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Abstract—This paper introdeces a new Matlab Toolbox
called RobSin, which for a given plant (multi-hmodel provides
a fast computation of the stabilizing region in the coordinates
of PID parameters. The algorithms use the concept of singular
frequencies for computation of comvex polygonal slices on
planes kp = const. In addition ¢ fime-continuous systems, the
method described in this paper ks especially convenient for
the design of time-discrete PIP and three-term controllers and
time-delay systems.

L. INTRODUCTION

It has been shown that stability regions of PID controllers
with fixed proporticnal gain consist of convex polygons.
Different approaches which prove this result are based
on a generalization of the Hermite-Bichler theorem [5],
calculation of the real-axis intersections of the Nyquist plot,
[7] and singular frequencies {1], [2]. It turns out that for
variations of two specific controller parameters (or linear
combinations thereof) the eigenvalues can cross the imagi-
nary axis (or a parallel to it) or circles with arbitrary radii
and center on real axis only at singular frequencies, that are
determined as the roots of a polynomial. At these singular
frequencies the stability boundaries are straight lines that
bound the stable convex polygons. Thereby the goal is to
find simultaneous stabilizers for a finite set of given plants
(multi-model uncertainty). It is shown, that the orientation
of the polygon slices depends only on the [-stability region!
and not on family plant members. Therefore it is easy to find
the set of all simultancous I-stabilizers by the intersection
of convex polygons: Notice that the method applies for
a wide range of multi-model uncertain systems including
time-delay systems and discrete-time systems.

This paper presents the new tool RobSin (Robust Design
based on Singular Frequencies), which basically includes
design algorithms based on mapping of singular frequencies
into controller parameter space for fast controller design
or/and fine tuning. RobSin provides a Command Line, as
well as a GUI (Graphical-User-Interface) working environ-
ment. The presentation of the features of the toolbox is
associated with a short recapitulation of theoretical back-
ground. Thereby the proofs of theorems are avoided, but
the interested reader is referred to the literature for further
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reading, [11, [2], [3], and [4]. The usability of the tool
is illustrated by the robust control benchmark problem
proposed in [8].

II. THE SOFTWARE TOOL ROBSIN
A. Graphical-user-interface

The GUI of RobSin includes four interactive windows,
[6]. The main window discriminates between the synthesis
and analysis mode. The synthesis mode defines the control
problem, including the multi-model, controller structure,
and the T'-region of specifications, whereas the analysis
mode provides the interactive analysis with common meth-
ods such as eigenvalues, Bode-diagrams, Nyquist-plots, etc.
{compare Fig. 2 and 3).

The multi-model plant may be defined in two ways:
{a) implicitly by settings the min-max limits of parameter
uncertainties (see Fig. 2), or (b) explicitly by entering
the finite set of plants. The controller structure may be
defined to be a PID or a three-term one. Depending on
the specifications the I'—region may be chosen to be (a)
Hurwitz, (b) 6 < 0, or (3) a circle with arbitrary radius
and center on the real axis.
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Fig. 1. The benchmark problem

Example: A Bernchmark Problem: Consider the problem
of robust stabilization of the fourth-order mechanical system
depicted in Fig. 1, whereby the mass m; and the spring
k are considered to be uncertain within the limits m €
[05,1] and k € [0.5,2] (m; = 1 = const.). For illustration
purposes a multi-model containing five operating points will
be investigated. Besides the four edges of the uncertainty
domain in parameters m; and %, an additional operating
point at my =0.75 and k=1 is included, see Fig. 2.
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Fig. 2. The main RobSia winrdow: synthesis mode

The transfer function from the input force u to the output
position y is easily checked to be

Gls,kmyma) = 28 = K/mam2
ko, uls) o (sz_i_k_z_z";n;:z)

It can be shown that no PID controller can stabilize the
systern in (1), Therefore a three-term controller structure
will be investigated, e.g.

Clsc) = 1000 (0.43 + 1.3165 -+ 3.785%) (cp -+ €15+ ¢25%)
S T T 5 10)(5 + 14.05) (s + 12.16)(s 1 5.07)

Farther, the requirements are set by the I'—region, ¢ <
—0.1, see Fig. 2. Now the task is to find the whole region
in parameter space ¢ = [cp,c1,c2], which copes with the
latter requirements.

B. Command-line framework

Equivalently, in the command-line framework, the prob-
lem may be defined by using the command

>>» 5q = singflargin);

whereby the parameter argin represents a structure with
two fields: (a) I-region and ¢b) the multi-model. sg
represents an object of the class singf, with different
properties and methods. Some of most important properties
and methods will be addressed in the course of this article.

HI. SiNGULAR FREQUENCIES AND ['-REGIONS

Consider a characteristic polynomial (c.p.) expressed in
vecterial form at a complex frequency s = 6 + jo,
Pon) = | o) ] .

IP{O', O),r’) (3)
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Fig. 3. The main RobSin window: analysis mode.

whereby r is a vector of real parameters, which enter
linearly in the coefficients of (3).

