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Abstract

The European Space Agency (ESA) and its industrial partners have come up with the
concept of On-board Software Reference Architecture (OSRA); with an aim of favoring
the adoption of a software reference architecture across their software supply chain.
The center of that strategy involves a component model called the Space Component
Model (SCM) and the software development process that builds on it. The SCM aims
to model application software as a set of independent software components which
interact with each other via clearly defined interfaces with certain guarantees. The
SCM is present as an Eclipse Modeling Framework (EMF) based Ecore meta model
and it comes with a graphical editor called the OSRA SCM Model editor. Although the
SCM provides information about how components interact with each other through the
provided or required services, it does not provide an implementation of those services.
The work presented here in this Master thesis aims at implementing a back-end code
generator for OSRA, supporting the general vision that in the future, an application
developer would create and configure components for his/her on-board applications
and capture the desired component interactions in an SCM model instance. He/she
can then generate code skeletons for the model, i.e., all the concurrency behavior, data
exchange, type conversion, etc. are automatically handled by the code generator. As a
result, the developer can only concentrate on implementing the functional code of each
on-board software component, which in-turn results in shorter development cycles and
high cost-efficiency. The code generator uses the Tasking Framework as a well-formed
platform and bases the generated code on it. The Tasking Framework is a portable
framework for data flow and event driven cooperative multitasking which is written
in a safe subset of C++. It is developed by the group ’Onboard Software Systems’ of
the German Aerospace Center (DLR) department of Software for Space Systems and
Interactive Visualization.
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Chapter 1

Introduction

1.1. Motivation

European space industry has entered an economic era in which the funding availed
to future space missions are not expected to grow significantly. At the same time,
future missions are expected to achieve more and more challenging scientific goals with
upcoming seasons of capped budgets for earth observation, scientific studies and space
exploration [33]. This leads to a situation where the activities like mission analysis and
system engineering will play a bigger role in the overall economy of the project, with
a proportional increase of the time and cost invested in them [33]. The implication
of this is that the realization activities, and software development among them are
pushed forward in the project schedule and compressed [1]. Also, the complexity of the
software product is foreseen to increase significantly to keep pace with rising mission
needs, while the cost of the software development is expected to fit in the same or
perhaps even decreased budget envelope. This situation is therefore calling for a rise
in the cost effectiveness of the software development, thus ultimately increasing the
"value" of the software product delivered with a given budget.

On-board software for satellites can be classified as high-integrity real-time software and
the realization of the functional contents which add "value" to the product, is subject to
stringent requirements at both process and product level in dimensions such as: time
and space predictability, safety, dependability, security [33]. Also the software product
is subject to extensive verification and validation steps to ascertain its quality [1]. In
order to achieve all of this at reduced effort and a constant overall budget and at an
acceptable level of quality, the concept of reusable software architecture plays a crucial
role. In this context, a software architecture expresses an architectural framework that
hosts the functional contents, architectural assumptions and methodological principles
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1. Introduction

that majorly contribute to the attainment of the desired quality of the software product
[33].

Parallely in the automotive domain, innovative vehicle functions are leading to a contin-
ual increase in the complexity of the vehicle architecture. At the same time, requirements
are also sometimes contradictory, for example, supporting driver assistance systems in
critical driving manoeuvers while also improving fuel economy and also conforming to
the environmental standards [16]. Additional challenges include deeper integration of
the infotainment and communication with the immediate vehicle environment and with
online services. In order to continue to meet these requirements in the future, a new
technological approach is required for the ECU software architecture [16].

More insights into the concepts of software architecture and a software reference
architecture are given in the subsequent chapters.

The initiatives in coming up with a software architecture in both space and automotive
industries adopt the approaches based on the Component-Based Software Engineering
(CBSE) and Model-Driven Engineering (MDE), which are in recent times gaining huge
industrial acceptance in the domain of embedded real-time systems. This is not surprise
at all since these two development paradigms promise important advantages such as
better and more disciplined software design and increased reuse potential for the former;
greater abstraction level and powerful automation capabilities for the latter [6][33].
Many domain specific initiatives have shown that the the higher level of abstraction
in the design process facilitated by the MDE allows addressing the non-functional
concerns earlier in the development, thereby enabling proactive analysis, maturation
and consolidation of the software design [32]. Moreover, the automation capabilities of
the MDE infrastructure may ease the generation of lower-level design artifacts and ease
the generation of source code products. Taking first steps towards such an automation is
the main motivation for this Master thesis.

1.2. Thesis Structure

This Master thesis is organized into following chapters:

Chapter 2 – The On-board Software Reference Architecture (OSRA): This chapter
gives an overall idea of a software architecture and a software reference archi-
tecture. It also explains the need for On-board Software Reference Architecture
(OSRA), user needs and high level requirements which led to the development of
OSRA and the overall software architectural concept defined in the development
of OSRA.

2



1.2. Thesis Structure

Chapter 3 – Overall component-based software development process: This chap-
ter explains in detail; the design and implementation steps for the CBSE approach
which are enforced as a result of adoption of OSRA and its principles.

Chapter 4 – Tasking Framework: This chapter explains the Tasking framework which
is a portable framework for data flow and event driven cooperative multitasking.

Chapter 5 – A programming model for OSRA: This chapter aims at developing a pro-
gramming model for this Master thesis.

Chapter 6 – Infrastructural code generation: This chapter deals with the mapping
of On-board software (OBSW) model entities to the infrastructural code entities
which are generated by a prototypical code generator, which is developed as a part
of this Master thesis.

Chapter 7 – Evaluation of the code generator: This chapter subjects the prototypical
code generator developed in this Master thesis to a tool acquisition evaluation
using certain well defined evaluation methods.

Chapter 8 – Conclusions: This chapter contains discussions about the conclusions de-
rived from the Master thesis and charts the future work plan and enhancements to
this Master thesis.

Appendix A – A file structure for the generated code: This section gives an idea of
how the generated code for OBSW models can be organized into different files
and folders.

Appendix B – Additional OBSW examples: This section lists all the additional exam-
ple OBSW models for which the code generator developed as a part of this Master
thesis is tested.

3





Chapter 2

The On-board Software Reference

Architecture (OSRA)

2.1. Introduction

2.1.1. Background

Space industry has recognized for the past decade the need to raise the level of stan-
dardization in the avionics system in order to increase the efficiency and reduce cost
and schedule in the development [1]. The implementation of such a vision is expected
to provide benefits for all the stake-holders in the space community [1]:

Customer Agencies Significant reduction in the project development cost and schedule
and the risk involved in software development.

System Integrators Increased competition among stake-holders to deliver at lower
price and maintain shorter time-to-market as a result of multi-supplier option.

Supplier Industry Benefits from diversified customer bases and the supplied building
blocks would be compatible with software architectures from the software primes
such as Thales Alenia Space and Astrium Satellites (EADS Astrium).

Similar initiatives have already been taken across various industries and eg., Automotive
Open System Architecture (AUTOSAR) for the automotive industry is worthy mentioning
[18]. Space can benefit from these examples, by studies related to how these or similar
initiatives were successfully conducted and how they faired. Although the business
model is different in the automotive and the space sectors, AUTOSAR demonstrates that
the need for standardization is the key irrespective of sectors and is actually driven by
the need of the industry to become more competitive [43].
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2. The On-board Software Reference Architecture (OSRA)

Space primes and on-board software companies have made significant progress and have
implemented and/or are implementing principle of reuse on the basis of their internal
software reference architectures and building blocks. However, for this standardization
to provide maximum benefits, it has to be tackled at the European level rather than at a
company level [1].

European Space Agency (ESA) through its two parallel activities, namely Component
Oriented Development Techniques (CORDET) and Framework for Domain Engineering
(DOMENG) [42], which aimed at increasing the software reuse in on-board software
have confirmed that interface standardization allows to efficiently compose the software
on the basis of existing and mature building blocks.

To refer to all the ongoing initiatives and to provide a platform for technical discussions
related to the vision of avionics development through maximizing reuse and standardiza-
tion, a Space Avionics Open Interface Architecture (SAVOIR) Advisory Group (SAVOIR
Advisory Group) was created. SAVOIR Advisory Group decided to spawn a specific
subgroup for on-board software reference architectures called SAVOIR Fair Architecture
and Interface Reference Elaboration (SAVOIR FAIRE) working group. OSRA is the result
of the R&D activities of this group [1].

The OSRA is designed to be a single, common and agreed framework for the definition of
the OBSW of the future European Space Agency (ESA) missions [1]. It is based on solid
scientific foundations and accompanied by development methodology and architectural
practices that fit the domain. A single software system would thus be an "instantiation"
of the reference architecture to specific mission needs [33][1].

2.2. Need for software reference architecture

2.2.1. Motivation

According to the ISO/IEC standard ISO 42010 [20], the software architecture is defined
as:

"The fundamental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and evolution"

A software architecture is the key to create "good quality" software because it promotes
architectural best practices and contributes to the quality of the software. A bad
architecture hinders the fulfillment of functional, behavioral, non-functional and life-
cycle requirements [33].
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2.2. Need for software reference architecture

According to the "Rational Unified Process (RUP)" [22], the software reference architec-
ture can be defined as:

"A predefined architectural pattern, or set of patterns, possibly partially or completely
instantiated, designed, and proven for use in particular business and technical contexts,
together with supporting artifacts to enable their use. Often, these artifacts are harvested
from previous projects"

A software reference architecture prescribes the form of concrete software architectures
for a set of systems for which it is developed. So, a reference architecture is a form of
"generic" software architecture which prescribes the founding principles, the underlying
methodology and the architectural practices that are recognized by the domain stake-
holders as the best solution to the construction of a certain class of software systems
[33][38].

Elevating a software architecture to a software reference architecture permits to gather
and re-use lessons learned and architectural best practices, give new projects a consoli-
dated running start and promote a product line approach [1].

A generic software reference architecture is made up of two main parts [1]:

Software architectural concepts These address the pure software architectural related
issues.

Architectural building blocks and interfaces These are related to functional aspects
and the corresponding interface definitions which express functions derived from
the analysis of the functional chains of the core on-board software domain.

Figure 2.1.: Parts of a software reference architecture

Source: [1]

As mentioned in the previous section, in order to increase the efficiency and cost-
effectiveness in the development process of on-board avionics and to incorporate more
number of functionalities in the on-board software, the overall objective of space industry
would be to standardize the avionics systems and therefore the on-board software.

A building block approach is one of the ways to tackle this problem. In this approach,
the on-board software is implemented from a set of pre-developed and compatible
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building blocks, plus specific adaptations and "missionisation" according to specific
mission requirements [1]. The target missions are the core ESA missions, i.e. high
reliability and availability spacecraft driven systems (eg. operational missions, science
missions).

The "right" building blocks need to be produced and supplied by the suppliers to any
system integrator and to achieve this, reference architectures need to be defined.

A software building block, generally [1]:

• Has a clear, well defined, specified, documented function and open external
interfaces for the purpose of interaction.

• Meets defined performance, operation and other requirements.

• Is self-contained so that they can be used at higher-integration levels eg. board,
equipment, subsystem.

• Has a quality level that can be assessed.

• Is applicable in well defined physical and hardware environment.

• Is worth developing as they are going to be used in bulk of ESA missions.

• Is designed for reuse in different projects, by different users under different
environments.

• Can be made available off-the-shelf, ready for deployment under different condi-
tions.

Separation of the application aspects from the general-purpose data processing aspects
is the key to generic/reusable software architectures [33]. The lower layers of the archi-
tectures usually handle the implementation of communication, real time capabilities etc.
and the higher level layers usually deal with the application aspects. However there have
to be ways to annotate the application building blocks (ABB) with sufficient information
regarding requirements related to communication, real-time, dependability etc., so that
the platform building blocks (PBB) can provide a suitable complete implementation.
Development of interface specifications with reference architectures as a basis, allows
the implementation of the famous AUTOSAR concept: "Cooperate on standards, compete
on implementation"[16].

The OBSW life-cycle needs to be consistent with the system life-cycle, which features
the definition of functional increments in system development [1]. Hence, OBSW must
in particular:

• Allow for faster software development.

8



2.2. Need for software reference architecture

• Be compatible to a late definition or changes of some of its requirements.

• Cope with various system integration strategies.

2.2.2. User needs

The COrDeT study, with the slogan "Faster, Later, Software", represented a summary of
the above programmatic stakes for the on-board-software life-cycle [42][1]. These stakes
are included and defined as the user needs [1][33] for the development of OSRA:

Shorter software development time Need for faster software development in the con-
text of a shorter schedule. The Figure 2.2 depicts the reduction in the schedule for
software development in the future projects.

Figure 2.2.: Reduction in the schedule for software development

Source: [1]

Reduce recurring costs Identification and reduction of recurring costs by providing
the same set of functions eg., device drivers, real-time operating systems, commu-
nication services, etc.

Quality of the product Need for high quality software (timing predictability, depend-
ability, etc.) and the quality must be at least the same as one of OBSW developed
with current approaches.

Increase cost-efficiency Increase in the "value" of the software product that is devel-
oped for a given amount of budget.

Reduce Verification and Validation effort The new development approaches shall fos-
ter the reduction of effort for Verification and Validation (V & V), which is one of
the main contributor to the cost of software development.
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Mitigate the impact of late requirement definition or change

Support for various system integration strategies It should be possible to do prelim-
inary software releases which allow early system integration efforts.

Simplification and harmonization of FDIR A simplification and hopefully, harmoniza-
tion of the Fault Detection Isolation and Recovery (FDIR) approach is advocated.

Optimize flight maintenance There should be provision for changing the OBSW dur-
ing flight maintenance and coordination of strategies to perform it.

Industrial policy support Enable multi-team software development, so that sub-
contracting to the non-primes is possible, while still being in-charge of the in-
tegration.

Role of software suppliers Increase competence of supplier and foster competition
among them.

Dissemination activities System engineers should be exposed to the core principles of
the process.

Future needs Future needs such as integration of functions of different criticality and
security levels, use of Time and Space Partitioning (TSP), support to multi-core
processors, need to be subjected to evaluation and their impact on software
reference architecture need to be monitored.

2.2.3. High level requirements

The user needs are translated into a set of high-level requirements for OSRA [1][33].

Software reuse The architecture shall be designed in such a way that the reuse of
the functional aspects should be independent of the reuse of the non-functional
aspects, reuse of the unit, integration and validation tests are made possible.

Separation of concerns Separation of concerns is one of the cornerstone principles
of OSRA and it deals with separating different aspects of the software design, in
particular the functional and non-functional concerns. Separation of concerns
helps to reuse functional concerns independently from non-functional concerns,
which increases the software reuse.

Reuse of V&V tests The chosen architectural approach should also promote the reuse
of Verification and Validation tests that were performed on the software and not
just the software itself. The aim is to maximize the reuse of the tests written for
the functional part of the component software.
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HW/SW Independence Software should be developed independent from the hardware
features. It is necessary to separate parts of the software that interact directly with
the hardware, into separate modules and make them accessible through defined
interfaces. In this way, as long as the interface does not change, the software is
isolated from the changes in the hardware-dependent layers.

Component based approach The whole software should be designed as a composition
of components that are reusable in nature. The architecture shall respect preser-
vation of properties of individual building blocks, once they are integrated into
the architecture and it should be possible to calculate the system’s property as a
function of components’ individual properties. The former is called composability
and the latter is called compositionality [32]. Section 2.3.2.1 in Chapter 3 explains
this approach in more detail.

Software observability The software architecture should provide means to observe the
software specific parts and extract current and past status of the software using
the services specified by its operational scenarios.

Software analysability The design process and methodology used for the reference ar-
chitecture shall support the verification of functional and non-functional properties
at design time.

Property preservation The non-functional properties should be considered as con-
straints on the system as they specify the "frame" in which the system is expected
to behave. These properties have to be preserved or enforced so that these proper-
ties are not only used for the analysis of the software model, but also find their
way through to the final system at run-time. Adequate mechanisms should be
provided to handle the enforcement of the properties and also mechanisms to
handle reactions to violation of these properties.

Integration of software building blocks The architecture should allow the combina-
tion of coherent building blocks.

Support for variability factors The architecture shall include design features allowing
isolating the variability foreseen in the domain of reuse.

Late incorporation of modification in the software The architecture should be im-
mune to late modification of the software in the software life-cycle. System
integration almost always finds some system problems and it is the responsibility
of the software to contain these problems and implement new requirements. The
architecture to which the software is conformal to, should be able to handle these
late modifications in the software.

Provision of mechanisms for FDIR The requirements for FDIR, are consolidated often
late in the life cycle and the software architecture must accommodate for it.
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Software update at run-time The reference architecture should allow update to single
software components as well as their bindings without having to reboot the
entire on-board computer as it is a risk for the system and reduces the mission
availability/up-time.

2.3. The Software Architectural Concept

2.3.1. Fitting Model-Driven Engineering

MDE is a novel trend for software development in the space domain, but has been
successfully applied to enterprise computing [32]. The validation-intensive real-time
high-integrity systems such as on-board software systems make the adoption of the
MDE considerably more arduous. Positive experiences on the application of MDE to
the design of these kind of systems do exist and it can be found in the ’Composition
with Guarantees for High-integrity Embedded Software Components Assembly (CHESS):
space case study’ [35] and the ’ESA: reference Earth Observation case study’ [35].

In MDE, the principal design artifact is a model, which is an abstract representation of
the system under development, which encompasses systems and software architecture.
Each model conforms with a metamodel, which describes the syntax of entities that
populate the models, as well as their relationships and the constraints in place between
them. The metamodel constrains the design space of the MDE infrastructure [15].

COrDeT (Component Oriented Development Techniques) study aimed at investigating
various techniques in fields such as software product line engineering, model driven
engineering and component orientation [42]. Based on this study, the concept of overall
software reference architecture, in the development of OSRA, is considered to be made
up of [38][1]:

Component Model A component model is the basis for designing the software as a
composition of individually verifiable and reusable software units [31].

Computational Model A computational model is used to relate to the design entities
of the component model, their non-functional needs for concurrency, time and
space, to a framework consisting of analysis techniques, in general, to a set
of schedulability analysis equations, which help to judge formally, whether the
description of the architecture is statically analyzable [3].

A Programming Model A programming model is used to ensure that the implementa-
tion of the design entities obey the semantics and the assumptions of the analysis
and the attributes used as input to it [37].
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A conforming Execution Platform An execution platform helps to preserve at run-
time, the properties asserted by the static analysis, and is able to react to possible
violations of them.

These become the key ingredients for the very foundation of the MDE design methodol-
ogy focused on the principle of correctness by construction and property preservation,
which are high level requirements respectively. Figure 2.3 gives a pictorial representation
of it.

