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ABSTRACT

This article describes the workflow of the classification al-
gorithm which ranked at 2nd place in the 2018 GRSS Data
Fusion Contest. The objective of the contest was to provide
a classification map with 20 classes on a complex urban sce-
nario. The available multi-modal data were acquired from
hyperspectral, LiDAR and very high-resolution RGB sensors
flown on the same platform over the city of Houston, TX,
USA. The classification was obtained by merging deep con-
volutional and shallow fully-connected neural networks on a
simplified set of classes, complemented by a series of specific
detectors and ad hoc classifiers.

Index Terms— data fusion, classification, LiDAR, hyper-
spectral, very high-resolution

1. INTRODUCTION

The multi-modal dataset distributed in support of the GRSS
Data Fusion Contest 20181 comprised data acquired from hy-
perspectral, LiDAR and very high-resolution RGB sensors,
which were flown on the same platform over the city of Hous-
ton, TX, USA. The complementary information yielded from
these datasets needs to be exploited in order to assign each
pixel to one of the 20 defined semantic classes (for a list of
the classes see Table 1). The semantic labelling of urban areas
often involves classes of interest differing greatly in spectral,
textural and other higher-order features: spectral features may
drive the detection of healthy grass, height information is vi-
tal for classes such as buildings, and shape features aid in the
detection of vehicles. Therefore, it is difficult to find a single
classifier which correctly identifies all the different classes in
such tasks.

1The authors would like to thank the National Center for Airborne Laser
Mapping and the Hyperspectral Image Analysis Laboratory at the University
of Houston for acquiring and providing the data used in this study, and the
IEEE GRSS Image Analysis and Data Fusion Technical Committee. Data
available at http://www.grss-ieee.org/community/technical-committees/data-
fusion/data-fusion-contest

Recently, classifiers based on deep learning have proven
very promising in capturing the relevant features from a wide
variety of classes; however, these may over-rely on higher or-
der interactions among the pixels composing an object. In this
article, we use a deep convolutional neural network (CNN) to-
gether with a shallow fully-connected neural network (NN).
Natural classes driven by spectral and simple textural prop-
erties (e.g., grass, trees, water) are extrapolated from the NN
classification and overlaid on the output of the CNN in which
they are under-represented and yield a considerable number
of false negatives. The classification is initially carried out
on a simplified set of classes and completed by using (1) ad
hoc spectral detectors to improve bare soil characterization,
(2) separately trained neural networks to discriminate differ-
ent kinds of buildings and to detect vehicles, and (3) template
matching to find crosswalks.

The final classification results yielded an overall accuracy
(OA) of 80.74% and ranked second in the contest, with negli-
gible distance (0.04%) from the best classification.

2. PREPROCESSING AND FEATURE EXTRACTION

The dataset provided by the contest included multispectral
(MS) LiDAR at 50 cm ground sampling distance (GSD), hy-
perspectral (HS) at 1 m GSD, and very high-resolution RGB
imagery at 5 cm GSD. To prepare the dataset for classifica-
tion, a number of preprocessing steps were carried out. Nor-
malized digital surface models (nDSMs) were generated by
subtracting a low-passed digital terrestrial model from the Li-
DAR digital surface models (first and last pulses) and remov-
ing additional noise. The MS LiDAR intensity images were
denoised by a 5×5 median filter, while the RGB images were
mosaicked and down-sampled to 50 cm GSD. From the HS
image, 42 bands were selected and up-sampled to 50 cm GSD
using an order-3 spline. For the generic base classification
(see Section 3), an input stack is generated at 50 cm GSD in
which each pixel is represented by a 100-D vector, compris-
ing 42 HS bands, 3 RGB bands, 3 MS LiDAR intensity bands,
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Fig. 1. Color illustration of the topics. For visualization, each
pixel is assigned to the largest-value topic in its topic vector.

