenvalues of ΦAc represents
the uncontrollable characteristic multipliers of the periodic system (1). It follows that the periodic
system (1) is stabilizable if all uncontrollable characteristic multipliers belong to the open unit disk.
2

Remark 3. The PKRD Algorithm can be extended to periodic descriptor systems of the
form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) (13)

where the matrices Ak, Bk, and Ck are the same as in (1) and Ek ∈ IRnk+1×nk+1 is an N -periodic
invertible matrix. The similarity transformation used in this case has the form

Ẽk = Tk+1EkSk+1, Ãk = Tk+1AkSk, B̃k = Tk+1Bk, C̃k = CkSk

with Sk and Tk N -periodic nonsingular matrices.
After a preliminary reduction of Ek to an upper triangular form using suitable orthogonal Sk

and Tk, we perform, as in the PKRD Algorithm, the row compression on Bk using an orthogonal
transformation Uk+1. The only difference in the descriptor case is that the upper triangular form of
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Ek is preserved while reducing Bk. This can be done by computing an appropriate Vk+1 such that
UT

k+1EkVk+1 remains upper triangular. In fact, the compression of Bk and maintaining the upper
triangular form of Ek can be done simultaneously, in a similar way as done in [11] for standard
descriptor systems. The combined reduction and restoring of triangular form can efficiently be
done by employing orthogonal Givens transformations. 2

4 Numerical aspects

To estimate the floating-point operations (flops) necessary to compute the periodic reachability
Kalman decomposition, we assume for simplicity constant dimensions: n = nk, m = mk, p =
pk. The worst-case operations count result if the periodic system is reachable. In this case, if
we use Householder transformations based QR decompositions with column pivoting for the row
compressions in the PKRD Algorithm, then we can easily give an estimate of the total number
of flops necessary to compute the PKRD as

Nflops = N

(
5
3
n3 + (p + m)n2

)

To accumulate the transformations the algorithm needs additionally Nn3 flops. Thus, the com-
putational complexity of this algorithm is O(Nn3). The same computational complexity can be
achieved also in the descriptor case.

All computations can be performed in place, thus the required memory of (n+m+p)nN storage
locations is minimal if the transformations are not accumulated. The information on the performed
transformations can be compactly stored in the generated zero submatrices during the reduction,
and in additional N n-vectors. To form the transformation matrices explicitly, Nn2 additional
storage locations are necessary. These figures are valid also for time-varying dimensions, where n,
m and p are now the maximum values of state, input and output vector dimensions, respectively.

The backward stability of the PKRD Algorithm can be easily proved. The basic idea is that
each transformation Uk can be computed and applied in a numerically stable way. A sequence
of such transformations can be also performed in a numerically stable way, since each orthogonal
matrix has unity norm. For details see [17]. It follows that the results computed with the PKRD
Algorithm are exact for slightly perturbed initial matrices Ak, Bk, Ck, which satisfy

‖X −X‖ ≤ εX‖X‖, X = Ak, Bk, Ck

where, in each case, εX is a modest multiple of the relative machine precision εM .

5 Applications

5.1 Computation of PKOD

To compute the PKOD, an PKOD Algorithm analogous PKRD Algorithm can be devised.
Instead row compressions, this algorithm performs column compressions on the matrices C

(i)
k in

the successively generated pairs (A(i)
k , C

(i)
k ). The resulting algorithm can be seen as the application

of the PKRD Algorithm to a certain dual periodic system. The following procedure formalizes
the main steps of this approach:
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PKOD Algorithm: Periodic Kalman Observability Decomposition
Given Ak ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk and Ck ∈ IRpk×nk for k = 1, . . . , N , this algo-

rithm computes the orthogonal matrices Qk, k = 1, . . . , N , such that the transformed system
(QT

k+1AkQk, QT
k+1Bk, CkQk) is in the periodic Kalman observability form (7).