Figure 2.3.: The four constituents of the software reference architecture

Source: [33]

2.3.2. Component Model

CBSE is a software methodology centered on the systematic re-use of software by
realizing the software as an assembly of units of composition called components [6].
The adoption of Component Based Software Engineering (CBSE) in the context of
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high-integrity real-time systems in general and in space domain in particular is not
so popular as in the other main-stream domains like enterprise computing because of
strong verification and validation requirements imposed in the space domain and the
presence of non-functional dimensions [1].

The principles of Component Based Software Engineering (CBSE) when combined with
the principles below can be used to build OBSW as an assembly of components [1]:

• Principle of separation of concerns, by allocation of concerns to three distinct
software entities: the component (which is a design entity), the container and
the connector (which are entities used in implementation only and which do not
appear in the design space).

• Possibility of verification of properties related to composability and compositional-
ity [32].

The execution platform defined in the software architecture then provides the services
to the components, container and the connectors. Finally, the entire software is de-
ployed on the physical architecture (Computational units, equipment, and the network
interconnections between them).

2.3.2.1. Founding principles of choice

This section describes the founding principles of choice of the component model:

Correctness by construction E.W. Dijkstra in his ACM Turing lecture in 1972 suggested
that the program construction should be done after a valid proof of correctness
of construction has been developed [35]. Two decades later, a software develop-
ment approach called Correctness by Construction (C-by-C) was proposed which
advocated the detection and removal of errors at early stages, which led to safer,
cheaper and more reliable software [35][33]. The Correctness by Construction
practice follows:

• To give a solid reasoning on the correctness of the document or code, it is
necessary to use formal and precise tools and notations for their development
and verification.

• Defining things only once so as to avoid contradictions and repetitions.

• Designing the software that is easy to verify e.g. by using safer language
subsets or using appropriate coding styles and software design patterns.
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In OSRA and the component model developed along with it, the Correctness by
Construction principle is changed to be applicable to a CBSE approach based on
Model-driven Engineering (MDE) [35] wherein:

• The components can be designed.

• The products designed by the design environment can be verified and ana-
lyzed by the design environment.

• The lower level artifacts can be automatically generated and the software
production can be automated to the maximum extent.

Separation of concerns Separation of concerns was first advocated by Dijkstra [35]
and it helps to separate the aspects of software design and implementation.
The OSRA and its associated component model promotes separation of con-
cerns[35][33]:

• The components are restricted to hold the functional code only. The non-
functional requirements which has effects on the run-time behavior e.g. task-
ing, synchronization and timing are dealt by the component infrastructure
which is external to the component and which realizes the functional code.
The component infrastructure mainly consists of containers, connectors and
their run-time support.

• A specific annotation language is specified which is used to define the non-
functional requirements and these are annotated on the components realizing
the functional code.

By this, model transformations that automatically produce the containers and
connectors that serve the non-functional requirements, enable the execution
of the schedulability analysis directly on the model of components. This
makes the implementation of the non-functional concerns fully compliant
with its specification [3].

• A code generator (whose development is the prime concern of this Master
thesis) operates in the back-end of the component model, builds all of the
component infrastructure that embeds the user components, their assemblies
and the component services that help satisfy the non-functional properties
[37].
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Inculcating the principle of separation of concerns in the development process has
two major benefits [35]:

• It increases the reuse potential of the components, which is an important high
level requirement described in the previous section [1]. The reuse potential
of the component is increased because the same component can now be used
under different non-functional requirements (as per the instantiations of the
component infrastructure).

• It helps in the generation of vast amount of complex and delicate infrastruc-
tural code which takes care of realizing the non-functional requirements at
run-time. This increases the readability, traceability and maintainability of
the infrastructural code.

Composition When composability and compositionality can be assured by static analy-
sis, guaranteed through implementation, actively preserved at run-time, the goal
of composition with guarantees as discussed by Vardanega can be achieved [35].
This is also one of the high level requirements defined in the section before.

Composability is guaranteed when the properties of individual components are
preserved on component composition, on deployment on target and on execu-
tion. The components, as mentioned before, implement only the functional code,
most part of which is sequential only and they do not have to worry about the
non-functional semantics. The components behave like black-boxes and showcase
to the external world only the provided and required interfaces. Other compo-
nents or infrastructural components are expected to communicate through these
defined interfaces only. Hence, when components are composed with each other
with matching required and provided interfaces, the functional composability is
guaranteed which is necessary but not sufficient.

The non-functional requirements/constraints are annotated on the components
(specifically the component interfaces) and they are realized by the container
which encapsulates the respective component [1][31]. The provided interface
determines the semantics of the invocation and adds to the functional capabilities
provided by the component. These semantics must match with the execution
semantics described by the computational model, to which the component model
is attached. An example for composable property is shown in Figure 2.4. In this
case, the number of threads and protected objects generated per component, which
entirely depends on the extra functional notations to the component interface
should be invariant across component composition for the composable property to
hold true.
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Figure 2.4.: Example for composability

Source: [33]

The computational model chosen should help extend composability to the non-
functional constraints e.g. concurrency and the ones related to real-time and make
it possible to get a compositional view of how execution occurs at the system level.
Compositionality is said to be achieved when the properties of the system as a
whole is a function of the properties of the constituting components. Finally, the
binding of the computational model to the component should allow the execution
semantics of the components with non-functional descriptors to be completely
understood. An example for compositionality in shown in Figure 2.5. In this case, it
should be possible to calculate the overall latency for the delivery of an output (i.e.,
the worst-case response time of the end-to-end chain of activities) from individual
latencies of different components for the property of compositionality to hold true.

Figure 2.5.: Example for compositionality

Source: [33]
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In OSRA, the first and second needs can be met by having correct representations
of the non-functional attributes in the component interfaces and the third need is
taken care of by the generation of proper code artifacts, which is the main concern
of this Master thesis.

2.3.2.2. Software entities

The following section describes more about components, containers and the connec-
tors.

Component Chaudron and Crnkovic describe that a Component model defines stan-
dards for properties that individual components must satisfy and the methods and
possibly ways to compose components [35].

A component provides a set of services and exposes them to the external world
as a "provided interface". The service which is needed from other components or
the environment in general are declared in a "required interface". A particular
component connects to other components in order to satisfy the needs of its
required interfaces. An event based communication system is also possible between
components and a component can register to an "event service" to get notified
about events emitted by other components.

Non functional attributes are added to the component interfaces as discussed
before in the previous section on separation of concerns.

The adoption of hierarchical decomposition of components can be an effective
way of defining components instead of defining a containment relationships. A
child component can be developed to any component which would delegate and
subsume the relationships between the interfaces of the child component and its
parent. But the drawback is that various non-functional dimensions applicable to
the space domain complicate the picture and hence is hierarchical decomposition
of components not allowed at the current stage of development [33].

Container The container is a software entity that wraps around the component, which
is directly responsible for realizing the non-functional properties. The relation
between the component and the container is a famous software design pattern
called the "inversion of control" [35][14]. All in all, the reusable code (the
container), controls the execution of the problem-specific code (the component).

The container exposes the same provided and required interfaces as that of the
component and is able to support the component’s execution with the desired,
relevant non functional concerns attached to the component interfaces [32]. The
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container also intercepts the calls made by the component to the other compo-
nents/services requested from the target platform and transparently forward them
to the container of the target component/target platform pseudo component (A
pseudo component is a kind of component which is used for interaction purposes
only). The former principle is called interface "promotion" and the latter is called
the interface "subsumption" [32]. The container and the component interact with
each other according to the inversion of control design pattern, but the binding
between components are still defined at software initialization time.

Connector The connector is a software entity responsible for the interaction between the
components (actually between the containers that wrap around them). Connectors
assist in implementing separation of concerns as the concerns of interaction is
separated from the functional concerns. Components are thus void of code related
to interactions with other components, however the the component model requires
that the user specifies the interaction style in the component interfaces.

The component can be specified independently of the components it eventually
binds to, the cardinality of the communication and the location of the other
components it connects to, thanks to the principle of separation of concerns.

No complex connectors are necessary in this Master thesis because, a simple
linux based PC is chosen as a target system for component deployment and
this greatly reduces the variety of connectors needed. Connectors necessary for
function/procedure calls (which are usually straight-forward) are sufficient in this
Master thesis. One of the major reasons, to go for a simple system is because this
Master thesis does not deal with the hardware design or hardware modeling of
the on-board software systems.

Figure 2.6 shows a connector mediating a connection between components A and B. The
figure also shows components A and B being enveloped by their containers respectively.
The containers would be responsible for the realization of the non-functional properties
of the respective components they envelop.

2.3.3. Computational model

Using a computational model is necessary as per the Space Software engineering stan-
dard (ECSS-E-ST-440C) standard [1]. A dynamic software architecture is described
according to an analyzable computational model which infers that the model develop-
ment is fully consistent with that which underpins the mathematical equations which
are used to predict the schedulability behavior of the system [3]. The computational
model is more concerned about entities that belong to the implementation model (eg.
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Figure 2.6.: Components, containers and a connector connecting them

Source: [34]

tasks, protected objects and semaphores). A more abstract level description of these
entities should be provided so that [1]:

• Pollution of the user-models with entities that are more primitive and are of interest
to the lower levels of abstraction, is avoided. This is in line with the principle of
separation of concerns, which is one of the high-level requirements.

• The abstract representations represent the entities and their semantics faithfully.

• Correct transformation of the information set by the designer in the higher-level
representation to entities recognized by the computational model is ensured. This
is in line with the principle of property preservation, which is also one of the high
level requirements.

2.3.4. Programming model and the execution platform

The execution platform is a part of the software architecture providing all the nec-
essary means for the implementation of a component and the computational model.
It comprises of the middleware, the Real-Time Operating System (RTOS)/Real-Time
Kernel (RTK), communication drivers and the Board Support Package (BSP) for a given
hardware platform. The services provided by the execution platform can be categorized
into four different types [1]:

Services for containers These services are meant to be used by the containers e.g.
Tasking primitives, synchronization primitives, primitives related to time and
timers.
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Services for connectors These services are intended to be used by the connectors and
it consists of actual communication means between components, ways to handle
physical distribution across processing units, libraries used for translating data
codes.

Services to components These services are supposed to be used by the components
which implement the functional constraints. Typical services include: provision of
on-board time for time-stamps, context management and data recovery. Access to
these services are intercepted by the container wrapped around the component
(refer Section 2.3.2.2).

Services to implement "abstract components" These services include Packet Utiliza-
tion Standard (PUS) monitoring, OBCPs, hardware representation etc.

It is important to note that different implementation of containers and connectors are
necessary for each execution platform of interest.

The programming model realizes a given computational model and together with a
conforming execution platform, it is possible to achieve the following goals [33]:

• Ensure that the implementation fully conforms with the semantics prescribed by
the computational model and those assumed by the analysis.

• Ensure that the contracts stipulated between the components are respected at
run-time. This is in-line with the principle of property preservation which is one of
the high level requirements.

The achievement of those two goals would then warrant that the system represented for
the analysis purposes is a faithful representation of its implementation and the results of
the analysis performed on the system model would be a valid prediction of the system at
run-time [33].

The programming model, which is the subject of this Master thesis, is realized by
adopting Tasking framework as a computational model whose concurrency semantics
would conform to the analysis model.
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Chapter 3

Overall component-based software

development process

3.1. Introduction

In this chapter the design and implementation steps for the component-based software
engineering (CBSE) approach are elaborated. The software design process involves
two main actors: the software architect who is responsible for the entire software and
provides support at system-level to the customer, and the software supplier who is
responsible for the development of part of the software [35]. The parts of the software
supplied by the software suppliers are then integrated in the final integration step.

Most of the activities described below come under the responsibility of the software
architect, but as soon as the component is defined, it can undergo a detailed design and
code implementation. This may indicate some shortcomings and flaws in the design of
the component, which might trigger a re-design, re-negotiation of the component defi-
nition. This often leads to an iterative/incremental development process [3]. Detailed
design and implementation of components are usually done by the software developers
or it may be subcontracted to third party software suppliers.

3.2. Design entities and design steps

There are two kind of entities which are defined in OSRA: Design-level entities which
are explicitly specified in the design space and require the skills of the user to use
them, real-time architecture entities which are not explicitly represented in the design
space, instead they are automatically generated by the code-generation engines. The
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automatic generation of containers and connectors are possible only upon the knowledge
of the computation model and execution platform that are going to be adopted [1][35].
As already mentioned in the previous chapter, this master thesis considers Tasking
Framework as the computational model and a normal linux based PC as the execution
platform.

The following entities belong to the design space: Data types, events, interfaces, compo-
nent types, component implementations, component instances, component bindings and
the entities required for the description of the hardware topology and platforms. The
following entities belong to the real-time architecture: containers and connectors.

The development process is clearly divided into different steps [35][33][1]:

Step 1: Definition of data types and events Data types are the basic entities in the
approach and they can be primitive types, enumerations, ranged or constrained
types, arrays or composite types (like structs in C or record types in Ada). An event
is used in the publish-subscribe communication paradigm and it is an asynchronous
message passing scheme.

Step 2: Definition of interfaces A set of operations with one or more already typed
parameters, each with a direction (in, in out, out) are grouped together to
form an interface. The interface can also hold a set of interface attributes of an
already defined data type. The interface attributes can have read-only or read-write
accesses. From the list of interface attributes, set of getter and setter operations
can be generated for the attribute access, in particular getter operations for
attributes with read only access and getter and setter operations for attributes
with read-write access.

Figure 3.1 depicts three data types and an event. Interfaces AOCS_IF and THR_IF

implement only operations while interface GYR_IF comprises one read-only at-
tribute.

Step 3: Definition of component types Component types form the basis of a reusable
software asset [35]. The software architect defines the component type to provide
the specification of the functions that the component of the respective type would
implement. The component types are independent of each other and they can
consist of:

• One or more provided interfaces, which list the services that the component
of the respective type would provide.

• One or more required interfaces, which list the functional services that the
component of the respective type would require in order to function correctly
according to the functional specifications.
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Figure 3.1.: Data types, events and interfaces

Source: [35]

• A set of component type attributes of already defined data types that are local
to the component and cannot be accessed from outside.

• Event emitter/receiver ports to raise or receive events.

In order to specify the provided and required interfaces, the component type
references the interfaces that were defined in Step 2. This helps in straight forward
matching of the required and provided interfaces.

Figure 3.2 depicts a component type AOCS. This component type provides interface
AOCS_IF and requires interfaces GYR_IF and THR_IF. It also raises events of type
GYR_FAILURE.

Figure 3.2.: Component type

Source: [35]
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Step 4: Definition of component implementations The software architect can create
and refine a component implementation from the component type. The component
implementation contains the functional code in the form of source code that
implements all the services that the component is supposed to provide. It acts
as a black box and only its external interfaces are only that matter. It is also a
subcontracting unit to the software supplier.

A component type can have more than one implementation and all of these
implementations contain only pure sequential code i.e. it is void of any tasking or
timing constructs. Implementations can be developed in multiple languages such
as Ada, C, C++ etc.

The component implementation should also provide constructs to store the at-
tributes exposed through its provided interfaces and its component type. Technical
budgets such as Worst-Case Execution Time (WCET) for a particular operation,
maximum memory foot-print for component implementation, maximum number of
calls to a certain operation on a required interface, can be placed on the entire com-
ponent or on the operations and the implementation of the component shall respect
this budget. Despite a sequential nature of the code, a component implementation
may set specific non-functional constraints to preserve the functional correctness of
its behavior. Component implementation is thus a particularly attractive unit to be
subcontracted to a third-party software supplier because the software architect can
define components, attach technical budgets to it and delegate the implementation
to he software suppliers. The software suppliers might add additional operations
to the component implementation as and when necessary for the implementation
[35].

Figure 3.3 depicts one of the many possible component implementations for the
component type AOCS.

Step 5: Definition of component instances A component instance is an instance of a
component implementation. It is a deployment unit which is subjected to allocation
on a processing unit and it is an entity on which the non-functional properties are
specified. Specifically, the non-functional properties are attached, as in Figure 3.4,
to the provided interface side of the component, as they are the expression of a
property or a provision of the component instance.

Step 6: Definition of component bindings Component bindings, as the name sug-
gests, are the connections between one required interface of a component and
the provided interface of another component. These bindings are set at design
time and is subjected to static type matching to ensure that correct required and
provided interfaces are connected to one another. This can be done by asserting
the compatibility of the two interfaces (by type system or by inspection of the
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Figure 3.3.: Component Implementation

Source: [35]

signature of their operations). If the binding is legal then whenever a call is made
to an operation in the required interface, the call is dispatched to the correct
operation in the bound provided interface. The signature of the calling operation
in the Required Interface (RI) and the called operation in the Provided Interface
(PI) are different and the connector, connecting these two interfaces, is in charge of
performing this step. A tool support (possibly a back-end code generator) should
initiate the configuration of the connector to perform this kind of binding.

It is also possible in this step to define bindings between an event emitter port
of one component and an event receiver port of another component as shown in
Figure 3.4.

Step 7: Specification of non-functional attributes After component instances and
component bindings have been defined, the software architect can add non-
functional attributes to the services of the provided interfaces.

In this step, the software architect specifies the timing and the synchronization
attributes [35]. At first, the concurrency kind of the operation is established, and
they can be synchronous or asynchronous operations. In case of a synchronous

operation, it is executed in the flow of control of the caller and in case of an
asynchronous operation, the operation is executed by a dedicated flow of control
on the side of the callee.

A synchronous operation is said to be protected if it needs to be protected from
data races in case of concurrent calls. The operation is said to be unprotected if it
is free from such risks. In case of a asynchronous operation type, the architect can
choose one of the following release patterns for the operation:
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Periodic operation The execution platform executes the operation at fixed peri-
ods with a dedicated flow of control.

Sporadic operation Two subsequent execution requests are separated by a mini-
mum timespan called the Minimum Inter-Arrival Time (MIAT). The execution
platform and the infrastructural code should guarantee this MIAT separation
between two subsequent calls to the operation and the component imple-
menter does not have to worry about it.

Bursty operation Only particular number of activations of an operation is allowed
in a bounded interval of time. Again, as in the case for sporadic operation,
the execution platform and the infrastructure code guarantees this and the
component implementer does not have to worry about it.

For all the operations which have concurrency kind set as asynchronous, the
software architect must provide the worst case execution time (WCET) of the
operation. A preliminary value of WCET is initially provided based on previous
use of operations in other projects (if any) and they can be refined with bounds at
later stages after performing a timing analysis for a given target platform.

Figure 3.4 depicts the component bindings between the required and provided
interfaces of the AOCS and Mode_Manager component instances. It also depicts
the non-functional properties which are specified on the services provided by the
provided interfaces.

