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ABSTRACT 

Tree species information is crucial in sectors such as 

forest management and nature conservation. It is often 

required over a large area. In this study, tree species 

classification was performed using hyperspectral data and 

the Digital Surface Model generated from DLR-3K aerial 

borne stereo camera System. In the classification step, pixel-

based approach and the patch-based approach with Bag-of-

Word (BoW) model were proposed and tested. The two 

approaches have been performed in the Kranzberg Forest 

near Munich, Germany. The comparison was taken in a 

statistical way. By using proper features combination, the 

pixel-based classification can achieve very high accuracy 

(Kappa =0.95), while the patch-based method only has 

accuracy around 60%.  

Index Terms— Hyperspectral, Tree Species, Random 

Forests, BoW, DSM 

1. INTRODUCTION 

Sustainable forestry management has been widely 

recognized as the principle objective of forest policy and 

practice in Europe. Tree species classification with remote 

sensing data is motivated by the need of various research 

and work in the forest management and conservation sectors 

[1]. Those needs include forest inventory, biodiversity 

assessment and monitoring [2], hazard and stress estimation 

[3]. Moreover, accurate forest species map is also 

prerequisite to fire propagation simulation models and fire 

risk assessment [4]. Knowledge on tree species distribution 

in turn could also affect forest harvesting and management 

policies [4][5]. 

Therefore, remote-sensing assisted tree species 

classification is desired by many sectors and has been 

extensively studied in recent years. The advancement of 

remote sensing technology has enabled rapid growing in 

research on tree species classification in the last 35 years 

[6]. Comparing to the traditional field survey, remote 

sensing is more suitable for inaccessible and very large 

areas; it also consumes much less time and manpower. 

Hyperspectral data have been used to map tree species in 

some researches due to their higher spectral range and 

resolution. According to a literature review about research 

on tree species classification from year 1980 to 2014 [7], 

most cases were hyperspectral or imaging spectroscopy 

studies; the second most used is multispectral. Many studies 

have adopted multi-sensor data. For instance, active system 

such as Light Detection and Ranging (LiDAR) together with 

passive ones. During the last ten years, the exponential 

growth of tree species classification corresponds to the 

increased availability of hyperspectral data and LiDAR data 

[7]. Both data have been frequently utilized in forest 

inventory context, where tree species classification is the 

most popular target variable, in addition to total growing 

stock volume and biomass [7].  

In earlier studies, most widely used classification 

techniques include supervised maximum likelihood 

classifier (MLC), and unsupervised clustering such as K-

means and ISODATA [7][8][9]. Since 1995, with the 

methodological developments in the domain of statistical 

learning, classification algorithms have evolved to non-
parametric decision tree based classifiers and neural 

networks. Recent studies using mixed or transformed input 

features (spectral, texture, geometric, vegetation indices) 

have employed non-parametric machine learning methods 

such as Random Forests (RF) and Support Vector Machine 

(SVM) [7][10][11].  Recently, the patch-based Bag-of-word 

texture-classification has achieved good performance in 

object detection [12] and has been tested for aerial image 

based crowd [13] and landcover classification [7]. 

According to the authors’ knowledge, it has not yet been 

tested for hyperspectral image based tree species 

classification.  

The specific objectives of this paper include evaluating 

of various feature combination for the RF classification 

validate if height information improves accuracy, and 

introducing patch-based Bag-of-Word method for tree 

species classification and comparing the results from RF. 

2. RESEARCH SITE AND DATASETS 

2.1. Research site 

The study site is located approximately 35 km northeast of 

Munich in Kranzberg Forest. The forest comprises mainly 

of European beech (Fagus sylvatica) and Norway spruce 

(Picea abies). Outside of the forest boundary there are some 

houses, field and asphalt highway. Within the forest there 

are some gravel roads for human access. The Kranzberg 

forest is a university research site since 1992. The site is 



equipped with scaffoldings and a canopy crane system, 

which allows for easier data acquisition and observation.  

The main purpose of our research is to accurately 

extract the tree species in the forest to provide valuable 

information to the research team on the study site who is 

studying the reaction of tree species to exacerbating summer 

drought. The region of interest has a size of 840 × 840 m2, 

and is in the center of Kranzberg forest. And tree species 

classes we are interested in are spruce (Picea abies) and 

beech (Fagus sylvatica). 

