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Abstract— In this paper, we introduce a fast and lightweight
method based on several combined filters to detect and track
an object in images recorded by a moving camera. Assuming
we know nothing about the intruders shape, color or other
geometric appearance, we focus with our work on change
detection in the image, caused by movement of the object
against the background. The method is evaluated with image
data from experimental flights with two unmanned aircraft
performing different flight maneuvers. The correctness of the
intruder detection is evaluated by comparison with hand labeled
ground truth from different sequences of the test flight. Addi-
tionally, we evaluate the performance of our implementation on
architectures with low computational power with regard to a
practical onboard solution for small unmanned aerial vehicels
(UAV).

I. INTRODUCTION

The significant increase of ready-to-fly drones affects

safety of airspace and critical ground infrastructure as well

as security and privacy issues in areas wherever third-party

interests are to be considered. Geo-fencing solutions and

upcoming regulations are going to cope with many accidental

problems, however, there are threats arising from intentional

attacks, e.g. remotely piloted espionage and terrorism. With

that, drone defense becomes an important field in research

and development.

There are already several methods to cope with small fly-

ing intruders. One is to detect and localize the aircraft or

the remote pilot with stationary or vehicle-based protection

systems. Once detected, navigation or control signals are

jammed or spoofed so that a drone will at least not be

able to fly into the protected area. Practical solutions are

also handheld devices e.g. presented in [4]. Another category

of non-dangerous and thus generally applicable solutions is

mainly to catch them e.g. with net throwers [2]. However, if

the protected area is not easily or fast accessible from ground

or by other ad-hoc solutions, active protection becomes

difficult. Spoofing or jamming radio signals can also be

critical because it is restricted by the law or would tie down

own protectable infrastructure. Thus, the idea is to develop

a small UAV capable of intercepting and hunting intruders.

Thanks to the Unmanned Aircraft Team at DLR, namely Michael Kislat-
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Before it comes to a final solution and the discussion of

a defense strategy - such a system is ideally autonomous

and able to approximate to any intruder. The proposed

solution is a patrolling UAV scanning the environment, and

once an intruder has been detected, the UAV will stick and

approximate.

Fig. 1: Image from the defenders on-board camera while the

intruder is hovering in front.

II. BACKGROUND AND RELATED WORK

We consider the following scenario where an automated

camera drone (called: defender) surveying for moving intrud-

ers. The focus of this paper is the detection and tracking of

small moving objects (called: intruders) within the cameras

field of view. From the sensing perspective, the problem is

highly related to aircraft collision avoidance and also ground

object tracking, although some specific differences will arise.

In contrast to most ground object tracking solutions, moving

objects of interest are rather small (i.e. an approaching

intruder has to be detected as early as possible), and in

contrast to typical sense-and-avoid situations with larger air-

craft, optical background motion is generally higher (i.e. the

defender can move and turn fast if required). Additionally,

image background is highly variable, since the intruder can

be visually above or below horizon. At this stage of research,

image processing is assumed to be comparable to visual



Fig. 2: Workflow of the proposed algorithm.

sense-and-avoid, however, some specific situations will be

analyzed.

Within related sense-and-avoid research, radar is one of the

major sensors for long-distance detection at larger vehicles.

Combinations of radar and camera systems are promising

[15], together with smaller radar devices for mid-sized UAVs

[3] where ranges of hundreds of meters to few kilometers

are reached depending on the size of the detected intruder.

For small drones with very limited payload and power

capabilities, cameras seem to be still the sensors of choice

for this task [5].

Next to the best-case scenario with rather simple detection of

dark pixels in front of blue sky, one criteria to detect intruders

in camera images is their visually distinctive movement

compared to the background which mainly represents a

stationary scene. Hence, a majority of solutions focus on

changes in the subsequent images after the sequence has

been stabilized to perform background subtraction. Success-

ful flight tests results have been presented in [13] where

encounters between a ScanEagle UAV and a Cessna 172R

are evaluated. Earlier versions of the algorithm are presented

in [12]. The method consists of the pre-processing steps

image stabilization and background subtraction, and then

spatial (esp. morphological) and temporal filtering of image

differences. Remaining features are then an indicator for

regularly moving image regions as originated from other

aircraft, and the method works also when the aircraft visually

appears below horizon, see [10] for further details. The work

in [16] is similar but focused on complex backgrounds, since

image stabilization gives main benefit in such image regions.