Step 8: Definition of physical architecture The hardware topology provides a descrip-
tion of the system hardware limited to the aspects related to communication,
analysis and code generation. It also provides a model-level description of the
relevant hardware of the system. In the hardware topology, following elements
are described:

• Processing units that have a general-purpose processing capability.

• Avionics Equipment/Instruments/Remote terminals.

• The interconnection between the elements mentioned above.

• A representation of the ground segment/other satellites (eg. Formation flying)
to state the connection between the satellite and ground segment or other
space segments.

For the specification of these elements, following attributes are used:

Processor frequency This is used for processors to re-scale WCET values ex-
pressed in processor cycles in Step 6.
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Figure 3.4.: Component instance, component bindings and decoration with non-
functional attributes

Source: [35]

Bandwidth This is used for buses and point-to-point links and it indicates maxi-
mum blocking time due to non-preemptability of the lower priority message
transmission (for whatever reason), minimum and maximum size of packets,
minimum and maximum propagation delay, maximum time that the bus
arbiter/driver needs to prepare and send a message on the physical channel
and maximum time for the message to reach the receiver.

Step 9: Component instances and component bindings deployment In this step,
the component instances are allocated on the processing units defined in the
hardware topology in Step 8. In majority of the cases, it is straight-forward to
allocate the bindings between the components because they are deployed on the
same processing units [35]. In other cases, they need to be specifically allocated.

Step 10: Model-based analysis The system model developed within the software ref-
erence architecture is subjected to schedulability analysis to determine whether
the timing requirements set in the interfaces can be met.

From the user model which is a Platform Independent Model (PIM), a Schedulabil-
ity Analysis Model (SAM), which is a Platform Specific Model (PSM) is created.
This model is subjected to analysis and the results of the analysis is available for
the software architect as a read-only result.
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The analysis transformation chain requires a model representation of the generated
containers and connectors to be defined in the SAM for an accurate analysis [35].

Please note that, step 10 is not of concern in this Master thesis as this Master
thesis deals only with automatic generation of containers and connectors and
hence an accurate model based schedulability analysis is outside the scope. It is
assumed in this Master thesis, that the user models successfully pass the Model
based schedulability analysis and hence are subjected directly to the model-code
transformation. The actual flow is as depicted in Figure 3.5. Also, Steps 8-9 are
not of concern in this Master thesis, as it deals with hardware modeling and they
are again outside the current scope of this Master thesis. However, these steps
were mentioned for the sake of clarity and continuity.

Figure 3.5.: Generation of SAM and model-code transformation

Source: [32]

Step 11: Generation of containers and connectors This step is one of the main focus
points of this Master thesis as mentioned before. Containers and connectors are
generated and they specify:

• The structure of each container in terms of the required and provided inter-
faces of the enclosed component that they delegate and subsume.

• The structure of each connector.

The non-functional attributes, component instances deployment and component
connectors deployment play a major role in determining the creation of connectors
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and containers and how component instances and their operations are allocated to
them.

Concurrency can be achieved by encapsulating sequential procedures into tasks
which reside in containers and the protection from concurrent accesses can be
provided by attaching them concurrency control structures. All of this can be
achieved without modifying he sequential code and simply by following the use
relations among the components.

In order for the OBSW to interact with the external world, sensors and actuators
need to be provided. These hardware entities are represented as pseudo compo-
nents (A pseudo-component indicates that a component is for interaction purposes
only) and software capability is attached to these components at the component
instance level.

Figure 3.6 depicts the automatic generation of containers and connectors for the com-
ponents AOCS and Mode_Manager. It also shows how their component instances are
allocated to them.

Figure 3.6.: Automated generation of containers and connectors

Source: [35]

3.3. Design flow and design views

When the component model is defined, it also defines implicitly a design flow as shown
in Figure 3.7, that needs to be followed, to be able to create an OBSW that meet all of
its user needs and high level requirements [1][33][35]. The design flow is as explained
in the previous section.
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Figure 3.7.: The overall design flow

The Obeo Designer Framework [29] provides a concept called ’Viewpoint’ and using this
concept, the design views are implemented [35]. One of the advantages of the design
views is to promote or enforce a certain design flow [35]. The component model is
accompanied by the following design views:

Data view This view is for the description of data types and events.

Component view For definition of interfaces, components and the binding between
them to fulfill their required needs.

Hardware view For the specification of the hardware and the network topology.

Deployment view For the allocation of components to computational nodes.

Non-functional view In this view, the non-functional attributes are attached to the
functional description of components.

Space-specific view In this view, the services related to the commandability and ob-
servability of the spacecraft are specified.
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3.4. Language units of the OSRA

The modeling language provided to the software architect to model the OBSW is divided
for the ease of construction of the OBSW models into a set of language units [34]. Each
language unit consists of closely related metamodel entities. The language units are
grouped into separate meta-models for the sake of re-use as shown in Figure 3.8 [34].
OSRA Component model is composed of the following language units:

Figure 3.8.: Implementation of OSRA component model in the reference implementa-
tion

Source: [35]

CommonKernel Defines the basic entities that are used as the base elements of the
language architecture.

DataTypes Defines all the possible data and the data types that can be used in an OBSW
model.

SCM Kernel Defines the infrastructural part of the Space Component Model (SCM)
which can be considered as the language to express all the concerns expressed by
an OBSW model.

Component Defines a complete set of interfacing features (interfaces, events, datasets),
component types implementations and interface ports.
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Non-functional properties Defines the non-functional properties that can be applied
to the modeling entities and defines a new language called the Value Specification
Language (VSL) to specify values characterized by the measurement units.

Deployment Defines instantiation and deployment entities such as component instances,
connection between them and their deployment on the hardware architecture.

Monitor and Control (M & C) Defines the means to specify the technical properties
related to M & C that shall be provided in the OBSW model.

Hardware execution platform Defines entities related to the execution platform, Time
Space Partitioning (TSP) and the hardware architecture.

3.5. OSRA SCM Model Editor

The toolset that the software architect can use to build OBSW models is organized as a
set of Eclipse features and Eclipse plugins [12].

The toolset is available as [12]:

• A pre-installed Eclipse (Eclipse Neon) for Windows 64-bit.

• An update site which consists of a set of static files which can be placed locally, on
a web-server or on a file-server.

In the latter case, the software architect would have to use the Eclipse Update Manager
to install the plugins [12].

Figure 3.9 shows a screenshot of the OSRA SCM model editor.

In line with the design flow and design views explained in section Section 3.3, different
OSRA diagrams can be created with the help of OSRA SCM Model editor namely:

Interfaces, Events and Datasets diagram This is the first diagram of the OSRA activity
and allows to define the data types, events, data sets and the interfaces that would
be used by the components in the Component types diagram.

Component Types diagram This is the second diagram of the OSRA activity and it
allows to define the component types, device types, execution platform service
types, partition proxy types, required ports whose implementation would be used
by the component instances diagram.
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Figure 3.9.: Screenshot of the OSRA SCM model editor

Component Instances diagram This is the third diagram of the OSRA activity and it
allows to define the component instances, device instances, execution platform
service instances, partition proxy instances, provided interface slots, data receiver
slots and event receiver slots.

Hardware diagram This is the last diagram of the OSRA activity and it allows to define
the hardware elements such as processor boards, mass memory units, devices,
buses.

There are also tables which are provided for diagram elements (if applicable) and they
are usually found as tabs in pop-up window associated with the group that the element
belongs to [12]. Tables are one of those classical tables where rows represents an element
and each column represent a potentially computed property of the element. Rows can
also contain sub-rows recursively which represent the sub-elements and the software
architect can collapse or expand these sub-elements as desired. More information and
details about install requirements and procedure, usage of the OSRA editor can be found
in [12].
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Chapter 4

Tasking Framework

4.1. Introduction

Future unmanned space missions have a great demand on computing resources for
the on-board data processing or for control algorithms. Also, future space missions
are requested to achieve more and more challenging scientific goals [33]. Besides the
pre-processing of scientific data to reduce the data amount for the downlink, it is also
necessary to handle the control systems with optical sensors, which come into play, for
example in extra terrestrial navigation and landing systems [47]. Space missions like
the Rosetta mission or the landing of the Mars rover Curiosity were based on pre-defined
timed command lists to control the landing [24]. Because of this and the uncertainty of
propulsion and parachute maneuver, the amount of different landing targets with low
risks were considerably reduced [24]. But the interesting areas of planetary research
might also include risky landing areas and hence an autonomous control is needed
for the spacecraft to control the trajectory and there is also a need to integrate hazard
avoiding algorithms [47]. However, these algorithms have a huge demand for computing
power [24].

In TET-1 satellite mission (Technology demonstrator) and Bi-spectral Infrared Detection
(BIRD) missions, the estimator and predictor modules were computed in a fixed order
and fixed time in the control-cycle [25]. The timing was a combination of sensor latency
and an additional gap time to satisfy the availability of data for computation and this
led to a scant timing problem for the control torque computation due to over-estimated
static safe-gap times [25][23]. During the Launch and Early Orbit Phase (LEOP), a
timing violation in another bus application resulted in changing the the order of inter-
dependent computations and corrupted data, which further resulted in an unexpected
Attitude and Orbit Control System (AOCS) state [25]. Figure 4.1 A) depicts such a
situation and it can be observed that ea = E(A) is calculated before eb = E(B).
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Also, the current on-board systems for the space environment do not provide the
needed computing power [24]. The space systems offer several controller boards on
the spacecraft, most of them dedicated to only one subsystem and often twice for cold
and hot redundancy. Such designs usually raise the power consumption and increase
budgets like the mass, envelop and cost [24]. Hence a concept, which allows sharing
of computing resources based on predefined configurations for different flight phases
and fault scenarios is necessary [24]. The Tasking framework is an incarnation of the
Inversion of Control design pattern which is popular practice in lightweight container
frameworks [14].

A Tasking Framework is hence developed where the timing behavior is changed. Instead
of starting computations at a predefined time in the computation cycle, a computation is
started whenever the required information is available. All information are stored in
messages distributed by channels and the channels initiate the computation when all
the defined conditions for the computation are met [25][23]. The timing which can be
achieved with Tasking Framework is as shown in Figure 4.1 B).

ea=E(a) eb=E(b) ecd=E(eab,d)eab=E(ea,eb)

t

A)

B) ea=E(a)eb=E(b) ecd=E(eab,d)eab=E(ea,eb)

ab d

eabeaeb ecd

Figure 4.1.: Order and timing of computation tasks in BIRD and TET-1 vs order and
timing of computation tasks in Eu:CROPIS

Source: [23]

4.2. Usage of Tasking Framework

The Tasking framework is based on C++ and provides some virtual base classes, which
the application developer can overload to develop application specific computations.
The Tasking Framework is designed to split the computations into small pieces, which
are called tasks and they can be scheduled on the availability of the input data.
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For each task, a number of task inputs can be specified and each input can be associated
with a task channel which provides the memory space and the synchronization for
messages consumed by the task. In order to start a task, the task input needs to be
configured with the expected number of data pushes on the associated task channel and
when the number of pushes on the task channel meets the expectation set, the respective
task input is activated. When all the inputs of a particular task are activated, the task
is automatically started by the scheduler of the Tasking Framework, provided a free
computing core is available. If no computing core is available, then the task is queued
for execution.

Any of the task inputs of a particular task can be marked as final and when such an input
is activated, the respective task is started immediately by the scheduler irrespective of
the activation states of the other task inputs. As a result, the task can push onto another
channel, which can trigger the other task associated with this channel. This leads to a
kind of behavior similar to petri nets [40], where the activation of the task input is a
token and the task execution is a transition [24]. The inputs associated to a task are
reset when all its inputs are activated or when the respective activated input is marked
as final. Such a reset operation on a task input sets the number of arrived data items on
the associated task channel back to zero.

To specify timings in the Tasking framework, a special channel called ’event’ is provided
[24]. An event is associated with a clock and the task input to which it is associated
is notified on each clock tick. When the required number of notifications match the
expected number which is already set, the attached task input is activated. A Task event
can be configured to work with absolute timing, i.e. the associated task input and in-turn
the task itself is activated at fixed points in time, or a task event can be configured to
work with a relative timing i.e, the task input and in-turn the task is activated at points
in time relative to the execution time of the task.

To support mapping of tasks in a distributed system, task channels are associated with
interfaces to read and write from and to networks and devices. These associations are
set up by the configuration manager and are not visible to the application developer
[24].

The current implementation of Tasking framework sits on top of Linux Portable Operating
System Interface (POSIX) library, composed by a real-time clock interface, signaling
mechanism, memory access and the tasks scheduler. The Tasking framework can also run
on operating systems like Real-Time Executive for Multiprocessor Systems (RTEMS) and
FreeRTOS using the outpost libraries which collectively provide a high level abstraction
of the underlying operating system [24].
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4.3. Use cases for Tasking Framework

In the project On-Board Computer - Next Generation (OBC-NG) by Deutsches Zentrum
für Luft- und Raumfahrt (DLR), a decision was made to design the on-board computer
systems as a combination of space qualified processing node, Commercial-off-the-shelf
(COTS) processing nodes and network nodes [24]. As an operating system for this
project, an enhancement of Realtime Onboard Dependable Operating System (RODOS)
was used [24][39]. The enhancement covered mainly the support for multi-core and
reconfigurable distributed systems [28] and the core element which made it possible
was the Tasking Framework [24]. The configuration manager used in OBC-NG held
predefined mappings of tasks and resources for different hardware configurations of
computing resources and mission phases [39]. The communication infrastructure was
set up based on the mappings during the configuration phases of the system.

The first usage of the Tasking framework was in the Autonomous Terrain-based Optical
Navigation (ATON) project [47]. The project was about the navigation system for a
moon landing scenario. The project showed that the Tasking framework was a useful
way for the parallelization of computations in an expected manner [47].

Another use-case of Tasking Framework is in the AOCS of Euglena Combined Regener-
ative Organic food Production In Space (Eu:CROPIS) mission [23]. Eu:CROPIS uses
a porting of the Tasking framework from Linux to outpost libraries which collectively
act as an operating system Application Programming Interface (API) on top of RTEMS
[23].

Tasking framework is also used in project named Matterwave Intrferometer in Micro-
gravity (MAIUS) which deals with activities to demonstrate Bose-Einstein condensation
and atom interferometry with rubidium and potassium atoms on a sounding rocket
[23][17].

4.4. Use of Tasking Framework in this Master thesis

Tasking framework is used as a computational model, as discussed in the previous
chapter. The reasons for adopting Tasking Framework in this Master thesis are the
following:

• The Tasking framework guarantees that the timing behavior of the system is
deterministic and amenable to static analysis.

• The Tasking framework has been proven to be expressive enough to handle real-
world application as discussed in the previous section.
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• Tasks do not interact with each other directly, but their communications are
mediated by protected objects (task channels). These channels are shared resources
equipped with a synchronization protocol in the form of priority based scheduling
and First-In First-Out (FIFO) scheduling for tasks with same priorities which uses
these shared resources [24].

However, during the course of this Master thesis, certain short-comings of Tasking
framework have however been identified and can be found in Section 8.2 of Chapter 8.
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Chapter 5

A programming model for OSRA

5.1. Introduction

In the previous chapters we have seen the model-driven software development approach
that was centered on component-based techniques. Dijkstra’s principle of separation of
concerns was one of the cornerstone principles which was part of the software reference
architecture and the proposed component model [35][36]. According to it, the user
design space should be limited to the internals of the components, where only strictly
sequential code can be used and the extra non-functional requirements are declaratively
specified in the form of annotations on the component provided interfaces. This is
already explained in detail in Step 7 (Specification of non-functional attributes) of
Section 3.2 in Chapter 3.

As discussed in the previous chapters, the reference software architecture is made up of
a component model, a computational model, a programming model and a conforming
execution platform. It is also clear that the component model should be statically bound
to a computational model to formally define the computational entities and the rules
which govern their usage.

The realization of extra functional properties or more precisely, the generation of the
complete infrastructure code can be done in two steps:

• Automated generation of the non-functional code i.e., the code for handling
concurrency and interaction requirements for communication between components
and the skeletons for the components themselves.

• Automated generation of containers for components and the connectors between
components.
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A code generator needs to be developed for this purpose and the next few chapters would
be concerned about realizing the above mentioned steps. As a result, the third-party
software supplier can then solely concentrate on implementing the functional code of
the components. This is in line with the principle of separation of concerns, which is of
very high interest.

The Automated proof-based System and Software Engineering for Real-Time systems
(ASSERT) aimed at the definition of a MDE design process for the development of
on-board software for satellites, cenetered on the priciples of correctness-by-construction
and separation of concerns [33]. The cornerstone of the project was the adoption
of an infrastrcuture called the Ravenscar Computational Model (RCM) [33]. This
modeling infrastructure which was developed at the University of Padua [3] included
a graphical modeling language and its editor, a model validator and a set of model
transformations to feed the model-based schedulability analysis and code generation
[3]. It is important to note that the ASSERT project lacked an explicit notion of a
component model but incporporated a computational model, a programming model
and a conforming execution platform [33]. Certain Ada Ravenscar Profile compliant
code archetypes were developed to complete the formulation of the programming model
and these archetypes adhered to the vision of principle of separation of concerns and
amenable to code generation [37]. The Ada Ravenscar Profile basically does not allow
any Ada language constructs that are exposed to unbounded execution-time and non-
determinism [4]. The code archetypes used Ada run-time and hence could fit the needs
of typical embedded systems which were resource-constrained [4].

In the following Artemis JU CHESS project, an initiative from ESA in parallel to the
development of the SCM [35][33], a computational model named as Ravenscar Com-
putational Model (RP in the following text) was chosen as the computational model
[3]. RP directly emanated from the Ada Ravenscar Profile in language-neutral terms
[37][36]. The code archetypes from the ASSERT project were revised and extended in
the CHESS project and they as well targeted the Ada Ravenscar Profile, for the additional
reason that the reduced tasking model used in the Ada Ravenscar Profile matched the
semantic assumptions and communication model of real-time theory, the response-time
analysis in particular [37]. The code archetypes developed in the CHESS project [36]
are taken as reference for developing a programming model in this chapter. The code
archetypes discussed in this Master thesis, however target the Tasking framework which
is the chosen computational model for this Master thesis. The reasons for choosing
Tasking framework as a computational model is already explained in Section 4.4 of the
previous chapter. The code archetypes discussed in this chapter are first steps towards
generation of the complete infrastructural code.
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5.2. Structure of the code archetypes

The code archetypes discussed in this Master thesis take reference of the code archetypes
in [36] and strive to attain as much separation as possible between the functional and
extra-functional/non-functional concerns. At the implementation level, functional/algo-
rithmic code of a component is separated from the code that manages the realization of
the extra-functional requirements like tasking, synchronization and different time-related
aspects.