1. For k = 1, . . . , N , form the dual system matrices

Âk = AT
N−k+1, B̂k = CT

N−k+1, Ĉk = BT
N−k+1

2. Apply the PKRD Algorithm to the periodic triple (Âk, B̂k, Ĉk) to determine the orthogonal
N-periodic transformation matrices Q̂k such that

Âk ← QT
k+1ÂkQk, B̂k ← QT

k+1B̂k, Ĉk ← ĈkQk

with the resulting periodic pair (Âk, B̂k) in the periodic reachability form

Âk =

[
Âr

k ∗
0 Âr

k

]
, B̂k =

[
B̂r

k

0

]

3. For k = 1, . . . , N , form the system matrices of the PKOD

Ak ← ÂT
N−k+1, Bk ← ĈT

N−k+1, Ck ← B̂T
N−k+1

4. Set QN = Q̂N , and Qk = Q̂N−k, for k = 1, . . . , N − 1.

Using the computed results of this algorithm, the reconstructibility and detectability properties can
be analyzed in a similar way as indicated in Remark 2 for the dual properties of controllability
and stabilizability, respectively.

5.2 Computation of minimal realizations

The numerical computation of minimal realizations of periodic systems has been addressed in [12],
where a balancing-related approach was proposed. This algorithm relies on the computation of
the extended periodic Schur form of the periodic matrix Ak, and involves the solution of two non-
negative definite periodic Lyapunov equations. This algorithm is numerically reliable, since each
computational step relies on backward stable algorithms. The main advantage of this algorithm is
that the N rank decisions necessary to obtain the state-vector dimensions of a minimal realization
are performed only once at the end of the algorithm. Thus, this approach is very reliable in
determining the order of the minimal realizations.

In some applications, as for example when computing the TFM of a periodic system [13], the
algorithmic efficiency aspects play an important role. Thus, instead employing the above algorithm,
we can alternatively use a significantly more efficient procedure to compute minimal realizations by
eliminating successively the unreachable and unobservable parts. A two step procedure is formalized
below:

Minimal realization procedure

1. Apply the PKRD Algorithm to the periodic system (Ak, Bk, Ck) to compute the reachable
periodic realization (Ar

k, Br
k, Cr

k).

2. Apply the PKOD Algorithm to the reachable system (Ar
k, Br

k, Cr
k) to compute the minimal

realization as the observable part (Aro
k , Bro

k , Cro
k ).

This algorithm is backward stable and has a computational complexity of O(Nn3).
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6 Numerical examples

Example 1. To show in detail the result obtained by the proposed algorithm, consider the 3-periodic
single-input single-output system with the constant dimension system matrices

A1 =
[

0 1
0 0

]
, B1 =

[
3
0

]
, C1 =

[
0 1

]

A2 =
[

1 2
0 0

]
, B2 =

[
0
1

]
, C2 =

[
2 4

]

A3 =
[

0 0
1 4

]
, B3 =

[
0
1

]
, C3 =

[
3 1

]

By applying the PKRD Algorithm we obtain

Q1 =
[

1 0
0 1

]
, Q2 =

[
0 1
1 0

]
, Q3 =

[
0 1
1 0

]
,

and the transformed system matrices in the periodic Kalman reachability form
[

Ar
1 ∗

0 ∗
]

=
[

1 0
0 0

]
,

[
Br

1

0

]
=

[
3
0

]
,

[
Cr

1 ∗ ]
=

[
1 0

]

[
Ar

2 ∗ ]
=

[
0 0
1 2

]
, Br

2 =
[

1
0

]
,

[
Cr

2 ∗ ]
=

[
2 4

]

[
Ar

3

0

]
=

[
4 1
0 0

]
,

[
Br

3

0

]
=

[
1
0

]
, Cr

3 =
[

1 3
]

Thus, the reachable part has time-varying state dimensions, r1 = 1, r2 = 1, r3 = 2. Note that this
part is also observable, thus (Ar,Br, Cr) represents a minimal realization of the original system.