2 nDSMs, and a 50-D topic vector.
The topic vectors are multi-modal high-level features

computed by applying multi-modal latent Dirichlet allocation
(mmLDA) [1] to the bag-of-words (BoW) model of the HS
(1 m GSD) and RGB (50 cm GSD) images. The mmLDA
discovers the joint model latency as a set of so-called topics
and represents each image as topic mixtures. To compute
these features, the RGB and HS images are tiled into patches
of 32 × 32 and 16 × 16 pixels, respectively. Then their lo-
cal primitive features are extracted by vectorizing a window
of 3 × 3 pixels around each pixel, resulting in 9-D feature
vectors. Each image band is treated separately and the fea-
ture vectors are concatenated afterwards, resulting in 27-D
and 378-D feature vectors for the RGB and HS images, re-
spectively. The image patches are then modeled as BoWs,
and mmLDA is employed to discover their joint latency as
25 topics, with each image pixel represented as a mixture
of the topics (topic vector). Finally, for each pixel the HS
(up-sampled to 50 cm GSD) and RGB topic vectors are
concatenated forming a 50-D vector. Fig. 1 shows a color
illustration of the topics.

For the specific detectors, additional features were ex-
tracted from the HS images, namely the normalized differ-
ence vegetation index (NDVI) computed by using the HS
bands 28 for near infrared (789 nm) and 18 for red (646 nm),
and 13 minimum noise fraction (MNF) components.

3. CLASSIFICATION

Our approach to the classification task was to combine
generic base classifiers and a series of specific detectors.
The task of the base classifiers was simplified by merging
classes 1-2 (grass) and 8-9 (buildings), while ignoring the
classes 12 (crosswalks) and 18 (cars). We implemented two
base classifiers for the remaining 16 classes: a deep CNN and
a shallow fully-connected NN. Both networks were imple-
mented and trained using the Keras API2 with the TensorFlow
backend.

CNN - The input to the CNN consisted of cubes of 5×5
pixels × 50 features (HS, RGB, MS LiDAR, nDSMs as dis-
cussed in Section 2), which were reshaped to 2-D matrices

2https://keras.io

of 25 spatial pixels × 50 spectral features. The network con-
sisted of 8 convolution layers applied selectively along the
spatial or spectral direction, or both. The same 1-D convolu-
tion along the spatial dimension was applied to the stack of
HS, RGB, MS LiDAR, and nDSM features. Different feature
groups were then again separated and went through 2-D con-
volutional layers. Finally, all features were stacked together
in a final layer, where the topics vector could be optionally
incorporated. A dense hidden layer was used to connect the
network to a softmax layer, employing categorical cross en-
tropy as loss function. For optimization, the Adam optimizer
was used with the amsgrad option. In order to reduce overfit-
ting, L2 regularization was applied to all convolutional layers
and a 25% dropout was used after the last fully connected
layer. The training stopped after a small number of epochs
(2-6).

Shallow NN - The NN base classifier consisted of a fully-
connected neural network with two hidden layers (128 and 64
nodes, ReLU activations), a final softmax layer, and a cate-
gorical cross entropy loss function. The full stack of 100-D
features including HS, RGB, MS LiDAR, nDSMs, and topic
vector was used as input. The network was trained for 5
epochs employing stochastic gradient descent with a batch
size of 128 and applying class weights inversely proportional
to the class frequencies.

CNN vs. NN - The CNN performed better than the NN
classifier on classes strongly characterized by context, such
as different types of roads. However, natural classes such as
grass, trees and water (strongly related to their spectral prop-
erties) yielded numerous false negatives upon visual inspec-
tion. Taking advantage of the fact that such classes yielded no
false positives in CNN, it was possible to overlay the output
of the NN classifier for these classes only. Single pixels for
a class overlaid from the NN classifier could therefore belong
to the CNN classification, while the opposite cannot happen.
This allowed avoiding to explicitly perform data fusion at de-
cision level. The classifier of choice for each class is reported
in Table 1, along with the final OA for the class.

3.1. Ad Hoc Classifiers

After the base classification, the following processing steps
were carried out and the obtained maps were overlaid in the
same order to derive the final classification:

Bare Earth - An additional soil map for the class ’bare
earth’ was derived from the HS image using spectral angle
mapper (SAM) applied on the same set of simplified classes
used in input for the CNN and NN classifiers. Results were
regularized by two morphological openings and closings us-
ing a disk-shape structuring element with radius 2.