A library of sequential code, which may have as many cohesive operations as the
software supplier wishes to include in a single executing component, is included in a
closed structure such as a component implementation. The mapping of this structure to
the actual design entity of the infrastructural code is not of concern in this chapter and is
handled in the next chapter. The sequential code in this structure is executed by a distinct
flow of control of the system. The dedicated flow of control can be an active task, together
with other tasking primitives from the Tasking framework (if the desired concurrency
kind is asynchronous). Or, it can be a simple synchronous method/operation invocation,
which uses the flow of control of the component requesting the service from outside
(if the desired concurrency kind is synchronous). This leads to a combined effect
that the component internals are completely hidden from outside environment, and
the provided services invoked by the external clients are executed with the desired
interaction semantics.

As multiple clients may independently require a range of services to be executed by one
of the two desired flow of controls i.e., synchronous or asynchronous, it is necessary
to safeguard these execution requests from mixing up. Safeguarding the execution
requests in case of synchronous service requests is implicit as these requests would have
been raised in the flow of control of the respective component asking for the service,
but the safeguarding of execution requests in case of asynchronous requests needs to
be explicitly handled and the way to achieve this is explained in the next parts of this
section.

Service requests can often lead to valid/invalid results that need to be sent back safely
to the components which made the requests. The service requester also need to be
informed about any exceptions that might arise due to any unexpected situations during
the servicing of the requests. The mechanisms and semantics necessary for realizing
these requirements are also explained in the next parts of this section.
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5.2.1. Synchronous release patterns

The archetypes for a synchronous release pattern are quite straight forward. When a
request for a service is made with the desired concurrency kind specified as synchronous,
the request is handled straight-away as a normal function/operation call in the flow
of control of the service requester as shown in Figure 5.1. The results (if any) from
the service requests, and exceptions (if any) during the course of handling the service
requests are returned back to the service requester using the same flow of control as
shown in Figure 5.1.

Figure 5.1.: Synchronous release pattern

5.2.1.1. Protected

When the non-functional property set on the service in the provided interface side of
the component offering the service is Protected, it is necessary for the container that
wraps around the component to safeguard this non-functional property. As the container
is the entity that promotes the provided interface of the component, it intercepts
the function/operation call from outside and provides exclusive access to the service
implemented by the component. Semaphores provided by the Tasking framework is
used for this purpose.
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5.2.1.2. Unprotected

When the non-functional property set on the service in the provided interface side of the
component offering the service is Unprotected, the semantics of handling the service
request is essentially the same as the way the protected operations are handled, except
for the fact that obtaining and releasing of the semaphore for the operation is not
anymore needed.

5.2.2. Asynchronous release patterns

The archetypes for asynchronous release patterns are quite complicated when compared
to archetypes for synchronous release patterns. As the requests cannot be anymore
handled in the flow of control of the service requester in case of asynchronous release
pattern, tasks from Tasking framework along with other tasking primitives, which are
independent threads of execution can be activated to cater to these requests on the
provided interface side.

The asynchronous service request is initially intercepted at the required interface port
subsumed by the container of the component which makes the request. Here the data
(if any), associated with the request is packaged and the packaged data is forwarded
to the provided interface port, which is promoted by the container of the component
handling the request. Along with the data associated with the service request, it is also
important that the required interface port packages information (typically a function
pointer as in C++) indicating how to send the results and exceptions (if any) back to
the service requester.

In case of asynchronous service requests, if the service request leads to an exception
being raised at the service provider end, it is the responsibility of the service requester
to cope up with the exception and it is of no interest in this Master thesis. This Master
thesis, however, explains how the information about the raised exception needs to be
delivered to the service requester.

Each thread of control, having its own structure as explained above, is responsible for
only one operation in the provided interface side of the component. As the release
patterns for requests are already decided statically and as these release patterns are not
expected to change at run-time, the number of threads of control that will be necessary
to handle the service requests will be known at compile-time.

This is very similar to the way asynchronous release patterns are handled in the code
archetypes listed in [37][36] except for the fact that they do not consider service
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requests which might result in results or exceptions that need to be sent back to the
service requester [37].

5.2.2.1. Sporadic

When the non-functional property set for the handling of the service on the provided
interface side of the component offering the service is Sporadic, it is the responsibility
of the container of the component providing the service to safeguard this property. The
sporadic property requires that two subsequent requests for the service needs to always
be separated by no less but possibly more than a minimum guaranteed time span, known
as the MIAT (Minimum Inter-Arrival Time) [34][35]. The container makes use of tasking
primitives such as a task channel, task event and a task from the Tasking framework for
this purpose.

The general structure of the thread of control on the service provider end, necessary to
handle sporadic service requests consists of a task with two synchronized task inputs,
attached to the task as shown in Figure 5.2. The task inputs are not marked as final.
One of the task inputs is associated with a task event, with absolute timing (fixed task
wake-up times) and the other task input is associated with a normal task channel. The
task event is configured to wake up the task periodically after every MIAT interval. The
task input associated with a normal task channel is configured so that the task input is
activated as soon as a push is made against its associated task channel. This task then is
instantiated in the container of the service provider component.

When a provided interface port, promoted by the container of the component handling
the request, receives a sporadic service release request, it intercepts the request and
pushes the packaged data against the channel associated with the task.

Because the task inputs are not marked as final, the task is activated only after both its
task inputs are activated. When activated, the functions of the task will then be to:

Step 1 Unpack the packaged data.

Step 2 Acquire the semaphore provided by the Tasking framework associated with the
service.

Step 3 Execute the desired service.

Step 4 Reset the task event attached to the task.

Step 5 Release the semaphore acquired.
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Step 6 Return the results and the exceptions associated with the service request back
to the service requester making use of the information of the service requester
packaged by the required interface port.

In this way, the non-functional properties associated with an asynchronous sporadic
release pattern can be preserved at run-time.

Figure 5.2.: Thread of control for asynchronous sporadic release pattern

5.2.2.2. Protected

When the non-functional property set for the handling of the service on the provided
interface side of the component offering the service is Protected, it is the responsibility
of the container, of the component providing the service, to safeguard this property. The
container makes use of tasking primitives such as a task channel and a task from the
Tasking framework for this purpose.

The general structure of the thread of control on the service provider end, necessary to
handle this kind of service request, is a task with one task input attached to the task as
shown in Figure 5.3. The task input is configured so that the task input is activated as
soon as a push is made against its associated task channel.
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When a provided interface port, promoted by the container of the component handling
the request, receives a service release request of this kind, it intercepts the request and
pushes the packaged data against the channel associated with the task. The task is then
activated and the functions of the task will then be to:

Step 1 Unpack the packaged data.

Step 2 Acquire the semaphore provided by the Tasking framework associated with the
service.

Step 3 Execute the desired service.

Step 4 Release the semaphore acquired.

Step 5 Return the results and the exceptions associated with the service request back
to the service requester making use of the information of the service requester
packaged by the required interface port.

In this way, the non-functional properties associated with an asynchronous protected
release pattern can be preserved at run-time.

Figure 5.3.: Thread of control for asynchronous protected release pattern
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5.2.2.3. Bursty

When the non-functional property set for the handling of the service on the provided
interface side of the component offering the service is Bursty, it is the responsibility of
the container, of the component providing the service, to safeguard this property. The
bursty property requires that a service can be activated at most a given number of times
in a given interval called the Bound Interval (BI) [34][35].

The general structure of the thread of control on the service provider end, necessary
to handle this kind of service request, is a task with two non-synchronized task inputs
attached to it as shown in Figure 5.4. The task inputs are marked as final. One of the
task inputs is associated with a task event, with absolute timing (fixed task wake-up
times) and the other task input is associated with a normal task channel. The task event
is configured to wake up the task periodically after every bound interval. The task input
associated with a normal task channel is marked as final indicating that the task input
is activated as soon as a push is made against its associated task channel. The task also
has an internal counting semaphore provided by the Tasking framework in order to keep
a count of the number of service requests handled within the bound interval.

When a provided interface port, promoted by the container of the component handling
the request, receives a service release request with bursty nature, it intercepts the request
and pushes the packaged data against the channel associated with the task.

Because the task inputs are marked as final, the task is activated if any one of its task
inputs are activated. When activated, the functions of the task will then be to:

Step 1 Check the activated input. If the activated input is the one that is attached to a
task event, then replenish the counting semaphore, restart the attached task event
and go to step 8.

Step 2 Unpack the packaged data.

Step 3 Acquire the counting semaphore local to the task which is used to enforce the
max. number of activations within a bound interval.

Step 4 Acquire the semaphore provided by the Tasking framework associated with the
service.

Step 5 Execute the desired service.

Step 6 Release the semaphore associated with the service.

Step 7 Return the results and the exceptions associated with the service request back
to the service requester making use of the information of the service requester
packaged by the required interface port.
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In this way, the non-functional properties associated with an asynchronous bursty release
pattern can be preserved at run-time. It is important to note that the code archetypes
which were developed for the CHESS project do not mention the scheme to handle this
kind of release pattern [37][36].

Figure 5.4.: Thread of control for asynchronous bursty release pattern

5.2.2.4. Cyclic

When the non-functional property set for a service on the provided interface side of
the component is Cyclic, it is the responsibility of the container of the component, to
safeguard this property. Cyclic property requires that the associated service be activated
periodically and with a non-zero initial offset [34][35].

The general structure of the thread of control, necessary to handle this kind of non-
functional property is a task with a task event, provided by the Tasking framework,
attached to it as shown in Figure 5.5. The task event is configured to wake up the
associated task periodically, with absolute timing (fixed task wake-up times). The task
event can also be configured to wake up the associated task for the very first time with
an initial offset.
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When a provided interface port, promoted by the container of the component has a
service which needs to be activated periodically, the task is activated and it performs the
following functions:

Step 1 Acquire the semaphore provided by the Tasking framework associated with the
service.

Step 2 Execute the desired service.

Step 3 Release the semaphore acquired.

The service with a cyclic nature cannot be requested from an external component
[34]. The services also need to be parameterless and cannot send out results or throw
exceptions [34].

In this way, the non-functional properties associated with an asynchronous cyclic release
pattern can be preserved at run-time.

Figure 5.5.: Thread of control for asynchronous cyclic release pattern
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Chapter 6

Infrastructural code generation

6.1. Introduction

After designing an OBSW model using the OSRA SCM model editor and following the
component-based software development approach that comes with it, the OBSW model
entities need to be mapped to infrastructure code. The reference programming model
for OSRA, discussed in the previous chapter helps us in progressing towards this goal.
But, it is necessary to understand the overall design approach for the generated code
and present the abstractions that will be offered to the software supplier. This chapter,
deals with these things in detail. Similar efforts from the Artemis JU CHESS project [36],
provide the perfect base for discussions in this chapter of the Master thesis.

6.2. User model entities in the Platform Independent Model
(PIM) phase

A detailed description of all the modeling entities that the software architect can use,
can be found in the specification of the metamodel for the OSRA component model [34].
However a brief description of them is noteworthy here:

Datatypes The software architect can create a set of project-specific data types and
constants using the Data Types language unit of the CommonTypes metamodel and
the language unit is designed to provide the software architect an expressive power
comparable to the languages with strong types (e.g. Ada) [34]. The supported type
definitions are boolean types, integer types, float types, enumeration types, fixed
point types, array types, structured types, string types, union types, alias types,
opaque types, external types and unconstrained types. Some of these data type
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definitions are obvious for readers with programming skills in typed languages
such as Ada, C or C++.

Interface An interface is a specification of a coherent set of services and it represents
the definition of a contract. An interface is defined independently of the entities
implementing it (e.g. Component type). An interface may enlist declaration of
operations, which are the functional services that shall be offered by the entities
implementing it. The services include a name, a set of ordered parameters and one
or more exceptions that they might throw when things go wrong during the han-
dling of the service. Parameters are typed with one of the types mentioned above
and have a mode (in, out or inout). A component type may expose one or more
interfaces and the same interface can be exposed by different component types.
An interface may also contain the declaration of one or more interface attributes,
which are the parameters that are accessible via the interface implementations.

Component type A component type is an entity which specifies the external interfaces
of a software component which are defined in isolation and are used to declare
relationships with the other components and system in general. It conforms to
the principle of encapsulation and as a consequence, all the interactions with
other components are performed exclusively via its explicitly declared interface. A
component type usually encompasses:

• A definite number of provided interface ports.

• A definite number of required interface ports.

• A definite number of dataset emitter ports.

• A definite number of dataset receiver ports.

• A definite number of event emitter ports.

• A definite number of event receiver ports.

Component implementation It is an entity that represents a concrete realization of a
component type. It is functionally identical to the component type, except that
the source code is added to the component implementation and may also define
number of component implementation attributes.

Component instance It is an instantiation of a component implementation and hence
contains all the instantiations of the structural features, such as provided and
required interface ports. It also contains instantiation of all attributes (interface
attributes, component type attributes and component implementation attributes).
It is also the elementary deployment unit for the OBSW model [34].
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6.3. Mapping of design entities to the infrastructural code

As the generated code should target the Tasking framework, which is the target compu-
tational model in this Master thesis and because the Tasking framework is written in
C++, the following sections explains the mapping of design entities to the infrastructure
code that will be generated in C++.

On analyzing the specifications of the metamodel for the OSRA component model [34],
it is clear that there are different corner cases that can arise during the construction of
the OBSW models using OSRA component model and it is necessary that these corner
cases are effectively handled in the software design for the infrastructural code. The
following sections try to build an OBSW model keeping the the corners cases in mind
and attempt to explain the overall design approach.

6.3.1. Corner cases arising during the construction of OBSW model
using OSRA component model

The different corner cases which can arise are:

• Multiple provided interfaces which refer to the same interface type are promoted
by the container of a component.

• Multiple required interfaces which refer to the same interface type are subsumed
by the container of a component.

• Multiple interfaces provide exact same operations.

The first and second corner cases are handled in the following example. But, the other
case will be treated directly in the later section, which deals with the software design for
the generated infrastructure code.

6.3.2. An example OBSW model

Our simple OBSW model, yet effective to serve the intended purpose, is built as per the
proposed component-based development approach explained in the section Section 3.2
in Chapter 3. As already mentioned in that section, the component-based approach
puts a lot of emphasis on the definition of component interfaces [35] and it is followed
here as well. Components are built from scratch using newly defined interfaces. All
model entities defined here are instantiations of the modeling entities specified in the
metamodel [34]. The OBSW model is designed using the OSRA SCM model editor
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mentioned in Section 3.5 in chapter Chapter 3. The model entities from the OSRA
SCM model editor can be exported as images and they are used in this sub-section for
illustration purposes.

In this simple example, two simple components namely Caller and Callee are designed.
The first component requests for a service OperationAdd which can add two numbers,
as the name suggests and this service is implemented in the second component. Another
service named CallOperationAdd is implemented in the first component, which can
be requested to trigger the OBSW model execution on a periodic basis. Different non-
functional properties, as explained later in this section, are strewn on the required and
provided interfaces of these components to make the example a bit more interesting and
also capture the above mentioned first and second corner cases in the example.

Step 1: Definition of data types and events As the Master thesis requires to empha-
size more on effectively capturing interactions and concurrency semantics required
for communication between the designed components, the data types chosen in
this example are fairly simple. But it is important to note that the scheme of
mapping of these simple data types to the infrastructural code (explained in the
later sections), can be scaled to fairly complex data types as well. The data types,
exception types and the event type used in this example are as shown in Figure 6.1.

• Two data types namely FixedLengthStringType and IntegerType of type
UNSIGNED are defined and they are named StringType and IntegerType re-
spectively.

• Three exception types, named OperandException, MemoryException and
OverflowException are defined.

• An Event type, which can be used for asynchronous notifications [34] is
instantiated and it is named as FailureEvent. Two event parameters are also
instantiated as shown in Figure 6.1.

Step 2: Definition of interfaces Two interface namely InterfaceA and InterfaceB are
designed as shown in Figure 6.1. InterfaceA has only one single operation called
CallOperationAdd and InterfaceB has an operation called OperationAdd and an
interface attribute of data type IntegerType called m_StatusValue.

• The operation CallOperationAdd is a parameterless operation and it is in-
tended to be the service which can in turn request the service OperationAd

which can add two numbers.

• The operation OperationAdd in InterfaceB, as the name suggests, is intended
to be the service which can add two numbers, send back the results and raise
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a pre-defined exception if necessary. It has three operation parameters and
can throw different exceptions as mentioned in Figure 6.1.

• The interface attribute StatusValue in InterfaceB is of type CFG and it in-
dicates that the interface attribute is a configurable parameter [34]. As a
result, two operations for the purpose of setting and getting the values of the
interface attribute need to be generated.

<<signed Integer>>
IntegerType

<<Interface>>
InterfaceA

CallOperationAdd ()

<<Interface>>
InterfaceB

StatusValue : IntegerType CFG 
OperationAdd (IN a : IntegerType; IN b : IntegerType; OUT c : IntegerType) throws 
MemoryException, OperandException, OverflowException  <<PROGRESS>>

<<Event>>
FailureEvent

Param : IntegerType
FailureEventDescription : StringType

<<Fixed Length String>>
StringType
length := 10

<<Exception>>
OperandException

<<Exception>>
MemoryException

<<Exception>>
OverflowException

Figure 6.1.: Data types, events, exceptions and interfaces diagram

Step 3: Definition of component types Component types namely Component_Caller

and Component_Callee which form the basis for a reusable software asset are
defined as shown in Figure 6.2. In Figure 6.2, a circle without a fill on a component
type denotes a provided interface port and a black filled-in circle on a component
type denotes a required interface port. Similarly, an arrow without a fill on
the component type denotes an event receiver port and a filled-in arrow on the
component type denotes an event emitter port.

Component_Caller has:

• Provided interface port ProvidedInterfacePort which refers to InterfaceA.

• Required interface port RequiredInterfacePortType1 which refers to
InterfaceB.

• Required interface port RequiredInterfacePortType2 which refers to
InterfaceB.

• Event receiver port FailureEventReceiverPort which refers to Failure

Event.

The desired interaction kind for the operations in the required interface ports of
Component_Caller are as shown in Table 6.1.
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Table 6.1.: Desired interaction kind for operations in the required interface ports
Required interface ports Operations Interaction kind

RequiredInterfacePortType1

OperationAdd

Interface attribute setter
Interface attribute getter

synchronous

synchronous

synchronous

RequiredInterfacePortType2

OperationAdd

Interface attribute setter
Interface attribute getter

asynchronous

asynchronous

asynchronous

Component_Callee has:

• Provided interface port ProvidedInterfacePort1 which refers to InterfaceB.

• Provided interface port ProvidedInterfacePort2 which refers to InterfaceB.