A different method based on multi-frame phase correlation

is presented in [1] which seems to be very fast but comes

with decreased robustness against complex backgrounds and

highly dynamic background movements. The method pre-

sented in [14] differs between simple and complex back-

ground (means mostly above and below horizon) such that

the detection method can be optimized depending on that

background type.

III. DETECTION AND TRACKING APPROACH

The goal of this paper is to present a vision algorithm for

detection and tracking of a small intruder against different

kinds of backgrounds. The surveying camera is also

moving since it is placed on a defending vehicle. The main

challenges for the detection algorithm are the compensation

of motion effects caused by the camera displacement and

the inhomogeneous background. A secondary challenge

for the algorithm is the fact, that the observed intruder

aircraft can have a small size of just a few pixels in the

image. Furthermore, in a typical real situation there are no

information about the color or the shape of the intruding

aircraft available. Fig. 1 shows a representative image

captured by the defenders on-board camera. Therefore

we concentrate on the detection of change caused by the

movement of the object in the image.

The first step after image acquisition consists of image

segmentation based on frame differencing followed by a

spatial filter to detect candidate points for intruder in the

image. In a second processing step, the candidate points are

tracked over time, resulting in a temporal filtering process

which keeps only candidate points which are successfully

detected in several consecutive frames. Finally, the positions

of the tracked candidate points are refined by a Kalman filter.

This allows our algorithm to establish a robust tracking and

to compensate for situations where the target is not detected

in a frame, caused by several reasons. An overview of the

proposed algorithms workflow can be seen in Fig. 2.

A. Image acquisition

Images are captured permanently during the flight from

a forward looking camera on board of the defender with

constant framerate of 25fps. In order to improve the quality

of the following image processing steps, each image is

undistorted as a first step directly after image acquisition.

Undistortion is done based on distortion coefficients col-

lected from an intrinsic camera calibration as a part of pre

flight preparation.



B. Difference images

With no information about color or shape of the target

UAV, we only try to look for motion indicated by scene

changes in the stabilized image sequence where ego-motion

has been removed. The next step in the image processing

pipeline consists of calculating a difference image Dt from

two consecutive frames It−1 and It at time point t and

t − 1. Due to the movement of the camera, it is necessary

to perform an image registration step on It−1 to enable

the calculation of a difference image. Common methods

to achieve this task use feature detectors like Shi-Tomasi-

Detector [7] or SURF-Detector [8] and estimate a homo-

graphic transformation between matched feature points. Still,

these detectors can fail in finding good features or make

mistakes in the alignment and matching of the features.

Annother problem results in the fact that good feature points

are often found in image regions with a high local contrast

and are not distributed uniform in the image plane. Fig. 3

shows the distribution of detected feature points in the image

plane summed up for 250 consecutive frames.

Fig. 3: Feature distribution for 250 frames.

With regard to the intended implementation on a compan-

ion computer with low computational power, avoiding the

procedure of detection and mapping of feature points in the

image speeds up the entire algorithm. Tests showed, that the

presented method needs only 35% of the computational time,

compared to feature detection based homography estimation.

The homographic transformation Ht−1→t for frame It−1

is calculated based on the optical flow of a set of fixed grid

points from the image. We select a sparse grid G of points

from the image It−1 and calculate the optical flow for each

point p ∈ G of the grid from It−1 to It. An example of grid

points (green) and their optical flow vectors (lime green

arrows) can be seen in Fig. 4. In our experiments we found

that a grid of size of 2067 grid points (53 × 39 points) for

which the optical flow vectors are computed, works fine for

a resolution of 1360 x 1024 pixel. Increasing the number of

grid points will simultaneously increase the computational

time for that step, while using to few points will decrease

the accuracy of the transformation. The estimation of

Fig. 4: Optical flow of selected grid points.

the optical flow is implemented with OpenCV’s method

cv::calcOpticalFlowPyrLK using the method of Lucas and

Kanade [9] with a fixed window size of 21 × 21 pixel.