Commercial and Residential Buildings - The residential
and commercial buildings were first detected by thresholding
(height > 1 m) the normalized last pulse LiDAR DSM. Mor-
phological openings and closings refined the detected build-
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Index Class Classifier OA (%)
1 Healthy grass NN 94.5
2 Stressed grass 88.7
3 Artificial turf NN 95.7
4 Evergreen trees NN 96.5
5 Deciduous trees NN 81.6
6 Bare earth NN 94.0
7 Water NN 90.8
8 Residential buildings CNN 83.1
9 Commercial buildings 90.6
10 Roads CNN 70.4
11 Sidewalks CNN 60.3
12 Crosswalks None 30.6
13 Major thoroughfares CNN 35.7
14 Highways CNN 72.4
15 Railways CNN 93.2
16 Paved parking lots NN 65.6
17 Unpaved parking lots CNN 0.0
18 Cars None 97.0
19 Trains CNN 93.4
20 Stadium Seats NN 92.4

Table 1. Selected classifier and OA per class. Classes denoted
by ”none” were not considered in the initial CNN and NN
classifications. Colors represent a legend for Fig. 3(c).

ing masks, which were then separated into residential and
commercial by using a region-based random forests classifier
applied to the spectral, height, and shape features according
to [2]. The classification results were refined based on the
features automatically learned by an end-to-end fully con-
volutional neural network (FCN), consisting of two parallel
networks merged at a late stage to integrate the spectral and
height information from RGB and nDSM data.

Stadium Seats - An ad hoc binary NN classifier (with
the same architecture as the base NN classifier) was trained
to detect stadium seats against all other classes. The input
included the MNF components derived from the HS image,
and the nadir and DSM bands provided with HS data.

Healthy and Stressed Grass - The stressed and healthy
grass (treated as a single class during the base classification)
were separated by hard thresholding the NDVI at 0.535.

Highway - The highway was regularized by exploiting its
low curvature. The Hough transform was applied to the bi-
nary map of the class to derive the three most dominant linear
features. All pixels within a certain distance from these lines
(based on the highway width) were then assigned to the high-
way class if they had been originally classified as roads or
major thoroughfares.

Morphological Filtering - The results were regularized
by three cycles of morphological opening and closing using a
disk-shape structuring element with radius 2.

Crosswalks - A normalized cross correlation matching al-
gorithm was trained on three of the crosswalks contained in
the ground truth and applied to the RGB mosaic at 5 cm GSD.
The sizes of the trained samples were slightly changed during
matching to reduce the number of false negatives and the out-
put was down-sampled to 50 cm GSD.

Cars - In order to detect cars, a pixel-wise vehicle seg-
mentation algorithm based on FCNs (similar to [3]) was ap-
plied to the RGB mosaic at 5 cm GSD. The network was pre-
trained on DLR’s 3K images with 13 cm GSD. Because of

Fig. 2. Pixel-wise car segmentation.

the small number of cars annotated in the training dataset,
the first pulse of the LiDAR DSM resampled at 5 cm GSD
was thresholded at 20 cm to run a semi-automatic annotation
in the training dataset. The network was then fine-tuned on
the training data and applied to the test dataset. The result-
ing car mask was down-sampled to 50 cm GSD and refined
by performing a morphological opening and dilation using a
disc-shape structuring element with radius 1. Fig. 2 shows
some detected cars. Finally, the cars detected on highways
were discarded as they were yielding false positives.

Fig. 3 presents our final classification map.

4. CONCLUSIONS

In a complex urban scenario, the classes of interest can differ
greatly in shape, scale, spectral features, and complex higher-
order statistics. Therefore, it is not always possible to use a
single classifier for semantic labelling. In the framework of
the GRSS Data Fusion Contest, we employed both deep and
shallow neural networks on a simplified set of classes, where
classes driven by their spectral properties were obtained from
the shallow classifier. Finally, a set of ad hoc detectors based
on the different properties and characteristics of each class of
interest were used to finalize the classification. The results
ranked at second place in the contest with an overall accuracy
of 80.74 % and an average accuracy of 76.32 %.
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Fig. 3. (a) Contribution to the final classification results of deep CNN (sienna), shallow NN classification (green), and ad hoc
detectors and classifiers (blue); (b) Classes belonging to the ad hoc detectors and classifiers: bare soil (sienna), residential
buildings (yellow), commercial buildings (pink), crosswalks (cyan), cars (red). (c) Final classification results.
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