• Event emitter port FailureEventEmitterPort which refers to FailureEvent.

<<Component Type>>
Component_Caller

ProvidedInterfacePort

RequiredInterfacePortType1

RequiredInterfacePortType2

FailureEventReceiverPort

<<Component Type>>
Component_Callee

ProvidedInterfacePort1

ProvidedInterfacePort2

FailureEventEmitterPort

Figure 6.2.: Component types diagram

Step 4: Definition of component implementations Component implementations are
created from the component types.

Component_Caller has one component implementation named as Component
_Caller_impl and Component_Callee has one component implementation
named as Component_Callee_impl. The component implementation Component
_Callee_impl implements the means to store the attribute Param of InterfaceB,
that is exposed through its provided interface ports, namely ProvidedInterface

Port1 and ProvidedInterfacePort2.

No maximum memory footprint for component implementations are defined or no
detailed design activity of the component implementations are performed as they
are not of concern in this Master thesis.
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Table 6.2.: Non-functional property for the operation in the provided interface slot
Provided interface slot Operation Non-functional property
ProvidedInterfaceSlot CallOperationAdd Cyclic, Period = 2s

Step 5: Definition of component instances The component instances are the in-
stances of component implementations [35].

Two component instances as shown in Figure 6.3 are defined, namely:

• Component_Caller_inst which is an instantiation of Component_Caller_impl.

• Component_Callee_inst which is an instantiation of Component_Callee_impl.

Step 6: Definition of component bindings Component bindings as shown in Fig-
ure 6.3 are defined:

<<Component Instance>>
Component_Caller_inst

ProvidedInterfaceSlot

RequiredInterfaceSlotType1

RequiredInterfaceSlotType2

FailureEventReceiverSlot

<<Component Instance>>
Component_Callee_inst

ProvidedInterfaceSlot1

ProvidedInterfaceSlot2

FailureEventEmitterSlot

Figure 6.3.: Component instances diagram

Step 7: Specification of non-functional attributes The non-functional properties are
defined on the component instances and the component bindings defined in the
previous step. The non-functional properties language unit of the specification of a
metamodel provides a Value Specification Language (VSL) unit, which permits the
specification of the the non-functional properties qualified with a measurement
unit [34]. The VSL is used here to define values of non-functional properties with
a measurement unit.

For the provided interface slot in the component instance Component_caller_inst,
a non-functional property is specified as shown in Table 6.2.

For the provided interface slots in the component instance Component_callee_inst,
non-functional properties are specified as shown in Table 6.3.
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Table 6.3.: Non-functional properties for the operations in the provided interface slots
Provided interface slots Operations Non-functional properties

ProvidedInterfaceSlot1

OperationAdd

Interface attribute setter
Interface attribute getter

Protected

Protected

Unprotected

ProvidedInterfaceSlot2

OperationAdd

Interface attribute setter
Interface attribute getter

Sporadic, MIAT = 2s
Protected

Protected

Table 6.4.: Non-functional property for event reception
Event receiver slot Event Non-functional property

FailureEventReceiverSlot FailureEvent Protected

It is important to note that the WCET and deadline values for the operations in the
provided interface slots are not handled, as the safeguarding of these properties
are not of concern in this Master thesis.

For the event receiver slot in the component instance Component_caller_inst, a
non-functional property is specified as shown in Table 6.4.

Step 8: Definition of the physical architecture The hardware topology provides a de-
scription of the system hardware. As hardware modeling is not of concern in this
Master thesis, a simple hardware topology as shown in Figure 6.4 is considered.

A processor board with a processor and a processor core is instantiated. Two
connection docks are attached to the processor board and a bus is used to connect
the connection docks. The component instances are deployed on the processor
core and the component bindings are deployed on the bus.

This OBSW model is subjected to model validation against the OSRA Specification
Compliance and the SCM meta-model compliance, in the OSRA SCM editor [12]. Only
after the OBSW model is successfully validated, can the OBSW model be considered as a
suitable candidate for automatic generation of infrastructure code [12].
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<<Processor Board>>
ProcessorBoard

<<Processor>>
Intel8086Processor

<<Core>>
ProcessorCore

0.0 

ConnectionDock1

ConnectionDock2

<<Bus>>
SystemBus

Figure 6.4.: Hardware topology diagram

6.3.3. Software design approach for the generated code

This section deals with the software design approach for the generated infrastructure
code. Some of the necessary good characteristics of a software such as reusability,
separation of concerns and minimal complexity are targeted already at the reference
architecture level and it needs to be preserved at the generated software level as well.
The other main characteristics of the generated software which are of utmost value are
[26]:

Testability The software must be testable and there must be suitable constructs in the
generated software which assist in writing automated unit tests or user driven
tests to test it. In this Master thesis, it is taken care of that the generated C++
classes have corresponding abstract base classes. These abstract base classes are
used in constructing mock classes which can be used for the purpose of testing
each class independently [50]. More about this is explained in the next chapter
which focuses on the results and further scope of this Master thesis.

Extensability and Refactorability The software generated must be loosely coupled so
that the entire code base is more resilient to changes and extensions. Dependency
injection software design pattern [14] is used wherever appropriate to make the
generated software loosely coupled.

Portability The generated software must be portable across systems and environments.
The data types used in the generated software should be portable across multiple
platforms and the data type standardizations from C++11 are made use of in the
generated software.
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High fan-in The generated software is designed in a way that a particular C++ class is
used by large number of other C++ classes.

Low-to-medium fan-out The generated software is designed in a way that a particular
C++ class uses not many classes, so that the complexity of the generated software
is not too high. Unfortunately, this characteristic is not completely respected in
this software design, because the complexity of a particular class depends on the
complexity of the corresponding model entity in the user model.

Unified Modeling Langauge (UML) class diagrams, wherever appropriate, are judiciously
used in this section to show a high level representation of the generated C++ classes
and datastructures.

Each of the following sub-sections, is divided into two parts:

• The first part throws light on the idea of how a mapping of a given model entity to
an infrastructural code entity can be done.

• The second part makes the approach clear by taking the reference of our OBSW
example model discussed in the previous section.

The standard notations from UML class diagrams are used. The following additional
legends are introduced:

• A UML class in dotted notation means that the explanation for that particular has
already been given in the previous sections or would be given later in the following
sections.

• A package notation from UML is used to indicate the namespaces that the respective
classes in the UML diagram can be found.

6.3.3.1. Namespaces

Namespaces from C++ (similar to packages in Ada as shown in [36] for the Artemis JU
CHESS project) are used to differentiate component types, component implementations,
etc. of different components. The names for the namespaces are obtained from the
names of the component types in the OBSW model. The name of each component type
is a namespace and this namespace holds all the code entities which are related to its
corresponding component type. An additional namespace called General is used to
define all the code entities which would be shared across all components.

For our example OBSW model: Three namespaces, namely General, Component_Caller
and Component_Callee are created as shown in Figure 6.5.
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Figure 6.5.: UML class diagram representation for different namespaces in the example
OBSW model

6.3.3.2. Data types and events

A data type from the OBSW model is translated into a simple typedef statement from
C++ as shown in [44][30].

For our example OBSW model:

• The data type IntegerType, is translated to typedef int8_t IntegerType.

• The data type StringType, is translated to typedef std::string StringType.

A subset of all possible data types from the OSRA Component Model can be translated
to simple typedef statements as shown above. More information about the subset of
data types for which this successfully works is given in the next chapter.

The exception types from the OBSW models are translated into simple enumeration
literals from C++ as shown in [13]. These exceptions, which can be thrown by a
particular operation are grouped under an enumeration. This enumeration is further
instantiated in a C++ struct as shown in [13].

For our example OBSW model: The three exceptions OperandException, Memory

Exception and OverflowException are translated to enumeration literals. These ex-
ceptions can be thrown by OperationAdd, which is defined in InterfaceB. Hence the
enumeration literals, corresponding to the exceptions, are stored together as an enu-
meration named OperationAddException_InterfaceB as shown in the Figure 6.6. This
exception is further instantiated in a C++ struct OperationAddReport_InterfaceB as
shown in the Figure 6.6.

An event is similar to a message which is passed asynchronously from emitter to receiver
[34] in an OBSW model. Because it resembles a message, it can be mapped to an abstract
base class and a corresponding concrete implementation class as in [36]. As already
explained, the abstract base classes help in improving the testability of the generated
software. Appropriate setters and getters for the event parameters are declared as pure
virtual methods in the abstract base class for the event and they are implemented in
their corresponding concrete implementation.

For our example OBSW model: The FailureEvent is mapped as an abstract base
class named FailureEventInterface and a concrete implementation class named
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Figure 6.6.: UML class diagram representation for exceptions in the example OBSW
model

FailureEvent. Appropriate setters and getters for the event parameters Param and
FailureEventDescription are declared as pure virtual methods in the FailureEvent

Interface abstract base class and implemented in the FailureEvent concrete implemen-
tation class. An UML class diagram representation of the generated classes is shown in
Figure 6.7.

Figure 6.7.: UML class diagram representation for event in the example OBSW model

All the infrastructure code entities mentioned above are present in the namespace
General.

6.3.3.3. Interfaces

An interface can be mapped to a C++ abstract base class, as in [36]. This abstract base
class consists of the following entities:
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• For each interface operation, a pure virtual method is declared in the interface class.
The names and data types of the input parameters for this pure virtual method
correspond to the names and data types of the interface operation parameters.
The operation parameters, with ParameterDirectionKind as in are translated to
constant references and the operation parameters with ParameterDirectionKind

as out or inout are translated to plain references.

• For each interface attribute parameter of type CFG:

– A public non-static class variable of name and data type corresponding to the
name and data type of interface attribute is added.

– Pure virtual setter and getter methods for the interface attributes are declared.
The data types and names of the input parameters in the setter and getter
methods mimic the name and data type of the interface attribute.

• For each interface attribute parameter of type MIS, which is fixed and is not variable
[34]:

– A const protected non-static class variable of name and data type correspond-
ing to the name and data type of interface attribute is added.

– No getter and setter methods are added.

• For each interface attribute of type DAT, which are modifiable by the component
only and not by external entities [34]:

– A protected non-static class variable of name and data type corresponding to
the name and data type of interface attribute is added.

– No getter and setter methods are added.

For our example OBSW model The C++ classes shown in Figure 6.8 are generated:

• InterfaceA along with the operation CallOperationAdd is mapped to an abstract
base class InterfaceA with a pure virtual method CallOperationAdd.

• InterfaceB has one operation OperationAdd and one interface attribute parameter
StatusValue of type CFG. These are mapped to an abstract base class named
InterfaceB with the following pure virtual methods:

– OperationAdd with two input parameters of type const IntegerType& and
one input parameter of type IntegerType&.

– getter method for the interface attribute StatusValue with an input parameter
of type IntegerType&.
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– setter method for the interface attribute StatusValue with an input parameter
of type const IntegerType&.

Figure 6.8.: UML class diagram representation for interfaces in the example OBSW
model

Because of the corner case that multiple interfaces can have exactly same operations, it
is necessary to refine these interfaces using the interface helper abstract base classes as
shown in [19] and in [45]. UML class diagram as shown in Figure 6.9 explains such an
approach in this context. In each interface helper class:

• Implementations for all the inherited pure virtual methods from the parent inter-
face are provided.

• The implementations consist of simple method calls to new pure virtual methods.

• These new pure virtual methods have method signatures same as the pure virtual
methods that are inherited and implemented. However, it is important to note that
the names of these new pure virtual methods are different from the inherited pure
virtual methods, as shown in the Listing 6.1.

Figure 6.9.: UML class diagram representation for interface helpers in the example
OBSW model

For our example OBSW model:

• InterfaceA_Helper is defined, which inherits from the interface InterfaceA and
which implements the pure virtual method in the parent interface InterfaceA. The
implementation contains a simple call to a new pure virtual method added to the
original method name from the parent interface as shown in the Listing 6.1.
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Listing 6.1 Code excerpt from the generated code for InterfaceA_Helper
class InterfaceA {

public:

InterfaceA(){}

virtual ~InterfaceA(){}

virtual void CallOperationAdd(void) = 0;

};

class InterfaceA_Helper: public InterfaceA {

public:

InterfaceA_Helper(){}

virtual ~InterfaceA_Helper(){}

virtual void CallOperationAdd_InterfaceA(void) = 0; //New pure virtual method

virtual void CallOperationAdd(void)final {return (CallOperationAdd_InterfaceA());}

};

• InterfaceB_Helper is defined, which inherits from the interface InterfaceB and
which implements all the pure virtual methods in the parent interface InterfaceB.
Each implementation contain a simple call to the new pure virtual methods
added. The InterfaceB_Helper class is designed and implemented the same
way as InterfaceA_Helper is designed in the code excerpt in Listing 6.1.

The combined effect is that now, more than one original parent interfaces (resembling
model entities) can have same operations and interface attributes. The refined interfaces
redefine the methods from the original parent interfaces, so that there are no confusions
between operations from different interfaces. Of course, a straight forward solution
would have been to incorporate the concept of namespaces from C++, but it is not
suitable for this design and the reason is explained later in this section while discussing
about mapping for component types.

For each interface operation and interface attribute in an interface, a C++ struct is
defined to carry around the values of the operation parameters or the values of the
interface attributes. These data structures come in handy, when the interface operations
or interface attribute access operations need to be accessed asynchronously. The data
structures also hold general purpose polymorphic function wrappers from C++11
standard as shown in [5] to store the call-back functions wherever appropriate.

For our example OBSW model:

• A struct OperationAddStruct_InterfaceB is defined as shown in Figure 6.10.

• A struct StatusValueStruct_InterfaceB is defined as shown in Figure 6.10.
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Figure 6.10.: UML class diagram representation of data structures for interface opera-
tion and interface attribute in the example OBSW model

All the infrastructure code entities mentioned above are present in the namespace
General. They are placed in the namespace General because these structs are used by
both Caller and Callee components.

6.3.3.4. Parameter channels and parameter queues

The data structures which are defined to carry around the values of the operation
parameters or values of the interface attributes, need to be pushed onto parameter
channels, each one of which is supported in the back end by a corresponding parameter
queue.

For our example OBSW model: ParameterChannel and ParameterQueue C++ classes
as shown in Figure 6.11 are defined. These classes can be reused for any OBSW model
i.e., they are generic code for all OBSW models.

All the infrastructure code entities mentioned above are present in the namespace
General as these classes are used by both Caller and Callee components.

6.3.3.5. Event emitter ports and event receiver ports

The event emitter port for a particular event is mapped as an abstract base class and
a corresponding concrete implementation class in C++. The event receiver port for a
particular event is mapped only as an abstract base class. The abstract base class for
event receiver port also contains pure virtual methods in order to safely interleave the
reception of events.

For our example OBSW model: The FailureEventEmitterPort is mapped as a pair of
abstract base class and a concrete implementation class as shown in Figure 6.12.
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Figure 6.11.: UML class diagram representation of parameter channel and parameter
queue in the example OBSW model

For our example OBSW model: The FailureEventReceiverPort is mapped to an
abstract base class as shown in Figure 6.13.

Figure 6.12.: UML class diagram representation of event emitter port in the example
OBSW model
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Figure 6.13.: UML class diagram representation of event receiver port in the example
OBSW model

The FailureEventEmitterPortInterface and FailureEventEmitterPort classes are de-
fined in the namespace Component_Callee as component Callee is the component which
can emit a FailureEvent.

The FailureEventReceiverPortInterface is defined in the namespace Component
_Caller as component Caller is the component which can receive a FailureEvent.

6.3.3.6. Component types

A component type can be mapped to an abstract base class in C++ as shown in [36]. A
component type must provide all the operations that are listed in the provided interfaces
of the component [35]. Hence it inherits from all the interface helper classes which are
referenced by its provided interfaces as in [36].

This is where interface helper classes, with redefined operations come in handy, because
C++ does not distinguish between operations with same signatures, although they are
inherited from different namespaces. A component type must also inherit from the
mapped abstract base classes for event receiver ports.

A component type must also have pure virtual methods which obtain and release the
semaphores for the concurrent access of different operations that it provides. In addition
to these, pure virtual methods need to be added, which act as call-back functions for the
operations, that the component type’s required interface ports request to be released
asynchronously.

For our example OBSW model:
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• As shown in Figure 6.14 ComponentType in the namespace Component_Caller in-
herits from the InterfaceA_Helper and also inherits from the abstract base class
FailureEventReceiverPortInterface. It has pure virtual methods meant for:

– Obtaining and releasing of semaphores for concurrent accesses of the opera-
tion CallOperationAdd_InterfaceA.

– Call-back function for the operation OperationAdd.

– Call-back function for the getter operation of the interface attribute
StatusValue.

• A shown in Figure 6.15 ComponentType in the namespace Component_Callee inher-
its from the InterfaceB_Helper. It has pure virtual methods meant for:

– Obtaining and releasing of semaphores for concurrent access of the operation
OperationAdd_InterfaceB.

– Obtaining and releasing of semaphores for concurrent access of the setter and
getter operations for the interface attribute StatusValue.

Figure 6.14.: UML class diagram representation of component type for Component
_Caller in the example OBSW model

6.3.3.7. Required interface ports

A required interface port is mapped as an abstract base class and a corresponding con-
crete implementation class in C++ as shown in [36]. The required interface subsumed
by a particular component type has various operations that it might request and each op-
eration has information specified whether the required interaction kind is synchronous
or asynchronous [34][35].
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Figure 6.15.: UML class diagram representation of component type for Component
_Callee in the example OBSW model

Each required interface port refers to one interface type and for each operation in the
required interface port, a pure virtual method is added to the abstract base class. The
signatures of these methods depend on whether the operations would be requested with
an asynchronous release pattern or a synchronous release pattern.

In case of interface operations:

• If the desired interaction kind for the operation is synchronous, then the signature
of the method in the abstract base class is same as the corresponding method in
the abstract base class for the interface, as shown in Figure 6.16.

• If the desired interaction kind for the operation is asynchronous, then the signature
of the method in the abstract base class bears no resemblance to the corresponding
method in the abstract base class for the interface. It is changed as shown in
Figure 6.17 to replace the out and inout parameters with a pointer to the desired
call-back function.

In case of interface attributes:

• For the setter operation, signature of the method in the abstract class is same as
the corresponding method in the abstract base class for the interface, as shown in
Figure 6.16 and Figure 6.17.

• If the desired interaction kind for the getter operation is synchronous, then the
signature of the method in the abstract class is same as the corresponding method
in the abstract base class for the interface, as shown in Figure 6.16.