Finally, I
warped
t−1 is created by applying Ht−1→t on It−1.

Fig. 5: Result of the frame differencing.

Next, the pixelwise absolute difference Dt between It and

the warped image I
warped
t−1 is calculated to achieve that areas

with similar light intensity in the image will be set close

to zero, while areas with a difference in the light intensity

will be highlighted. Using the absolute difference makes the

method invariant and robust against the illumination of the

scene, so that different background structures or the unknown

color of the intruder will have no effect. Fig. 5 shows the

color coded results of this operation on two consecutive

frames. Red and yellow areas have a high illumination

change, while blue areas have lower change.

C. Spatial filtering

In the next steps, candidate points in the subtracted image

that represent the intruder are extracted. To obtain a binary



segmentation, the subtracted image Dt is binarised using

OpenCVs built-in function for adaptive threshold. Using

adaptive threshold makes the algorithm robust on different

local illumination conditions. From the binary image, a list of

possible candidates for detection is extracted by identifying

connected components in the image. The center point c(x,y)
of each component is stored in a list P candidates

t and will

be processed by the temporal filter in the next step.

D. Temporal particle filtering

Calculating candidate points only makes the algorithm not

very robust to effects like motion blur or change of the size of

the segmented objects (and also the position of their center

point) in the image. Therefore we subsequently processed

the list of possible candidate points with a temporal particle

filter. This filter assigns a life time value τ to each candidate

point, which is initialized with 1. For each time step t, the list

P candidates
t of possible candidate points is compared with a

list P tracked
t of already detected and tracked points. For each

tracked point p ∈ P candidates
t the temporal filter checks if

there is any possible candidate point p ∈ P candidates
t next to

it. If so, c will be assigned to p and the life time value τ of

p is increased by one. If no candidate point c was assigned

to p, τ will be decreased by 1 until it is zero. Tracked points

with life time value τ = 0 will be deleted from the list of

tracked points. Candidate points c which are not assigned

to an already known point from P tracked
t at the end of this

process are added to P tracked
t as new candidate points with

τ = 1.

Because we observed only one target UAV during our

experiments, only the candidate point with the highest life

time value τ was considered as a UAV.

E. Optimization with Kalman filter

Due to several reasons the estimated center position of

each connected component c(x,y) and therefore also the

candidate points can fluctuate from frame to frame. To

compensate this effect, the position c(x,y) of each tracked

point is corrected by a Kalman filter. The Kalman filter

estimates the x and y position of the detected object in the

image and additional the two-dimensional optical speed of

the object in x and y direction, resulting in a 4-dimensional

state space.

Keeping the positions updated by the Kalman filter makes

the algorithm more robust against situations where the

segmentation or tracking will be lost for a few frames.

Furthermore, the correction of the UAV position by the

Kalman filter results in a refinement of the 2D image

trajectory and accuracy of the method.

IV. EXPERIMENTAL RESULTS AND SYSTEM EVALUATION

A. Experimental Setup

In the flight experiments, eight data sequences were

recorded on two consecutive days with same weather

conditions. The defender was represented by DLR’s

Fig. 6: DLR’s unmanned helicopter used as defender.

unmanned helicopter ARTIS (Fig. 6), a SwissDrones SDO-

50 V2 with 85 kg MTOW and two 2.8 m intermeshing rotors.

Most of the time during the experiments, the helicopter

was operated remotely by a ground control station. Only

takeoff and landing maneuver have been flown by a safety

pilot. The helicopter was flown above a flat area free from

obstacles, hovering in a position of about 30 m altitude

facing in a fixed direction. The flight duration range from 7

to 10 minutes from take-off to landing for each flight. The

used camera was an AVT GT-1380 producing grayscale

images of 1360 × 1024 pixels at a frequency of 25 Hz. The

optic is a 4.8 mm RICOH lens for the first four experiments

and 10.0 mm Cinegon lens for the other four experiments.