Definition I: A frequency s =3, is said to be singular
iff the following two conditions apply:

Rank-Condition: Rank(8P/dr}|, =1 )
Root-Condition: Pse,r*)=0. (5
Thereby #* is a fixed point in r-parameter space. Notice
that the rank-condition does not depend on parameters 7.
Definition 2: A closed region in complex plane (so-
called I'-region) bounded by the contour JT is said to be
singular iff

Rank(dP/dr) =1 for all s € JI". ®
An important result regarding robustness is the following
theorem. Consider the family of ¢.p.

By (s,7) = Ay(s) Q(s,r) + By (s), (7
with
v=1,2,--- N.

Theorem I: The rank-condition (4) for the c.p. {7) in r-
parameter space is set by the polynomial Q{s,r) and does
not depend on the polynomials A,(s) and By(s).

Let Ay(s) and B, (5} include the uncertainties of the con-
trol loop and r be the design parameters. The above theorem
assures that uncerfainties do not impact the singularity of a
I"-region. However, they certainly influence the distribution
of singular frequencies over the T boundary.

IV. HURWITZ-, ¢- AND CIRCLE STABILITY

Basically this paper considers a finite family of polyno-
mials or/and quasipolynomials of the form

Po(s) = Ay(5)Q(s} + B'v(5,Lg), ®



whereby,

O(s) = co+eis+c2s, %

and

By (s,Ly) = By(s)elov 5. (10)

Ay und By are real polynomials of Laplace, s, or discrete,
z, varigble. Ly corresponds to the the dead-time of a
continuous system, which in (8) may be zero or positive.
{For time-discrete systems L; = 0).

The method of singular frequencies is convenient for de-
termination of all simultancous stabilizers ¢ = [cp, ¢y, €2]T of
the family (8). The polynomial Q(s} in (9) may correspond
to a PID controller, or to a zero or pole of a three-term
controller.

k is easy to show that the rank-condition (4) for the
polynomial (8) applies on cach point of the imaginary
axis jo, i.e. Hurwitz T-region is singular. However, for o-
stability (all eigenvalues lie in the half-plane ¢ < o) and
circle stability (the eigenvalues are enclosed by a circle with
arbitrary radius r and real center ) a linear transformation
T from ¢- to r-parameter space is required,

f11 iz R3 o
c=Tr= |t tn i3 i detT £0 (11)
3y faz I3 r

It can be shown that for o-stability,

1y fiz 113
T=| 20,61 1tz 20, |, (12)
“131 Bz 33
and for circle-stability,
—121m+131(r2 _mZ) iz —I‘23M+t33("2 _m2)
T= 21 %) 23
31 i 33

(13)
whereby the arbitrary parameters ¢ should be chosen such
that det(T) # 0.

Example (continued): Tt can be easily shown that c.p.
of the problem presented in Section II belongs to the class
of the polynomials (8) with L; = 0. Recall that the design
requirements are set by the I'—region ¢ < —0.1. Therefore,
according to (12) the transformation matrix is chosen to be,

1 0 o
T=|0 1 02 (14)
00 1

V. GENERATOR OF SINGULAR FREQUENCIES AND
STRAIGET LINES

The following equations are used to parametrize a o- and
a circle singular T-region (i.e. their boundary JI'):

s(a) = o™+ ja, a € [0;%9). (15
(6" = const; for Hurwitz region o* = (),
zZ() =m+r-e®, o< {0;7. (16}

?

Substitution of this parametrization into the original ¢.p. in
(3) yields,

with

P(at,r) = F(a) [ :;’ J—i—G(a) r+H(a), (7
Flo) = [ fu fiz

. Jz :J’ G(a}:[;}, H(a)=[

Note further that due to rank-condition (4),
det{F(at)) =0, Veecdl. (19)

Thus the root-condition (3) may be decoupled into two
conditions,

hytfn—mfn
1 f;zfzzgisz‘}] (20)
P+ = @ f;zfz;—gzlfﬂ% '

The first equation will be referred to as the generator of
the singular frequencies (GSF), since for a fixed ry = r} all
solutions for & represent singular frequencies, see Fig. 4.
On the other hand, such a solution o = ¢ defines via
the second equation in (20) a straight line A{cg) in the
(ro,r2)—plane, which will be termed as singular line. The
second equation itself will be referred as the generator of
singular lines (GSL).

: k=0.5:
: k=0.5:
© o k=2;
t k=2,

ksl
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Fig. 4. The GSF for the benchmark exampie

If all singular frequencies o, are mapped to a plane r; =
r}, a finite (i.e. infinite for quasipolynomials) set of singular
lines A (ay) appear, which in turn define a finite (i.. infinite)
set of convex polygons. Because of the continuity such a
polygon will be stable iff a single point within it is stable.
Such a polygon will be called as a stable polygon.