• If the desired interaction kind for the getter operation is asynchronous, then the
signature of the method in the abstract base class bears no resemblance to the
corresponding method in the abstract base class for the interface. It is changed as
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Listing 6.2 Code excerpt from the generated code for requesting service OperationAdd

in RequiredInterfacePortType1

General::OperationAddReport_InterfaceB RequiredInterfacePortType1::OperationAdd (const

IntegerType& a,const IntegerType& b,IntegerType& c) {

General::OperationAddReport_InterfaceB myReport;

myReport = m_targetProvidedInterfacePort.OperationAdd(a,b,c); //Simple method call

return myReport;

}

Listing 6.3 Code excerpt from the generated code for interface attribute StatusValue

access in RequiredInterfacePortType2

void

RequiredInterfacePortType2::getStatusValue(callBackStatusValue_RequiredInterfacePortType2

callBackFunctionPtr) {

StatusValueStruct_InterfaceB myStruct;

myStruct.callBackFunctionPtr =

std::bind(callBackFunctionPtr,m_myCallerInstance,std::placeholder::_1);

m_targetProvidedInterfaceSlot.getStatusValue_Receiver(myStruct); //Simple method

call

}

shown in Figure 6.17 to replace the method parameter with a single pointer to the
desired call-back function.

The concrete implementation of any method, for example, as the one shown in the code
excerpt in Listing 6.2 is fairly simple, if the desired interaction kind for the corresponding
operation is synchronous. The implementation consists of a simple method call to the
corresponding operation in the abstract base class of the bound provided interface
port.

The concrete implementation for any method, for example, the one as shown in code ex-
cerpt in Listing 6.3 is fairly complex, if the desired interaction kind for the corresponding
operation is asynchronous. It would do the following things as explained in [37]:

• Make local copies of all the method parameters (if any) as it is necessary to ask for
an asynchronous release of the associated service.

• Pack them in the instances of data structures designed previously to carry the
corresponding parameters.

• Simple method call to the corresponding operation in the abstract base class of the
bound provided. interface port.

It is clear that local copies of the method parameters need to be made because the
desired interaction kind is asynchronous.
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For our example OBSW model: The following C++ classes are defined:

• RequiredInterfacePortType1Base abstract base class and its corresponding
RequiredInterfacePortType1 concrete implementation class.

• RequiredInterfacePortType2Base abstract base class and its corresponding
RequiredInterfacePortType2 concrete implementation class

The RequiredInterfacePortType1Base and RequiredInterfacePortType2Base have
pure virtual methods as per the general description and they have to be implemented
in the concrete implementation classes RequiredInterfacePortType1 and Required

InterfacePortType2 respectively. The concrete implementations are in line with the
description as in the general case above.

Figure 6.16.: UML class diagram representation of RequiredInterfacePortType1 for
Component_Caller in the example OBSW model

All the C++ classes mentioned above are present in the namespace Component_Caller.
As the component type Component_Callee does not have any required interface ports, no
C++ classes related to required interface ports are defined in the namespace Component
_Callee.
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Figure 6.17.: UML class diagram representation of RequiredInterfacePortType2 for
Component_Caller in the example OBSW model

6.3.3.8. Component implementations

A component implementation can be mapped in C++ as a concrete implementation of
its abstract component type base class. as in [36]. It implements all the pure virtual
methods that are inherited from its component type. It also has actual instances of
semaphores for allowing safe concurrent accesses to the implemented methods and for
safe interleaving between concurrent receptions of events of the same type.

A variation of the very famous Template method design pattern as discussed in [46] is
adopted in this Master thesis. It is used for the concrete implementation of the inherited
operations. According to [46], it is better to hide the concrete implementation of the
inherited virtual functions, and it is followed in this Master thesis.

In case of components that promote multiple provided interface ports which refer to
the same interface type, it is necessary to provide multiple implementations for the
operations in the provided interfaces. In order to solve this problem a class hierarchy as
shown in Figure 6.19 is decided upon in this Master thesis. As this kind of class hierarchy
involves multiple inheritance and is an eligible candidate for the Diamond Problem in
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C++ [49], suitable measures are taken in the code generation step to avoid the usage
of ambiguous base classes for polymorphic method calls:

• A component implementation abstract base class is designed which contains imple-
mentations for inherited pure virtual methods related to acquiring and releasing
of semaphores. Also the inherited pure virtual methods which are provided only
once are implemented here.

• A component implementation abstract base class is further extended by dummy
abstract base classes. A dummy base class is added for each of the provided
interface ports which refer to the same interface type. These dummy abstract base
classes help in testing of the implementations of the services which are provided
more than once by multiple provided interfaces. With the help of these dummy
abstract base classes, mock implementation classes can be easily created and
used for testing [14]. Also because the component type class for the intended
component implementation classes with this kind of hierarchy, forms an ambiguous
base, these dummy base classes are necessary for polymorphic method calls.

• These dummy abstract base classes are extended by concrete implementation
classes which provide different concrete implementations for all the inherited
operations except the ones, which are already implemented in the component
implementation abstract base class. Template method pattern [46] is used in these
concrete component implementation classes.

• As it is a necessity to have only one instantiable concrete implementation per
component [36][34][35], all the concrete implementations are inherited one last
time in a component implementation class. This instance is now deployable on the
hardware platform.

For our example OBSW model:

• ComponentImplementation concrete implementation class in the namespace
Component_Caller inherits from the abstract base class Component_Type in names-
pace Component_Caller as shown in Figure 6.18. It provides implementation for
all the inherited pure virtual methods.

• Because the ComponentType in the namespace Component_Callee has two provided
interface ports namely, ProvidedInterfacePort1 and ProvidedInterfacePort2,
which refer to InterfaceB, the following classes as shown in Figure 6.19 are
created in the namespace Component_Callee:

– ComponentImplementationBase which is an abstract base class, but provides
implementation for inherited pure virtual methods related to acquiring and
releasing of semaphores.
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– ComponentImplementationBase_ProvidedInterfacePort1 and Component

ImplementationBase_ProvidedInterfacePort2 which are two dummy ab-
stract base classes.

– ComponentImplementation_ProvidedInterfacePort1 and ComponentImpl

ementation_ProvidedInterfacePort2 which provide different implemen-
tations for all the inherited operations except the ones implemented in
ComponentImplementationBase.

– ComponentImplementation which inherits from both ComponentImplemen

tationProvidedInterface1 and ComponentImplementationProvidedInter

face2.

Figure 6.18.: UML class diagram representation of component implementation for
Component_Caller in the example OBSW model

6.3.3.9. Provided interface ports

A provided interface port is mapped to an abstract base class and a corresponding con-
crete implementation class as shown in Figure 6.20 and Figure 6.21. The provided inter-
face promoted by a particular component type has various operations that are provided
and each operation has a desired release pattern attached as a non-functional/extra-
functional property [34][35]. How the provided interface ports can be mapped to
classes is illustrated in [10]. Each provided interface port refers to one interface type
and for each operation in the provided interface port, a pure virtual method is added
to the abstract base class. The signatures of these methods depend on whether these
operations are requested with a synchronous release pattern or an asynchronous release
pattern.
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Figure 6.19.: UML class diagram representation of component implementations for
Component_Callee in the example OBSW model

In case of interface operations:

• If the interface operation on the provided interface is expected to be called syn-
chronously, then the signature of the method in the abstract base class is same as
the corresponding method in the abstract base class for the interface, as shown in
Figure 6.20 for OperationAdd.

• If the interface operation on the provided interface is expected to be called asyn-
chronously, then the signature of the method in the abstract base class is changed
as shown in Figure 6.21 for OperationAdd, to accept a data structure sent by the
required interface port, designed to carry the values of the parameters for the
operation along with a polymorphic function-wrapper for the call-back function.
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In case of interface attributes:

• For the operations which set and get the values of the interface attributes syn-
chronously, the signatures of the methods in the abstract base class are same as
the corresponding method in the abstract base class for the interface.

• For the operations which set and get the values of the interface attributes asyn-
chronously, the signatures of the methods in the abstract base class are changed
to accept a data structure sent by the required interface port, designed to carry
the values of the interface attribute, as shown in Figure 6.21. The data structure
would also contain a valid polymorphic function-wrapper for the call-back function
in case of getter operation for the interface attribute.

The following additional pure virtual methods are added to the abstract class for a
provided interface port:

• For each interface operation and interface attribute setter/getter operation which
is called asynchronously, an additional pure virtual method is added to store the
address of the task channel, to which the data structure corresponding to the
operation needs to be pushed. Refer figures Figure 5.2, Figure 5.3, Figure 5.4 in
Section 5.2.2 of Chapter 5, where a diagrammatic representations of the required
pushes onto the task channel are depicted.

• An additional pure virtual method for storing the reference to their corresponding
component implementation base class as shown in Figure 6.20 and Figure 6.21.
Using a reference to the component implementation, the service can be scheduled
immediately in case of synchronous service release requests.

• An additional pure virtual method as shown in Figure 6.22, for storing the reference
of the task from tasking framework which is responsible for periodically requesting
the service in the provided interface port which has the interaction kind set to
cyclic. Using this reference to the task, it is possible to ask the task to start its
operation immediately or if necessary, after an initial offset [35].

[10] mentions about two kinds of provided interface ports, namely, Behavioral provided
interface ports and Delegating provided interface ports. A Behavioral provided interface
port, any incoming message is simply forwarded to the containing object and in case
of a Delegating provided interface port, messages are simply forwarded to the other
objects called ’parts’ in UML. In case of OSRA, there can be a combination of Behavioral
and Delegating provided interface ports as each operation in a provided interface port
can be called synchronously or asynchronously.

The concrete implementation for the above mentioned pure-virtual methods, in case the
corresponding operation is requested to be released synchronously, consists of a simple
call to the corresponding method in the referenced component implementation base
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Figure 6.20.: UML class diagram representation of ProvidedInterfacePort1
_Component_Callee_inst for Component_Callee in the example OBSW
model

Figure 6.21.: UML class diagram representation of ProvidedInterfacePort2
_Component_Callee_inst for Component_Callee in the example OBSW
model

class as shown in code excerpt in Listing 6.4. This can be compared to the simple passing
of the received message to the containing object, in case of Behavioral provided interface
port, as shown in [10]. When the non-functional property attached with release of the
operation on the provided interface side is Protected, then the implementation also
includes acquiring and releasing of semaphore associated with the operation as shown
in code excerpt in Listing 6.4.

The concrete implementation for the above pure-virtual methods, in case the correspond-
ing operation is requested to be released asynchronously, consist of pushing the data
structure associated with the operation onto the corresponding task channel as shown in
code excerpt in Listing 6.5. This can be compared to the simple passing of the received
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Figure 6.22.: UML class diagram representation of ProvidedInterfacePort_Component
_Caller_inst for Component_Caller in the example OBSW model

Listing 6.4 Code excerpt from the generated code for operation OperationAdd access in
ProvidedInterfacePort1_Component_Callee_inst which is called synchronously and
has Protected as a non-functional property attached to it
General::OperationAddReport ProvidedInterfacePort1_Component_Callee_inst::OperationAdd

(const IntegerType& a,const IntegerType& b,IntegerType& c) {

General::OperationAddReport_InterfaceB myReport;

m_myComponent->lockOperationAdd_InterfaceB();

myReport = m_myComponent->OperationAdd(a,b,c); //Simple method call

m_myComponent->releaseOperationAdd_InterfaceB();

return myReport;

}

message to a nested object such as a ’part’, in case of Delegating provided interface
port, as shown in [10]. The ’part’ in our example can be considered to be a task or a
task channel from Tasking framework to which the data structure (message) is pushed
onto. A diagrammatic representation of such a push that is required, is already shown
in figures Figure 5.2, Figure 5.3, Figure 5.4, in Section 5.2.2 of Chapter 5.

The concrete implementation for the above pure-virtual methods, in case the correspond-
ing operation is requested to be released with non-functional property as cyclic, then
it is a simple call to start the task using the reference to the task as shown in the code
excerpt in Listing 6.6.

Listing 6.5 Code excerpt from the generated code for operation OperationAdd access in
ProvidedInterfacePort2_Component_Callee_inst which is called asynchronously
void ProvidedInterfacePort2_Component_Callee_inst::OperationAdd_Receiver

(General::OperationAddStruct_InterfaceB myStruct) {

m_myOperationAddChannel->push(myStruct); //A push onto the task channel

}
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Listing 6.6 Code excerpt from the generated code for operation CallOperationAdd in
ProvidedInterfacePort_Component_Caller_inst which has non-functional property set
as Cyclic
void ProvidedInterfacePort_Component_Caller_inst::CallOperationAdd(void) {

m_mycallOperationAddTask->startPeriodicTask(); //Method call to start the task

}

For our example OBSW model: The following classes as shown in Figure 6.20, Fig-
ure 6.21, Figure 6.22 are defined:

• ProvidedInterfacePort1_BaseComponent_Callee_inst abstract base class and its
corresponding ProvidedInterfacePort1_Component_Callee_inst concrete imple-
mentation class.

• ProvidedInterfacePort2_BaseComponent_Callee_inst abstract base class and its
corresponding ProvidedInterfacePort2_Component_Callee_inst concrete imple-
mentation class.

• ProvidedInterfacePort_BaseComponent_Caller_inst abstract base class and its
corresponding ProvidedInterfacePort_Component_Caller_inst concrete imple-
mentation class.

All the abstract base classes have pure virtual methods as per the general description
given above and they have to be implemented in the corresponding concrete implemen-
tation classes. The concrete implementations are in line with the description as in the
general case above.

6.3.3.10. Tasks from the Tasking framework

In the discussions about designing a programming model for OSRA in Chapter 5, it was
clear that the threads of control might contain tasks from the Tasking framework. Each
task is mapped to an abstract base class and a concrete implementation class in C++.
A task would have instances of the required task inputs, task event as per the required
threads of control explained Chapter 5.

Each task stores a reference to the base class of the component implementation in order
to access the services implemented in the respective component implementation.

For our example OBSW model: The following classes as shown in Figure 6.23, Fig-
ure 6.24, Figure 6.25, Figure 6.26 are defined:
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• CallOperationAddPeriodicTaskBase_ProvidedInterfaceSlot abstract base class
and CallOperationAddPeriodicTask_ProvidedInterfaceSlot concrete implemen-
tation class, in order to call operation CallOperationAdd in the ProvidedInterface

Slot perioidically every 2s.

• OperationAddSporadicTaskBase_ProvidedInterfaceSlot2 abstract base class and
a corresponding OperationAddSporadicTask_ProvidedInterfaceSlot2 concrete
implementation class, in order to call operation OperationAdd in the Provided

InterfaceSlot2 sporadically with a MIAT of 2s.

• StatusValueSetterTaskBase_ProvidedInterfaceSlot2 abstract base class and a
corresponding StatusValueSetterTask_ProvidedInterfaceSlot2 concrete imple-
mentation class, in order to provide asynchronous access to the setter operation of
the interface attribute StatusValue in the ProvidedInterfaceSlot2.

• StatusValueGetterTaskBase_ProvidedInterfaceSlot2 abstract base class and a
corresponding StatusValueGetterTask_ProvidedInterfaceSlot2 concrete imple-
mentation class, in order to provide asynchronous access to the getter operation of
the interface attribute StatusValue in the ProvidedInterfaceSlot2.

• FailureEventReceiverTaskBase abstract base class and a corresponding Failure

EventReceiverTask concrete implementation class, for the reception of Failure
Event which are emitted by the Component_Callee asynchronously and to forward
it to Component_Caller.

6.3.3.11. Component containers

A container of a component can be mapped to a class in C++ as in [36]. A component
container consists of the following entities:

• Instances of required interface ports.

• Instance of component implementation.

• Instances of tasks which are necessary to handle services which are called asyn-
chronously.

• Instances of tasks which are necessary to receive asynchronous events.

• Instances of event emitter ports.

A component container is also responsible for initializing the following:

• The instantiated component instance by providing references of the event emitter
ports.
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Figure 6.23.: UML class diagram representation of the task required to call
CallOperationAdd in ProvidedInterfacePort_Component_Caller_inst

perioidcally with a period of 2s in the example OBSW model

• The event emitter ports by providing reference of the corresponding task channel
to which a emitter port needs to push an instance of the event.

• The provided interface ports by:

– Triggering the operations in the provided interface ports which have the
desired non-function property set as cyclic.

– Providing reference of the component instance in order to access the service
directly in case the service is requested to be released synchronously.

– Providing references of the different task channels they need to push the data
structures associated with the operations onto, in order to handle the services
which are requested to be released asynchronously.

• The instances of tasks with reference of component instance in order to schedule
the execution of the services.

• The required interface ports by providing references of:

– The instantiated component instance, in order to initialize the data structures
of the operations with correct function wrappers for call-back functions.
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Figure 6.24.: UML class diagram representation of the task required to call
OperationAdd in ProvidedInterfacePort2_Component_Callee_inst spo-
radically with a MIAT of 2s in the example OBSW model

– The respective provided interface port each one of them is bound to.

• The event receiver tasks with reference of the corresponding component instance
and the corresponding channels which needs to be associated with their respective
task inputs.

For our example OBSW model: The following classes as shown in Figure 6.27 and
Figure 6.28 are defined:

• Container in the namespace Component_Caller which is the container for the com-
ponent instance Component_Caller_inst and its provided and required interface
slots.

• Container in the namespace Component_Callee which is the container for the
component instance Component_Callee_inst and its provided interface slots.

Both the containers have instances of their respective different components as explained
in the general case and as shown in Figure 6.27 and Figure 6.28. They are responsible for
the initialization of different components as explained in the above general description.
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6.4. Code generation using Xtend

The reference implementation of the OSRA component model consists in a set of .ecore
metamodels [34]. Ecore is an implementation of the Essential Meta Object Facility
(EMOF), the meta-meta language by the Object Management Group (OMG) for the
specification of meta-models [34]. The main advantage of using Ecore is the ready
availability of graphical editors for the specification of metamodels and powerful support
provided by the Eclipse Modeling Framework (EMF), which is a framework of the Eclipse
development platform that permits to generate a code implementation of the metamodel
entities, basic editors for the creation of models conforming to the metamodel under
development [34].

It is an implementation decision in this Master thesis to use Xtend for the code gen-
eration. Xtend is a general purpose Java-like language that is completely operable
with Java [2][51]. Other alternative would have been to use Xpand as in the ’Case
study: Embedded Component Infrastructures’ in [44], but writing the code generator
using Xtend has various advantages like better IDE support, speed, debuggability, better
extendability as listed in [11]. Xtend also has a more concise syntax than Java and
provides powerful features such as type inference, extension methods, dispatch methods,
an lambda expressions and the all important multiline template expressions, which are
useful when writing code generators [2][51]. Xtend also provides powerful features
that make model visiting and traversing really easy, straightforward, and natural to read
and maintain [51].