The intruder in our experiments was represented by a DJI

Inspire Mark 1 (Fig. 7), flown in manual mode by a second

pilot for the whole experiments. This UAV has a size of 44 ×

45 × 38 cm, with a maximum top speed of 22 m/s at a weight

of about 2.9 kg, for details see [6]. During the experiment,

the intruder was performing different maneuvers in order to

cover a wide variety of movements. The maneuvers and their

effects on the image of the intruder on the camera plane are

described later in section IV-B. Fig. 8 shows the scenario

Fig. 7: DLR’s DJI Inspire 1, representing the intruder.



Fig. 8: Flight scenario for the experiments.

for all eight experiments. Blue area is the flight area of

the observer, hovering in one position while the red area

represents the fligh area of the intruder. The green area was

used as a safety area, reserved for flight operation personal.

B. Image Sequences

From the recorded flight data we extracted eight different

10 sec long sequences to cover a wide combination of

different imaging situations. Image sequence where selected

by the following criteria: camera optic used during the

flight experiments, movement of the intruder relative to the

image plane and structure of the background area around the

intruder. For the movement, we differentiate between scaling

and translational movement. Scaling movement occurs when

the distance between intruder and defender is increased or

decreased, resulting in a change of the size of the intruder

on the image plane. Translational movement describes a

movement parallel to the camera image plane along the x

or y axis.

Another differentiation in the sequences is made by the

structure of the background of the area around the intruder.

We discriminate between simple background, e.g. when

the intruder is visible against the bright sky, or complex

background, e.g. when the intruder is in front of structured

background like trees. Table I gives a detailed overview on

the sequences, including the background type (Bkgd), camera

focal length F, distance between intruder and defender and

the expected size of the intruder on the image plane.

TABLE I: Test sequences

Name Movement Bkgd F (mm) Size (px) Dist. (m)

S1SS scaling simple 4.8 3 - 7 56 - 94
S1SC scaling complex 4.8 9 - 13 28 - 37
S1TS translational simple 4.8 21 - 22 16 - 21
S1TC translational complex 4.8 34 - 43 8 - 10
S2SS scaling simple 10.0 10 - 12 56 - 60
S2SC scaling complex 10.0 5 - 6 131 - 145
S2TS translational simple 10.0 18 - 26 43 - 53
S2TC translational complex 10.0 26 - 33 23 - 25

To estimate the real position of the two aircraft during

the experiment, GPS data have been logged during the

whole flight on both aircraft. Based on these logfiles, the

distance between the aircraft for each single frame could

be calculated. Together with the intrinsic parameter of the

camera, resulting of the calibration of the camera, we were

able to calculate the size of the intruder on the camera’s

image plane. To get the size of the intruder in the image,

we calculated the projection of a simple box of same size as

the intruder in the same distance from the camera onto the

cameras image plane.

C. Precision Evaluation

In order to create a reliable set of ground truth data, the

real position of the intruder was marked by hand for all

frames in all sequences. Each single frame of a sequence was

presented to a user who marked the x- and y-position of the



intruder in the image by clicking on its position. This position

was stored and later compared to the output position of the

detection algorithm to estimate the precision of the detection

algorithm. Fig. 9 shows the the hand marked position of

the intruder (green circle) and the position detected by the

algorithm (blue cross). For each frame from a sequence, the

Euclidean distance (in pixel) between the hand marked po-

sition and position detected by the algorithm was computed.

Fig. 9: Hand marked and estimated position of the intruder.

Due to the fact that even a trained user will not mark the

same spot of the intruder in every image and the center of

the detected intruder can vary from the hand marked ground

truth, it is not easy to get a good rate for the detection. This

holds especially for sequences where the intruder is close

to the defender, so its area on the cameras image plane is

bigger or sequences where the intruder is far away from the

defender and is harder to mark by the user. To get a rate for

the algorithms quality, we checked if the distance between

the hand labeled position and the output of our algorithm was

smaller than the diameter of the intruders projection on the

image plane (see section IV-B for details on the projection).

If so, the intruder was designated as detected and tracked.

The percentage of frames with successful tracking for all

experiments can bee found in table II, revealing a good

quality from 85.0% up to 97.6%. The table also includes

the time until the intruder was detected.