2.2. Hyperspectral data 

The hyperspectral images used in this paper were acquired 

by imaging spectrometer system HySpex on 24th of August 

2016. HySpex system is purchased from the Norwegian 

company Norsk Elektro Optikk A/S (NEO) [14]. With two 

individual sensors, the system covers visible near-infrared 

(VNIR) and short wave infrared (SWIR) spectral domains 

ranging from 0.4 to 2.5 nm. Hyperspectral images are 

orthorectified with SRTM because of the alignment problem 

in 3K 3D model. The spatial resolution of HySpex data is 

summarized in table1. The system is equipped with a high 

precision iTraceRT-F200 coupled INS/GPS navigation 

system that provides accurate georeferencing for the 

acquired data. A calibration flight is carried after installation 

onto an aircraft over an area with known reference points 

[14]. 

Table 1. The parameter of the two sensors of the HySpex system 

Sensor 
Date of 

Acquisition 

Spatial 

Resolution 

Spectral 

Range 

Number 

of Bands 

HySpex 

VNIR-

1600 

2016.08.24 0.7m 
416-992 

nm 
160 

HySpex 

SWIR-

320m-e 

2016.08.24 1.4m 
968-2498 

nm 
256 

2.3. 3K Data 

In this study, we use a very high resolution aerial 

dataset to generate digital surface model (DSM). The aerial 

imagery dataset was acquired by the DLR 3K sensor system 

at the same flight with HySpex system. The 3K system 

consists of three cameras (nadir, forward and backward), 

which enables capturing of multi-view along-track images 

with the resolution of 13 centimeters [14]. 

3. METHODOLOGY 

In this paper, pixel-based and patch-based method are tested 

and briefly introduced below. 

3.1. Pixel-Based Method 

3.1.1 Random Forests (RF) 

RF is an ensemble learning method that fits many of 

decision tree classifiers on various sub-samples of the input 

dataset and vote to decide the class (In the case of 

regression, averaging is used). Error rate can be estimate 

using out-of-bag (OOB) method that is based on the training 

data. RF classifier has been widely used in tree species 

classification context, including landcover classification and 

forest type mapping [7].  

3.1.2 Features 

Features used in the experiment are the original 

hyperspectral images, Maximum Noise Fraction (MNF) 

components, three vegetation indexes and DSM. 

MNF 

The abundance of spectral information also brings 

redundancy. In hyperspectral images, neighboring bands are 

often highly correlated, which not only add unnecessary 

information but also add to the computational complexity 

when processing. Also, many bands in hyperspectral images 

can be noisy. Therefore, dimensionality reduction of 

hyperspectral images is a desired state-of-art method. 

Maximum Noise Fraction (MNF) transformation [15] is a 

linear transformation consisting of two PCA rotations and a 

noise whitening step. The returned data contains the most 

informative bands. 

Landcover Features 

Thanks to the high spectral resolution, we can have 

reflectance/radiance values with very fine resolution. 

Therefore, many vegetation indexes could be calculated 

accurately. For the experiment, we have selected three 

vegetation indexes (VI) as landcover features. 

Normalized Difference Vegetation Index (NDVI). 

NDVI is calculated as follows: 

NDVI = (NIR — VIS) / (NIR + VIS) 

In our dataset, NIR is the reflectance at wavelength 858 nm; 

VIS is the reflectance at wavelength 649 nm [16].  

Red Edge NDVI (redNDVI) 

The redNDVI is an adapted version of NDVI. Red edge is 

the region in spectrum between 680 and 750 nm where the 

reflectance change of vegetation is the sharpest[17].  

𝑟𝑒𝑑𝑁𝐷𝑉𝐼 =
(𝜆750µm − 𝜆705µm)

(𝜆750µm + 𝜆705µm
 

Red Edge Reflection Point (REIP) 

This parameter correlates well with total chlorophyll content 

at leaf level [18]. It is calculated as follow: 

𝑅𝐸𝐼𝑃 = 700 + 40(

(𝜆670µm + 𝜆780µm)
2 − 𝜆700µm

𝜆740µm − 𝜆700µm
) 

Reflectance measurements at 670nm and 780nm are 

used to estimate the inflection point reflectance[19].  

By incorporation VI with other features, the non-

vegetation components can be easily separated from trees of 

interest. 