Xtext is an eclipse framework for implementing programming languages and Domain-
Specific language (DSL) [2]. Xtext helps to implement languages quickly, and most
of all, it covers all the aspects of a complete language infrastructure like parser, code
generator etc. Xtext uses Google Guice, which is a dependency injection framework to
create and call a code generator [2]. The dependency injection pattern basically allows
to inject implementation objects into a class hierarchy in a consistent way [14]. The
Xtext’s generator support can be used in Xtend directly to build code generators for
non-Xtext based models, such as the OBSW models which are constructed using the non
Xtext based OSRA component model [9].

The tutorial in [48] is used as a base in this Master thesis to construct a code generator
using Xtend for non-Xtext based models and also provide a UI integration for the code
generator.
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6.5. Organizing the generated code

As explained in the previous sections, adopting separation of concerns even at the
implementation level is one of the primary goals of this chapter and we have success-
fully achieved it in the discussions on software design for the infrastructural code in
Section 6.3.3.

To further emphasize on separation of concerns at the implementation level, it is
necessary to properly separate the generated infrastructure code into a meaningful files
in a suitable file structure helping the third party software supplier to separate the
automatically generated code from the code that needs to be supplied [44]. This is
of prime importance for the third party software supplier to not accidentally lose the
implementations in successive code generation cycles.

The overall idea would be to:

• Generate two types of folders to clearly separate the infrastructural code entities,
at the component type level from the infrastructural code entities at the component
instance level. The number of folders at the component instance level, depends on
the actual number of component instances.

– The first folder type would hold C++ classes related to its component type,
required interface ports, event emitter ports, event receiver ports in the sub-
folder named as AutogeneratedCode. It also contains C++ classes related to
component implementations and because it is the unit of sub-contract, it is
placed in a separate sub-folder named as UserCode. The third-party software
supplier can alter the code in this folder safely without the fear of the code
being overwritten by successive code generation cycles. Care is taken in the
code generator to generate the classes in these files only once.

– The second folder type would hold the C++ classes related to its component
instances, namely, provided interface ports, component containers in the sub-
folder named as AutogeneratedCode. As already explained the component
container class for a component instance would contain provided and required
interface slots and the component instance itself.

• The folder named as DatatypesInterfacesEventsAndExceptions would hold C++
classes related to the data types, exceptions, events, parameter channel and their
corresponding parameter queues.

The folder structure for our running example is listed in Appendix A.
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Figure 6.25.: UML class diagram representation of the tasks required to set and get the
values of the interface attributes asynchronously in ProvidedInterface

Port2 in the example OBSW model
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Figure 6.26.: UML class diagram representation of the task required for the reception
of the FailureEvent in the example OBSW model

Figure 6.27.: UML class diagram representation of the container for Component_Caller
in the example OBSW model
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Figure 6.28.: UML class diagram representation of the container for Component_Callee
in the example OBSW model
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Chapter 7

Evaluation of the code generator

7.1. Introduction

By using model-driven engineering tools (MDE) tools for code generation, it is possible to
generate software code automatically and achieve extremely high developer productivity
rates of thousands of function points and millions of lines of code per person-month
[21]. But, as we have seen in the previous chapters, the MDE approach consists of more
than code generation tools; It defines the entire software-engineering approach that can
impact the entire lifecycle from requirements gathering through sustainment [35][1].

It is important to consider these tools and methods in the context of a particular
system acquisition i.e., the MDE methods and tools need to be aligned with the system
acquisition strategies, which would in turn improve system quality, reduce time to field,
and reduce sustainment cost [21]. System acquisition strategies include:

• Securing the necessary data rights and licensing for tools, models, generated code,
run-time libraries, frameworks, and other supporting software.

• Reviewing and evaluating appropriate artifacts introduced by the MDE tools at the
right time in the acquisition cycle.

• Approaches to manage program risks, include risk identification and mitigation.

If the methods and tools do not align with the system acquisition strategy, using them can
result in increased risk and cost in development and sustainment [21]. The acquirers in
government or large commercial enterprises have the challenge of selecting contractors
to develop their systems. The tools and processes selected by the contractors and
developers have direct impact on the software quality concerns of the acquirer, who
often has little influence on the selection of these tools and processes. The tool acquirer
would then have to answer the following acquisition evaluation questions [21]:
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• Do the engineering processes and associated development tools match the desired
acquisition strategy?

• Do the tools support the developer’s software development methodology?

• Are the code generation tools capable of integrating with other development and
management tools to support measurement and monitoring of the development
progress?

• Will the selected development methodology, with its associated tools be available
and compatible for the expected life-cycle of the system?

This chapter subjects the code generator developed as a part of the Master thesis to
evaluation methods listed in [21] and provides necessary inputs for conducting the
acquisition evaluation.

7.2. Selection and evaluation methods of a MDE tool for
code generation

The step-by-step MDE tool selection process defined in [21] makes use of the Plan
Establish Collect Analyze (PECA) method [7] as shown in Figure 7.1.

Figure 7.1.: The PECA Process

Source: [7]

As a part of the Establish criteria step in the PECA process, the acquirer must
establish criteria using which he has to decide whether a particular tool for automatic
code generation is suitable for a specific system acquisition. Such a criteria can be
developed using risk taxonomy [8] which ensures that all relevant acquisitions strategies
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are covered i.e., it provides a checklist to ensure all potential risks are considered [21].
The risk taxonomy has three main sections [8]:

Product engineering This covers activities that create a system that satisfies the speci-
fied requirements and customer expectations. Risks in this area generally arise from
requirements that are technically difficult to achieve, inadequate requirements and
design analysis, or poor design and implementation quality.

Development environment This includes risks related to the development process and
system, management methods, and work environment.

Program constraints This cover risks that arise from factors external to the project.

To establish a criteria for a particular program or project, it is necessary for the program
to first scan the risk taxonomy and identify those areas that apply for the project. Each
risk creates one or more acquisition concerns , which may refine the program risk or
indicate how certain tool features or capabilities might help mitigate the risk [21].

As part of the Collect data step in the PECA process, a vendor self-assessment ques-
tionnaire is prepared as in [21] which is given to the MDE tool vendors, to provide data
needed to make the tool selection decision.

As a part of the Analyze data in the PECA rocess, it is then necessary to position these
acquisition concerns in the specific program context and finally decide whether acquiring
a particular tool is beneficial for the project.

In this Master thesis, a subset of evaluation criteria is chosen from Appendix A in [21].
The risk areas and the acquisition concerns which are meaningful in the scope of this
Master thesis are chosen. For example, the [21] discusses about potential risks in the
Process Management area of the project and because these are of no interest in this
Master thesis and are not considered. Each of the acquisition concerns in Appendix A of
[21] are then linked to the questions in the vendor self-assessment questionnaire listed
in Appendix B of the [21]. For our chosen subset of potential areas and the acquisition
concerns within this Master thesis, an attempt is made to answer the corresponding
linked questions in the questionnaire. The tables Table 7.1, Table 7.2, Table 7.3, Table 7.4,
Table 7.5, Table 7.6 showcase these efforts.
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Table 7.1.: Evaluation Criteria - Product Engineering Risk Area (Requirements)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Requirements

Stability

Responding to requirements
changes may necessitate
operating on partially complete
models and performing
refactoring or rework on
models

The OBSW models designed using the OSRA Component
Model should be subjected to model validation against the
OSRA Specification Compliance and the SCM Metamodel
Compliance before it is subjected to automatic code
generation. In that case, the OBSW model, even if partially
complete can be subjected to code generation if it clears the
model validation step

Communication with stake-
holders is partially important
to resolve requirements issues,
so tool features that support
this become more important

It is possible to annotate each of the model entities while
constructing the OBSW model with information which
can be used for communicating with the stakeholders.
There is no additional documentation tool which comes with
the OSRA SCM tool suite

Interfaces between the soft-
ware modeling tools and
the requirements management
tools promote co-evolution
of requirements and software

There is no support for tracing requirements to model
elements at the current state of development of OSRA
SCM

Completeness
Clarity
Validity

In addition to the concerns
noted above about require-
ments stability, the ability to
execute or simulate the exe-
cution of the model can help
validate requirements
completeness

At the current stage of the development of the OSRA
SCM, it is not possible visualize the execution of the model.
It is only possible to create static models of the OBSW
and it is not possible to trace the flow of execution
through the model, or inject data or events into the model

Feasibility

The ability to perform analysis
of the model for qualities
such as latency, throughput
and consistency can help
demonstrate the feasibility
of requirements

The model-based static analysis of the OBSW model is not
possible at the current stage of development of the OSRA.
Step 10 of the overall software development process
in Section 3.2 in Chapter 3 gives an idea about the
analysis of latency, throughput etc. which can be perform-
ed on the OBSW model in the future

Scale

Limitation on the size or
complexity of the model
that can be represented,
analyzed, or transformed
by the tool will limit the scale
of the system that can be
created

There are no size and complexity limitations for representing
the OBSW models using the OSRA SCM tools
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Table 7.2.: Evaluation Criteria - Product Engineering Risk Area (Design)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Design

Interfaces

If only parts of the system
will be automatically gene-
rated, while other parts will
be developed using traditional
approaches, the interfaces bet-
ween these two types of
software must be designed
and developed

In the software design for the generated infrastructure code,
the model entities are mapped to infrastructural code
entities. As the model entities clearly separates the two
types of code, the generated infrastructural code entities
also clearly separates the generated code from the user
code, which may be developed using traditional approaches.
The generated source code needs to be compiled. The
generated C++ source code works with the Tasking frame-
work written in C++. The code is generated for the Linux
platform and GCC C++ compiler conforming to the C++11
standard can be used to compile to the source code.
The code generator also generates SCons build scripts for
building the generated software code automatically

Testability

The tool should generate code
that exposes internal states and
interfaces needed to test the
generated software

The generated infrastructural code is testable as testability
of the generated code is one of the main concerns in the
software design for the infrastructural code. (Effective test-
ability of the generated code is proven for our running
OBSW example)
Mock C++ classes for different infrastructural code entities
and automatic test cases can also be generated in future
using the code generator

Hardware
constraints

The generated code must be
sufficiently efficient (in terms of
processors, memory, network,
disk, and other resource utiliz-
ation) to operate in the target
environment

The generated code is based on Tasking framework written
in C++. The generated code at the moment is not optimized
for efficient usage of processor and memory, however they
can be targeted in an extension to this Master thesis. The
Tasking framework plays an important role in effective
utilization and abstractization of the hardware resources,
resource handling in the Linux environment

Non-deve-
lopmental
software

Any runtime packages, librar-
ies, or other software required
to execute the generated code
must be known, compatible
with the current and future
target environments, and able
to be certified for use in other
environments

The generated code depends on Tasking framework which
is written in C++. The generated code uses Linux as the
target environment and hence uses Tasking framework
which sits on top of the Linux POSIX library. As Tasking
framework is internal to DLR, no certification efforts have
been done. The compatibility of Tasking framework for
future environments is not of concern in this Master thesis.
The build system which is automatically generated by the
code generator makes use of SCons for building the
generated code
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Table 7.3.: Evaluation Criteria - Product Engineering Risk Area (Integration and Test)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Integration and Test

Environment

The generated code may have
run-time dependencies on third
party software or software
provided by the tool vendor.
This software must be compa-
tible with the integration
environment

The generated code has run-time dependencies on the
Tasking framework which is internal to DLR and no
integration tests are automatically generated at the moment
from the code generator.
SCons build scripts are also automatically generated by the
code generator which helps in building the generated code

Product
System

The tool should generate code
that exposes internal states and
interfaces needed to test the
generated software code

The generated infrastructural code is testable as testability
of the generated code is one of the main concerns in the
software design for the infrastructural code. (Effective test
-ability of the generated code is proven with an example in
the subsequent chapter).
Mock C++ classes for different infrastructural code entities
and automatic test cases can also be generated in future
using the code generator

Table 7.4.: Evaluation Criteria - Program Constraints Risk Area (Resources)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Resources

Schedule

Developer productivity is
measured differently when usi-
ng automatic code generation
approaches

There is definite increase in the developer productivity
because all the infrastructural code are automatically
generated and the third-party software supplier needs to
concentrate only on the functional code which is most of
the times sequential in nature [35].
No metrics are however available from completed project

Budget

The tool, including any optional
features (eg. import, export
and integration with other tools)
along with the environment to
execute the tool, must be
acquired

As the generated code makes use of the Tasking framework
written in C++ and the target platform for the generated
code is Linux, it is necessary for the organization to use
this platform. As the code generator is itself an Eclipse plugin,
it is necessary for the organization to acquire Eclipse tool
suite for Java and DSL developers. If necessary, the organiza-
tion may also need to acquire the OSRA SCM model editor.
Also, SCons software construction tool is necessary to use
the build scripts that are generated for building the
generated code. GCC C++-11 compatible compiler
is required for compiling the generated software code
These tools need to be acquired and can cause variation in the
budget for the project
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Table 7.5.: Evaluation Criteria - Development Environment Risk Area (Development
Process)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Development Process

Process
Control

The tool must provide mecha-
nisms for maintaining consiste-
ncy of modeling, analysis, and
generation at the scale required
to develop and sustain the
system (eg. multiple teams,
multiple connected sites, and
multiple contractors)

It is unclear whether the overall software development
process as a result of adopting OSRA SCM and its tool
suite, is scalable for multiple teams, multiple connected
sites, and multiple contractors. The code generator which
is developed as a part of this Master thesis does not
support them as well
It is possible for the user to define reusable templates
(eg. Interfaces) that the user can later adopt in another
model

Product
Control

An update to the tool may
necessitate repeating model
analyses, repeating code gene-
ration, and repeating test, inte-
gration, and certification. Tools
that are rapidly evolving may
put a strain on the development
process

Any update to the code generation tool which is developed
as part of this Master thesis, necessitates repeating code
generation and all the efforts such as repeating test cases
generation, integration and certification that follows the
code generation

If the tool is delivered as a
service, then configuration
control of the tool is provided
by the vendor

At the current stage of development, the OSRA tool suite
does not include a configuration control tool
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Table 7.6.: Evaluation Criteria - Development Environment Risk Area (Development
System)

Risk area

Potential Acquisition
Concerns

Related to MDE Tools for
Automatic Code Generation

Answers to the linked questions
in the questionnaire

Development System

Capacity

The tool’s modeling, analysis,
and code generation environm-
ent will require the development
and sustainment organization to
deploy particular platforms and
prerequisite software

As the generated code makes use of the Tasking framework
written in C++ and the target platform for the generated
code is Linux, it is necessary for the organization to use
this platform. As the code generator is itself an Eclipse
plugin,it is necessary for the organization to acquire Eclipse
tool suite for Java and DSL developers. If necessary the
organization may also acquire the OSRA SCM model editor
as well.
Also, SCons software construction tool is necessary
to use the build scripts that are generated for building the
generated code. GCC C++-11 compatible compiler
is required for compiling the generated software code.

Usability

Integration of the tool with up-
stream (e.g., requirements mgt.)
and downstream (e.g.,integra-
tion or certification) tooling
improves usability

At the current phase of development of OSRA tool suite
there are no tools which help in requirements manage-
ment, integration or certification of the generated code

Familiarity

If the development and sustain-
ment teams are not familiar with
the tool, training and support
must be available to enable the
organizations to gain the know-
ledge and skills needed to
develop and sustain the soft-
ware

As the OSRA software development process makes use of
the Component-Based Software Development process and
Model Based Software Engineering, it is necessary that the
development and sustainment teams need to have prior
knowledge about these practices.
The development teams also need time to have a good
understanding of the OSRA SCM component model to
effectively design the OBSW models. They also need to be
trained to use the OSRA SCM model editor and the code
generator which is designed as a part of this Master thesis
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Chapter 8

Conclusions

8.1. Discussion

As a part of this Master thesis, the following things are accomplished:

• A choice is made to use the Tasking framework as a computational model so
that the OSRA component model statically binds to the Tasking framework which
formally defines the computational entities and the rules which govern their usage.

• A reference programming model is decided upon that enforces the analysis as-
sumptions and which permits to express exclusively the semantics imposed by
the analysis theory and which conveys the implementations of the desired non-
functional properties using the primitives from the Tasking framework.

• Different corner cases which might arise during the construction of an OBSW
model using the OSRA component model are identified.

• An overall software design approach for the generated infrastructure code of the
OBSW models is presented and a mapping of the OBSW model design entities to
the infrastructural code entities is presented.

• A code generator is implemented, using which the generation of the entire non-
functional code i.e., the code for handling the concurrency and interaction re-
quirements for communication between components and generation of component
containers and component connectors can be automated. The code generator
uses the already tried and tested Tasking framework as the platform and bases
the generated code on it. The advantage of this is that it eases the model-to-code
transformation step.

• The implemented code generator is tested for multiple OBSW models as shown in
Appendix B which capture the different corner cases identified.
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• For the simple OBSW model example which was introduced in Chapter 6, a set
of unit test cases are written using Gtest and Gmock frameworks [50] and test
coverage reports are generated.

The following results were obtained

• The implemented code generator successfully generates the infrastructural code
entities for all the example OBSW models listed in Chapter 6 and Appendix B. The
generated code in all cases is successfully compiled to an executable along with
Tasking framework using GCC C++ compiler conforming to the C++11 standard
for the Linux platform.

• The test coverage reports generated for the unit tests written for the simple OBSW
example are analyzed. The results show that the testability factor of the generated
code is high and the infrastructural code entities can be efficiently tested, meeting
the needs for high testability of the generated software.

8.2. Identified shortcomings of Tasking framework

During the course of the Master thesis, the following shortcomings of the current version
of Tasking framework, which is chosen as a computational model for this Master thesis
are identified:

• Tasks from Tasking framework are used in various threads of control as explained
in Chapter 5. At the heart of the Tasking framework is a scheduler which schedules
tasks based on priorities and these tasks are non-preemptible at the moment [24].
This is one of the critical shortcomings in the current version of the Tasking frame-
work as it makes the generated software code which is based on Tasking framework
not suitable for hard real-time systems [27]. Time-monitoring architectures such
as Server-based architecture or Priority-Band architectures listed in [27] need to
be adopted in the Tasking framework in order to make the generated code truly
real-time capable. These architectures help in providing isolation of applications
i.e., tasks (at least) along three orthogonal dimensional axes: time, space and
communication [27].

• In the current version of the Tasking framework there is no possibility to measure
the run-time of the tasks and monitor deadline violations which are mostly caused
by WCET overruns of either the task at hand or a higher priority task. This
limits the extent of property preservation in the model-to-code transformation step
[27]. It is of very high importance that the system properties asserted during the

102



8.3. Future Work

analysis and the assumptions made for the analysis to hold are preserved across
implementation and execution [36][27].