Example 2. This example illustrates that, in general, randomly generated periodic systems with
random state and input dimensions are generically nonreachable. Consider a randomly generated
system with period N = 5 and state vector and input vector dimensions n1 = 19, n2 = 15, n3 = 0,
n4 = 6, n5 = 10; and m1 = 1, m2 = 3, m3 = 1, m4 = 4, m5 = 1, respectively. Note that the
state vector has zero dimension at time moments 3 + 5k. It follows that this system has only zero
characteristic multipliers and thus is completely controllable.

By applying the PKRD Algorithm we obtain that the reachable subsystem has state dimen-
sions r1 = 6, r2 = 7, r3 = 0, r4 = 1, r5 = 5. Thus excepting the time moments 3 + 5k, the system
is unreachable at all other time instants. It is interesting to look at the computational details
when performing this algorithm. The algorithm has finished after ` = 4 steps and determined the
following dimensions at successive steps:

Step ν
(j)
1 ν

(j)
2 ν

(j)
3 ν

(j)
4 ν

(j)
5

j = 0 1 3 1 4 1
j = 1 1 1 0 1 4
j = 2 4 1 0 0 1
j = 3 1 4 0 0 0
j = 4 0 1 0 0 0

Thus, the reachability indices of the reachable part are µ1 = 3, µ2 = 4, µ3 = 0, µ4 = 1, µ5 = 2.
Example 3. To illustrate the numerical performance of the proposed algorithm, we generated

random systems with constant dimensions nk = 50, 100, 200; mk = 5, pk = 2, with periods N = 5,
10, 20, 50, 100. In Table 1, we give the execution times of the PKRD Algorithm on a Pentium
III 933MHz machine under Windows 2000. The results have been obtained with Matlab 6.5 via
a mex -function interface to a Fortran 95 implementation of this algorithm.
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nk \ N 5 10 20 50 100
50 0.05 0.05 0.08 0.20 0.41
100 0.11 0.23 0.45 1.12 2.26
200 1.25 2.47 4.98 12.37 25.95

Table 1: Execution times (in seconds) for the PKRD Algorithm.

It is easy to observe that for each fixed dimension nk, the execution times vary almost linearly
with the period N and this confirms the expected low computational complexity of the proposed
algorithm with respect to the period. Also the cubic dependence on the dimensions is visible,
especially by comparing the times for nk = 100 and nk = 200.

To evaluate the effects of the roundoff errors, we computed the backward errors by evaluating

err = max
{ ‖X −X‖/‖X‖ | X = Ak, Bk, Ck

}

over all generated examples. Specifically, we computed Ak = Qk+1ÃkQT
k , Bk = Qk+1B̃k, and

Ck = C̃kQT
k , where Qk and (Ãk, B̃k, C̃k) are the transformation and system matrices computed

by the PKRD Algorithm, respectively. Note that Ak, Bk, Ck contains the cumulated errors
due to roundoff reflected back into the original system matrices. To assess numerical stability, the
backward error err must be of the order of the machine precision εM ≈ 2.22 · 10−16 (for IEEE
double precision floating point arithmetic). The resulting value err = 1.2 ·10−15 is therefore a clear
indication for the backward stability of the proposed method.

7 Conclusion

In this paper we proposed a backward stable algorithm to compute the periodic Kalman reachability
decomposition of a periodic system. This algorithm can be applied to compute the periodic Kalman
observability decomposition as well, and thus can be used to compute minimal realizations of
periodic systems. The algorithm works for system matrices with time-varying dimensions and can
be easily extended to descriptor periodic systems. By fully exploiting the problem structure, an
acceptable computational complexity can be achieved, which is linear in the period N and cubic
in the maximum dimension of the state vector. Thus, the new algorithm fulfils all requirements
which we formulated in [15] for a satisfactory algorithm for periodic systems.
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