Height Features 

In this paper, DSM with the resolution of 20 cm is generated 

from the 3K data. It is resampled to the same resolution as 

the hyperspectral data. This height information is then 

served as an additional feature in the pixel-based 

classification. To find out the best feature combinations, we 



have tested six different combinations as the features to the 

RF classifier: 

1) Original hyperspectral image (160 bands) 

2) MNF transformed image with 50 bands 

3) MNF and VI (NDVI, redNDVI and REIP) 

4) MNF and DSM  

5) VI and DSM 

6) MNF, DSM and VI 

3.2. Patch-Based Method 

Different from pixel-based, patch based method focus more 

on utilizing the texture information within an area. Here a 

Bag-of-Visual-Word (BoW) method is used. BoW as a 

framework of four general processing steps, which follow 

on the patch sampling. It comprises mainly of four steps: 

local feature extraction, codeword generation, feature 

encoding and feature pooling [13]. 

Features are extracted using Local Binary Pattern 

(LBP). LBP labels pixels by comparing them with central 

pixel of a 3×3 window and assign 1 to pixels having gray 

value greater than central pixel and 0 to pixels that are 

smaller. For each surrounding pixel, a weight of 2 to the 

power of its rank was given according to its relative position 

to the central pixel. In total, there are 256 different values 

for a pixel and window size of 3× 3. The number of 

occurrences of each label represented in a 256-bin histogram 

can be used as a texture descriptor. To reduce computational 

complexity, an extension of LBP called uniform pattern was 

used, where the shifts between 1 and 0 happen at most 

twice. The resulting feature matrix 𝑋𝑝 of local feature vector 

Xn∈Rm has a reduced dimension of m=58. This improved 

descriptor has better classification capacity while reducing 

the computational complexity.  

After extracting all local features, a randomly sampled 

subset X of these local features is used for generating the 

codeword using Gaussian Mixture Model (GMM), which is 

created by expectation maximization and a pre-defined 

number of cluster centers. GMM can be treated as the 

representative model of the whole feature space where 

cluster centers represent codeword in a dictionary [13]. 

After the generation of GMM, each patch feature 𝑋𝑝 =
 [𝑥, … , 𝑥𝑛] is encoded using Improved Fisher Vector (IFV) 

[20]. Descriptor can be modeled by GMM by being weighed 

with mode k in the mixture with a posterior probability qnk 

that is defined as: 

𝑞𝑛𝑘 =
exp [−

1
2

(𝑥𝑛−𝑑𝑘)𝑇 ∑ (𝑥𝑛−𝑑𝑘)−1
𝑘 ]

∑ exp [−
1
2

(𝑥𝑛−𝑑𝑡)𝑇 ∑ (𝑥𝑛−𝑑𝑡)−1
𝑡 ]𝐾

𝑡=1

            (1)   

qnk can be regarded as the influence of a mode k on the 

final feature encoding of local feature xn. It is an element of 

the assignment matrix 𝑄𝑝 =  [𝑞1, … , 𝑞𝑛]  that assigns a 

weight of every mode k to each feature descriptor xn [13]. 

We used the size of 64× 64 pixels for the patch 

preparation. Besides the image used in pixel-based method, 

more patches are generated from the image stripe from the 

same flight to generate enough patch for training and 

testing. 

 

 

 

Figure 1. Work flow of patch-based method. 

4. EXPERIMENTAND RESULT 

4.1. Experiment 

The accuracy of pixel-based method is evaluated with 

ground truth data to get species-specific accuracy score even 

though RF classifier can estimate error by OOB with only 

training data. Training sample and test sample consist of 

8.6% and 61.7% of total number of pixels respectively. The 

performance of classifier is evaluated by overall accuracy, 

Cohen’s Kappa score, build-in OOB and accuracy for each 

species. There are in total 6 classes in the image: spruce, 

beech, grass, road, shadow and soil. 

For patch based method, each patch is manually 

assigned to one of four classes to create the ground truth. 

Classification is performed by SVM. SVM is trained with 

20 and 200 training respectively. 

Class1 Spruce if patch is monoculture or other species is 

less than 10% of coniferous tree besides shadow 

Class2 Beech if patch is monoculture or other species is less 

than 10% of this broad leaf and deciduous tree besides 

shadow 

Class3 Mixed If one tree species is more than 10% of 

another tree species when shadow is excluded. 

Class4 Others patch is defined as this class if more than 80% 

of the patch contains non-tree object (except shadow). 