• It is also not possible to measure the execution time of a group of tasks which are
associated to the single time budget. Essentially, it is not possible to calculate the
Group Budget which accounts for their collective execution time. This incapability
makes the adoption of Server-based architecture in the Tasking framework more
difficult [27].

• In line with the inability to measure the run-time of the tasks from the Tasking
framework, Tasking Framework also does not provide any constructs for at least
coarse-grained fault detection and fault handling in case of deadline misses.

8.3. Future Work

As an enhancement to the current work, it is possible to extend this Master thesis in the
following directions:

• A rather straight forward improvement would be to generate the unit test cases
and mock classes for different infrastructural code entities automatically as part of
the model-to-code transformation step. This helps in automating the testing of the
generated code and testing the code entities independent of each other [50].

• The generated infrastructure code is found to have all the good characteristics
of a software as listed in Section 6.3.3 although the generated code needs to be
rigorously evaluated for each of these characteristics.

• Enable model-based round-trip analysis by conducting static analysis of the system
model in the non-functional dimensions of interest. For example, schedulability
analysis which verifies whether the timing non-functional requirements can be
met [3][35]. For this, a platform specific model (PSM) i.e., a Schedulability
Analysis Model (SAM) needs to be created from the declarative specification of the
concurrent semantics that decorate the user model and inputs for the schedulability
analysis tools needs to be automated so that the results of the analysis can be
seamlessly propogated back to the user space [3].

• Model-to-code transformation of more complex data types such as opaque types,
arrays, structures, unions, etc. which are possible to be instantiated in the OBSW
model.
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• Modeling of the relevant aspects of the hardware architecture and of the execution
platform services are not considered in this Master thesis. This includes deciding
upon a hardware topology which might include processing units and memory units,
pseudo components for avionics equipments such as sensors, actuators, storage
memories and remote terminals and hardware interconnections such as buses,
point-to-point links, serial lines etc. Modeling of the execution platform services
such as Monitoring and control (M&C) and include them as execution platform
service instances in the hardware topology also needs to be addressed.

• Only a small subset of possible non-functional properties are considered in this
Master thesis, and the realization of large number of other possible non-functional
properties are not considered. Non-functional properties such as worst-case execu-
tion time (WCET) bound for a certain operation, maximum memory footprint for
a component implementation, communication budget allowed for an implementa-
tion, size of data types allowed in the communication etc., are yet to be effectively
handled.

• Even though the programming model in Chapter 5 discusses about handling the
non-functional property Bursty which can be set on the provided interface side of
the component offering the service, this is not part of the current version of the
code generator due to time constraints in the Master thesis.
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Appendix A

A file structure for the generated code

Considering the example OBSW model introduced in Chapter 6, the generated code for
this example OBSW model is organized into following files and folders as explained
below:

All the data types, event types, interfaces, exception types that are used in the example
are stored along with the parameter channel and parameter queue as shown below:
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src-gen

DatatypesInterfacesEventsAndExceptions

include

Datatypes.h

Exceptions.h

FailureEvent.h

InterfaceA.h

InterfaceB.h

ParameterChannel.h

ParameterQueue.h

All the constituents of the component Caller are arranged as shown below:
src-gen

Component_Caller

AutogeneratedCode

include

ComponentType_Caller.h

EventReceiverPorts_Caller.h

RequiredInterfacePorts_Caller.h

src

ComponentType_Caller.cpp

EventReceiverPorts_Caller.cpp

RequiredInterfacePorts_Caller.cpp

UserCode

include

ComponentImplementation_Caller.h

src

ComponentImplementation_Caller.cpp

Component_Caller_impl_inst_Instance

AutogeneratedCode

include

ProvidedInterfacePorts_Caller_impl_inst.h

ComponentContainer_Caller_impl_inst.h

src

ProvidedInterfacePorts_Caller_impl_inst.cpp

ComponentContainer_Caller_impl_inst.cpp
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All the constituents of the component Callee are arranged as shown below:
src-gen

Component_Callee

AutogeneratedCode

include

ComponentType_Callee.h

EventEmitterPorts_Callee.h.h

src

ComponentType_Callee.cpp

EventEmitterPorts_Callee.cpp

UserCode

include

ComponentImplementation_Callee.h

src

ComponentImplementation_Callee.cpp

Component_Callee_impl_inst_Instance

AutogeneratedCode

include

ProvidedInterfacePorts_Callee_impl_inst.h

ComponentContainer_Callee_impl_inst.h

src

ProvidedInterfacePorts_Callee_impl_inst.cpp

ComponentContainer_Callee_impl_inst.cpp
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Appendix B

Additional OBSW examples

The code generator implemented as a part of this Master thesis, is also tested for other
example OBSW models, designed using the OSRA SCM Model editor. Each of these
examples are carefully constructed to capture all the corner cases listed in the section
Section 6.3.1. The complexity of each of these models is much higher when compared
to the simple OSRA example model introduced in Chapter 6.

B.1. Producer/Consumer problem

This problem is one of the problems in the collection of standard, well-known problems
in concurrent programming domain. In this classical problem [41], there are two
entities specifically producers and consumers. Producers put items into the buffer and
the consumers take items out of the buffer. Additionally a producer must wait until
the buffer has space before it can put something in, and a consumer must wait until
something is in buffer before it can take something out. In this example, we have two
producers and one consumer. The figures in the Appendix B.1 and the tables Table B.1,
Table B.2 and Table B.3 give an idea about how this example is constructed.

Table B.1.: Desired interaction kind for operations in the required interface ports
Component type Required interface ports Operations Interaction kind

Producer_Synchronous Consumer_IF_RI ConsumeData synchronous
Producer_Asynchronous Consumer_IF_RI ConsumeData asynchronous
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Table B.2.: Non-functional properties for the operations in the provided interface slots
Provided interface slot Operation Non-functional property

Producer_IF_PISlot1 StartProducingData Cyclic, Period = 2s
Producer_IF_PISlot2 StartProducingData Cyclic, Period = 3s
Consumer_IF_PISlot ConsumeData Protected

Table B.3.: Non-functional property for event reception
Component type Event receiver slot Event Non-functional property

Producer_Synchronous ConsumerFailure_RecSlot ConsumerFailure Protected
Producer_Asynchronous ConsumerFailure_RecSlot ConsumerFailure Unprotected

B.2. Building block approach

The Component based approach is one of the high level requirements discussed in the
Chapter 2. According to this requirement, it should be possible to design the software as
a combination of reusable units. The reusable units, being component instances, the aim
of this example to reiterate the CBSE approach by having multiple component instances
which correspond to the same component type. The figures in the Appendix B.2 and the
tables Table B.4 and Table B.5 give an idea about how this example is constructed.

Table B.4.: Desired interaction kind for operations in the required interface ports
Required interface ports Operations Interaction kind

AOCS_MODE_IF_RI1
Enable_Trans_To_Nom

AOCS_State setter
AOCS_State getter

asynchronous
synchronous
asynchronous

AOCS_MODE_IF_RI2
Enable_Trans_To_Nom

AOCS_State setter
AOCS_State getter

synchronous
asynchronous
synchronous

B.3. Component chaining

As discussed before in the initial chapters, the composability and compositionality are
one the corner-stone principles of the OSRA. In line with these corner-stone principles,
this example aims to chain different types of components together. The figures in the
Appendix B.3 and the tables Table B.6, Table B.7 and Table B.8 give an idea about how
this example is constructed.
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B.3. Component chaining

Table B.5.: Non-functional properties for the operations in the provided interface slots
Provided interface slot Operation Non-functional property

Mode_Manager_IF_PISlot StartStep Cyclic, Period = 4s

AOCS_MODE_IF_PI1Slot
Enable_Trans_To_Nom

AOCS_State getter
AOCS_State setter

Sporadic, MIAT = 2s
Protected
Protected

AOCS_MODE_IF_PI2Slot
Enable_Trans_To_Nom

AOCS_State getter
AOCS_State setter

Protected
Protected
Protected

Table B.6.: Desired interaction kind for operations in the required interface ports
Required interface ports Operations Interaction kind

AOCS_MODE_IF_RI1

Set_Mode
ExecuteTransitionToNom

previousMode getter
previousMode setter

currMode getter
currMode setter

asynchronous
synchronous
asynchronous
synchronous
synchronous
asynchronous

AOCS_MODE_IF_RI2

Set_Mode
ExecuteTransitionToNom

previousMode getter
previousMode setter

currMode getter
currMode setter

asynchronous
asynchronous
synchronous
asynchronous
asynchronous
synchronous

POWER_IF_RI
powerValue getter
powerValue setter

asynchronous
asynchronous

PLANNER_IF_RI calculateNewPlan synchronous

Table B.8.: Non-functional property for event reception
Event receiver slot Event Non-functional property

AOCSFailure_RecSlot AOCSFailure Unprotected
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Table B.7.: Non-functional properties for the operations in the provided interface slots
Provided interface slot Operation Non-functional property
MM_CYCLE_IF_PISlot MM_Step Cyclic, Period = 2s

AOCS_MODE_IF_PI1Slot

Set_Mode
ExecuteTransitionToNom

previousMode getter
previousMode setter

currMode getter
currMode setter

Sporadic, MIAT = 3s
Unprotected

Protected
Protected
Protected
Protected

AOCS_MODE_IF_PI2Slot

Set_Mode
ExecuteTransitionToNom

previousMode getter
previousMode setter

currMode getter
currMode setter

Protected
Protected
Protected
Protected
Protected
Protected

AOCS_CYCLE_IFPIslot Step Cyclic, Period = 4s
PLANNER_IF_PISlot CalculateNewPlan Unprotected

POWER_IF_PISlot
powerValue getter
powerValue setter

Protected
Protected

B.4. Cyclic dependency

This example takes into consideration the situation wherein the components are depen-
dent on each other in such a way that there is a cyclic dependency. The expectation that
this cyclic dependency should still be handled by the code generator efficiently is tested
in this example. The figures in the Appendix B.4 and the tables Table B.9, Table B.10
and Table B.11 give an idea about how this example is constructed.
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B.4. Cyclic dependency

Table B.9.: Desired interaction kind for operations in the required interface ports
Component type Required interface ports Operations Interaction kind

AOCS PowerSubsystemInterface_RI
SwitchOnPower

PowerSubsystemStatus getter
PowerSubsystemStatus setter

asynchronous
synchronous
synchronous

AOCS ThrusterSubsystem_RI
Send_THR_Pulse_CMD
ThrusterStatus getter
ThrusterStatus setter

synchronous
asynchronous
asynchronous

PowerSubsystem DataHandlingAndMissionManagement_RI
HandleThisData

StartMissionManagement
asynchronous
synchronous

ThrusterSubsystem DataHandlingAndMissionManagement_RI
HandleThisData

StartMissionManagement
synchronous
asynchronous

Table B.10.: Non-functional properties for the operations in the provided interface slots
Provided interface slot Operation Non-functional property
AOCSInterface_PISlot StartOperation Cyclic, Period = 2s

DataHandlingAndMissionManagement_PISlot
HandleThisData

StartMissionManagement
Protected
Protected

PowerSubsystemInterface_PISlot
SwitchOnPower

PowerSubsystemStatus getter
PowerSubsystemStatus setter

Sporadic, MIAT = 2s
Protected
Protected

ThrusterSubsystem_PISlot
Send_THR_Pulse_Cmd
ThrusterStatus getter
ThrusterStatus setter

Unprotected
Protected
Protected

Table B.11.: Non-functional property for event reception
Event receiver slot Event Non-functional property

ThrusterSubsystemFailure_RecSlot ThrusterSubsystemFailure Protected
PowerSubsystemFailure_RecSlot PowerSubsystemFailure Protected
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B. Additional OBSW examples

<<Interface>>
Producer_IF

StartProducingData ()

<<Interface>>
Consumer_IF

ConsumeData (IN DataParameter1 
: FloatType; IN DataParameter2 : 
IntegerType)

<<unsigned Integer>>
IntegerType

<<Float>>
FloatType

<<Event>>
ConsumerFailure

ConsumerFailureID : 
StringType

<<Fixed Length String>>
StringType
length := 10

(a) Data types, events, exceptions and interfaces diagram

<<Component Type>>
Producer_Synchronous

Consumer_IF_RIProducer_IF_PI1

ConsumerFailure_Rec

<<Component Type>>
Producer_Asynchronous

Consumer_IF_RIProducer_IF_PI2

ConsumerFailure_Rec

<<Component Type>>
Consumer

Consumer_IF_PI

ConsumerFailure_Em

(b) Component types diagram

<<Component Instance>>
Producer_Synchronous_impl_inst

Producer_IF_PISlot1 Consumer_IF_RISlot

ConsumerFailure_RecSlot

<<Component Instance>>
Producer_Asynchronous_impl_inst

Producer_IF_PISlot2 Consumer_IF_RISlot

ConsumerFailure_RecSlot

<<Component Instance>>
Consumer_impl_inst

Consumer_IF_PISlot

ConsumerFailure_EmSlot

(c) Component instances diagram

Figure B.1.: Producer/Consumer example
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B.4. Cyclic dependency

<<unsigned Integer>>
IntegerType

<<Interface>>
ModeManager_IF

StartStep ()

<<Interface>>
AOCS_MODE_IF

AOCS_State : IntegerType CFG 
Enable_Trans_To_Nom (OUT 
Trans_Successful : BooleanType)

<<Boolean>>
BooleanType

<<Exception>>
UNAUTHORIZED_EXCEPTION

(a) Data types, events, exceptions and interfaces diagram

<<Component Type>>
ModeManager

ModeManager_IF_PI

AOCS_MODE_IF_RI1

AOCS_MODE_IF_RI2

<<Component Type>>
AOCS

AOCS_MODE_IF_PI

(b) Component types diagram

<<Component Instance>>
ModeManager_impl_inst

ModeManager_IF_PISlot
AOCS_MODE_IF_RI1Slot

AOCS_MODE_IF_RI2Slot

<<Component Instance>>
AOCS_impl_inst1

AOCS_MODE_IF_PI1Slot

<<Component Instance>>
AOCS_impl_inst2

AOCS_MODE_IF_PI2Slot

(c) Component instances diagram

Figure B.2.: Building block approach example
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B. Additional OBSW examples

<<Float>>
FloatType

<<signed Integer>>
IntegerType

<<Boolean>>
BooleanType

<<Interface>>
MM_CYCLE_IF

MM_Step ()

<<Interface>>
AOCS_MODE_IF

previousMode : IntegerType CFG 
currMode : IntegerType CFG 
Set_Mode (IN AOCS_MODE : IntegerType)
ExecuteTransitionToNom (OUT TransitionSucessful : 
BooleanType)

<<Interface>>
AOCS_CYCLE_IF

Step ()

<<Interface>>
PLANNER_IF

CalculateNewPlan (IN planParameter : 
FloatType; OUT planFeasible : 
BooleanType) throws 
InvalidParameterException

<<Exception>>
InvalidParameterException

<<Event>>
AOCSFailure

AOCSFailureState : 
IntegerType

<<Interface>>
POWER_IF

powerValue : FloatType CFG 

(a) Data types, events, exceptions and interfaces diagram

<<Component Type>>
ModeManager

MM_CYCLE_IF_PI
AOCS_MODE_IF_RI1

AOCS_MODE_IF_RI2

AOCSFailure_Rec

<<Component Type>>
AOCS

AOCS_CYCLE_IF_PI

AOCS_MODE_IF_PI1

AOCS_MODE_IF_PI2 PLANNER_IF_RI

POWER_IF_RI

AOCSFailure_Em

<<Component Type>>
PowerSubsystem

POWER_IF_PI

<<Component Type>>
Planner

PLANNER_IF_PI

(b) Component types diagram

<<Component Instance>>
ModeManager_impl_inst

MM_CYCLE_IF_PISlot
AOCS_MODE_IF_RI1Slot

AOCS_MODE_IF_RI2Slot

AOCSFailure_RecSlot

<<Component Instance>>
AOCS_impl_inst

AOCS_CYCLE_IF_PISlot

AOCS_MODE_IF_PI1Slot

AOCS_MODE_IF_PI2Slot

PLANNER_IF_RISlot

POWER_IF_RISlot

AOCSFailure_EmSlot

<<Component Instance>>
Planner_impl_inst

PLANNER_IF_PISlot

<<Component Instance>>
PowerSubsystem_impl_inst

POWER_IF_PISlot

(c) Component instances diagram

Figure B.3.: Component chaining example
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B.4. Cyclic dependency

<<Float>>
FloatType

<<unsigned Integer>>
IntegerType

<<Boolean>>
BooleanType

<<Interface>>
AOCSInterface

StartOperation ()

<<Interface>>
PowerSubsystemInterface

PowerSubsystemStatus : BooleanType CFG 
SwitchOnPower (IN PowerLevel : FloatType)

<<Interface>>
ThrusterSubsystem

ThrusterStatus : IntegerType CFG 
Send_THR_Pulse_Cmd (IN Duration : IntegerType; OUT 
OperationSuccessful : BooleanType)

<<Event>>
PowerSubsystemFailure

PowerSubsystemFailureNumber : 
IntegerType

<<Event>>
ThrusterSubsystemFailure

ThrusterSubsystemFailureNumber 
: IntegerType

<<Interface>>
DataHandlingAndMissionManagement

HandleThisData (IN Data : FloatType)
StartMissionManagement (IN HaltMissionManagement : 
BooleanType)

(a) Data types, events, exceptions and interfaces diagram

<<Component Type>>
AOCS PowerSubsystemInterface_RI

ThrusterSubsystem_RI

AOCSInterface_PI

PowerSubsystemFailure_Rec

ThrusterSubsystemFailure_Rec

DataHandlingAndMissionManagement_PI

<<Component Type>>
PowerSubsystem

PowerSubsystemInterface_PI

PowerSubsystemFailure_Em

DataHandlingAndMissionManagement_RI

<<Component Type>>
ThrusterSubsystem

ThrusterSubsystem_PI

ThrusterSubsystemFailure_Em

DataHandlingAndMissionManagement_RI

(b) Component types diagram

<<Component Instance>>
AOCS_impl_inst

AOCSInterface_PISlot

PowerSubsystemInterface_RISlot

ThrusterSubsystem_RISlot

PowerSubsystemFailure_RecSlot

ThrusterSubsystemFailure_RecSlot

DataHandlingAndMissionManagement_PISlot

<<Component Instance>>
PowerSubsystem_impl_inst

PowerSubsystemInterface_PISlot

PowerSubsystemFailure_EmSlot

DataHandlingAndMissionManagement_RISlot

<<Component Instance>>
ThrusterSubsystem_impl_inst

ThrusterSubsystem_PISlot

ThrusterSubsystemFailure_EmSlot

DataHandlingAndMissionManagement_RISlot

(c) Component instances diagram

Figure B.4.: Cyclic dependency example
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