The cartesian deviation between the calculated position of the

intruder and the ground truth position for each frame on all

experiments can be seen in Fig. 10. The evaluation showed,

that in most of our scenarios the intruder was detected

successful after at most 25 frames. With a frame rate of

25fps, this results in a time of maximal one second until

the algorithm has detected a target precisely. The timepoint

of one second or 25 frames is marked with a dotted vertical

line Fig. 10. Furthermore our experiment showed, that once

the intruder is detected, the algorithm is able to track the

intruder in the image for the whole remaining part of the

sequence.

TABLE II: Test sequence evaluation

Name Accuracy (%) Detection time (s)

S1SS 85.6 0.2
S1SC 89.0 1.0
S1TS 97.6 0.2
S1TC 97.2 0.2
S2SS 85.0* 1.7
S2SC 91.6 0.2
S2TS 97.0* 0.2
S2TC 91.6 0.8

* values estimated

D. Performance Evaluation

The whole image processing pipeline was written in

C + +11 using the OpenCV library version 2.4.11 for

image processing. This configuration allows to port and

test the software easily on different architectures. As

mentioned before, one of the design criteria of the presented

image analysis algorithm was the operation on companion

computer onboard of the UAVs. To evaluate this ability, the

algorithm was tested on three different hardware platforms,

a I7 Workstation, a Nvidia Jetson TX1 and a Raspberry Pi

Model 3. Table III gives an overview of the hardware which

was used for this tests. A benchmark time for each filter

per frame was measured using internal high resolution clock.

TABLE III: Hardware configuration

Hardware CPU Type Cores Clock rate Time(s)

Workstation Intel I7 Skylake 8 3.4 Ghz 0.11
Jetson TX1 ARM Cortex A57 4 1.9 Ghz 0.44
Raspberry PI ARM Cortex A53 4 1.2 Ghz 1.30

An example on the runtime for each component of the

algorithm during a whole image sequence is shown in Fig.

11 for each hardware platform. The example is taken from

sequence S1SS, but the algorithm shows the same runtime

behavior on each platform for all the other sequences. One

can observe, that the runtime for for each single component

of the algorithm is almost linear at each timepoint, showing

no dramatic increase at any point of the sequence. Still, the

hardware platforms with ARM architecture showed some

minor differences in the runtime of some components relative

to each other, compared to the workstation. For the Nvidia

Jetson TX1, one has to keep in mind that during all tests no

GPU acceleration was used.



Fig. 10: Performance on all eight test sequences.

V. CONCLUSION AND OUTLOOK

This paper describes a lightweight and fast algorithm for

automatic detection and tracking of small moving objects

from a moving camera, which is robust against different

combinations of movement of the intruder and different

type of backgrounds. The evaluation against a hand labeled

ground truth showed, that the intruder can be detected in a

reasonable time and will be tracked successful. A noteworthy

effect of the algorithm is the ability to detect and track a

single intruder without any previous selection or highlighting

of the intruder, especially because there was no information

or assumption about the shape or color of the intruder.

For the computational speed, there is still some space for

optimization on different parts of the algorithm. Especially

on companion computers with low computational power

there is still some need for further optimization. Possible

solution to that problem can result in decreasing the frame

rate or the image size, resulting in the disadvantage of

lowering the detection speed or resolution. From the selected

hardware platforms, the Nvidia Jetson TX1 showed a big

potential to be used as a companion computer, particular if

the GPU unit from the board can be successful integrated in

the image processing pipeline.

The presented algorithm was designed with regard to detect

small moving object, which applies to UAVs as well as to

birds. At the moment, there is no way to separate a detected

object into one of these two classes. Further development

should try to find a good solution do distinguish between

birds and UAVs. One possible idea could be to analyze the

trajectory of a tracked object in order to distinguish between

UAVs and birds.

As mentioned in section IV-A, during the experiments only

one intruder UAV was used. Therefore, the algorithm had to

find and track only one target at all times. A future expansion

could be the ability to track multiple intruder at the same

time.

Nevertheless, the selected image sequences from the exper-

iments contain a lot of different scenarios with different

types of backgrounds, movements or sizes of the intruder.

In combination with the hand-labeled ground truth positions,

this yields in a good database for further development and

investigations.



(a) Workstation

(b) Jetson TX1

(c) Raspberry PI 3 Model B

(d) Legend

Fig. 11: Runtime performance
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