4.2. Results 

The results for two methods are summarized in Table 2 

and Table 3. For patch based method, the highest overall 

accuracy was achieved by using MNFDSMVI feature. It 

also achieved the highest accuracy for Cohen’s Kappa, 

OOB, spruce, grass and road. The best result for beech was 

achieved by using only MNF feature. In general, height 

information can help to improve the accuracy, but the 

contribution was not significant in our experiment, even not 

as much as that of VI. VI is also good at differentiating 

between non-vegetation and vegetation objects. Figure 2  



Table 2:  Result of the pixel-based tree species classification

 Overall Kappa OOB Spruce Beech Grass Road Shadow Soil 

All bands 93.73% 91.44% 98.07% 78.84% 93.83% 99.84% 95.54% 99.47% 83.60% 

MNF 96.15% 94.73% 98.41% 84.44% 98.10% 99.39% 96.40% 97.73% 96.16% 

MNF VI 96.21% 94.82% 98.66% 85.04% 97.59% 99.68% 97.55% 98.12% 96.30% 

MNFDSM 96.33% 94.98% 98.66% 84.69% 97.77% 99.91% 96.40% 98.68% 96.30% 

DSM VI 88.40% 84.24% 97.33% 69.85% 85.80% 99.82% 98.68% 93.41% 92.11% 

MNFDSMVI 96.38% 95.05% 98.77% 85.50% 97.36% 99.91% 97.58% 98.91% 96.65% 

Table 3: The classification accuracy of patch-based BoW method 

 20 Training samples (4 Classes) 200 Training samples (4 Classes) 

Round 1 2 3 Average 1 2 3 Average 

Overall Accuracy 66.23% 62.25% 61.38% 63.28% 80.84% 78.91% 76.95% 78.90% 

Mixed 14.57% 22.61% 84.92% 40.70% 63.64% 66.88% 62.99% 64.50% 

Beech 6.96% 2.53% 20.25% 9.92% 57.52% 66.37% 59.29% 61.06% 

Other 83.01% 79.62% 83.79% 82.14% 93.22% 92.96% 93.92% 93.37% 

Spruce 56.33% 49.65% 28.95% 44.98% 66.23% 60.11% 54.40% 60.25% 

SD  2.58    1.95   

 

shows the best result of RF by using the MNF, DSM and VI 

as input features. The result is satisfactory. It clearly 

simulated the silhouette of trees and other components. For 

the patch-based classification. In group of 20 training 

samples, the accuracy fluctuates drastically. This is due to 

the insufficiency of training data. The results stabilized 

when increasing number of training sample to 200. The best 

accuracy was achieved in ‘Other' class. This fact is 

attributed to the distinct local features in those image 

patches. For other classes, the accuracy is around 60%.  

 

 
Figure 2. Classification result of pixel-based method using 

MNFDSMVI as the feature 

Table 2 briefly summarized some misclassification 

examples of patch based method and compared them with 

pixel-based result cropped to the same size. The experiment 

area can be divided into 324 patches (251 non-blank). In 

total 192 patches are correctly classified. As these examples 

show, it is sometimes very difficult to properly label a patch 

in the forest.  For example, the first example was labeled as  

mixed, but was half covered by Beech. Therefore, it was 

wrongly classified as Beech by the patch-based method.  

Table 4. Some misclassification examples 

True Label Mixed Beech Other Spruce 

Original  

patch 

    

Pixel-based 

result 

    

Pixel 

percentage 

17.7% spuce 

49.1% beech 
33.2% shadow 

6.3%spruce 

77.0%beech 
15.5% shadow 

95.4%grass 

4.4% road 

46.8% spuce 

2.88%beech 
50.0% shadow   

Patch-based 

prediction 
Beech Mixed Spruce Beech 

5. CONCLUSION 

In this work, we have fused the hyperspectral data and the 

DSM from aerial stereo data for tree species classification. 

Both pixel-based RF classification and the patch-based 

texture classification methods have been tested. The pixel-

based method outperformed the patch-based method by a 

very high percentage. Also, pixel-based method provides 

tree species information to the pixel level, which allows 

more flexibility in the application of classification results. 

The better result achieved by pixel-based method suggest 

that hyperspectral imagery has high potential in tree species 

classification where the spectral difference across species is 

subtle. The less accurate classification result from patch-

based method suggests that texture information alone is not 

sufficient for tasks such as tree species classification. 

However, it is quite time consuming to prepare proper 

training data for the pixel-based classification method.  A 

combination of the pixel- and patch-based classification 

approaches will be further exploited in our future study. 
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