Example (continued):  In RobSin the singular frequen-
cies for the class sqg, are computed using the command
gensfs. E.g. to compute the singular frequencies lying on



o = —0.1 for the example from Section II for r; =0.5 use
the command

>>» gq.gensfs(0.5);

To check the singular frequencies the property
SingularFrequencies should be called. E.g. the
singular frequencies of the object sqg corresponding to the
second operating point, ie k=05, mi =1 and my =1, are

>> sq.SingularFrequencies{2};
ans =
0
0.2301
1.5608
6.4804

The RobSin command for the generation of the singular
lines at the plane r; =0.5 is

>> sg.gensls(C.5);

and finally, the generator of singular frequencies may be
plotted by the command

»>>» sqg.plotgsi;

VI. INNER POLYGONS

The concept of inner polygons is introduced in [1]
for automatic detection of stable polygons. The essential
advantage of this method is that it can be applied in general,
including quasipolynomials.

Definition 3: A polygon is said to be an inner polygon
if it is defined by a set of singular frequencies {s.} and
lines {A(s.)}, such that any transition over {A(s})} inside
the polygon causes an eigenvalue to enter the T—region at
{sb}-

1t is clear that all stable polygons are inner polygons, i.e.
this is just a necessary condition for stability of a pelygon.

In order to detect an inner polygon each singular line
A{so). will be assigned a “transition” function e: it is
positive if the transition [8rp,8r2] over the singular line
causes an eigenvalue to enter the I'—region and negative in
other cases.

Define a normal vector 7 at a singular frequency s, on
JT" and let it point outside the -region. Assume that oT
can be described by an implicit function ¥ (&, ®) = 0 such

that 3
IF/do ] an

=} [ — —_—
noi= grad(F)La = [ IF /3w
The following two theorems are essential.
Theorem 2: For a transition {§rg, 0], resp. [0,872] over a
singular line A(zg) at a singular frequency s, the transition
function can be calculated by the formula

e (L [0 91 o[ A

Ja a(m,rgﬂ) am 8(:’0/2,0')
22
Theorem 3: The transition function e, /2 does not depend

on where the singular line A(s,} is crossed at.

The algorithm for automatic detection of inner polygons
is shown in the following. The polygon IT consists of N
edges, each with a start point #° and an end point rZ.

for i=1 to N
1f abs(rg,~rf ;) > abs(r;-r§;) then
€; = €

A= rg,i - rg,i
else

&y = €2

A= rzE,i“"zs,i
end

end
if any(sign{e;) #sign(A;))
M is not inner polygon
elge
IT is an inner polygon
end
Once the set of all inner polygons for a fixed rp is
detected, RobSin picks up those which posses the maximal
number of I™-stable eigenvalues. Thereby no eigenvalues are
indeed calculated, but using the transition function, one can
compute the relative number of I'-stable eigenvalues w.r.t.
a fixed polygon.

6B 0Bs Q7 Q.75 [13:] 0.85 0.2 085 1I
T
Fig. 3. Robust stable polygon for the uncertain mass-spring-mass system

Example (continuedj:  The RobSin command for the
detection of an inner polygon lying at the plane r; = 0.5
reads :

>> sg.genslice(0.5);
The result is shown in Fig. 5.

VII. STABLE GRIDDING INTERVALS

In all considerations up to now the parameter r; was
assumed to be fixed. To complete the§ theory a rule is
needed, which would discriminate r; —intervals, such that



stable PID controllers may exist therein. It has been tempted
to extrapolate such a simple rule from the generator of sin-
gular frequencies, (20), since its minima and maxima define
intervals in r with different number of singular frequencies.
Especially critical is the case of quasipolynomials (Z; # 0)
with infinite such intervals. Recently, in the paper [4] two
criteria have been proposed, which relate the number of
singular frequencies with stability conditions. In the sequel
the two criteria are presented without proofs.
Consider a polynomial of the form

P(s) = A(s)(ro +r15 + ras¥) -+ B(y), (23)

where A(s) has no zeros on the axis jo and
N:  order of the polynomial P(s)
M: order of the polynomial A(s)
P unstable zeros of A(s).
Theorem 4: If the polynomial P(s) is Hurwitz-stable for
a fixed r; = ry, then the number of singular frequencies, Z,
on the interval ~eo < @ < 4o, corresponding to 7 is

Z>N-M+2P (24)

including the singular frequency at zero, s = 0, and if any
at infinity, s =eo. |
Notice that a singular frequency exists always at s = ¢, but
not necessarily at s = oo, Using this theorem the user can
directly read from GSF-curve, 4, the r;—interval(s) which
should be gridded,

Further, consider a quasipolynomial with principat term,

P(s) = A(s¥(ro+r1s 4+ r28%) + B(s)eke*, 25)

where the same definitions for ¥, M, P hold.

Theorem 5: 1f the quasipolynomial P(s) is Hurwitz-
stable for a fixed #; =}, then a k € N exists, such that for
>k | €N, the number of singular frequencies, Z, on the
interval (-2 4 6)/Ly < @ < (21w + 8) /L4, corresponding
to 7] is

Z>4+N—M-2P, (26)

including the singular frequency at zero, s = 0, whereby
& is chosen such that the principal term of P(s) does not
vanish.

However, the bounds which are defined by this theorem
may be conservative if the so-called null-polygons appear,
see {4], i.e. an inner-polygon disappears or emerges at a
point, within an ri-interval which satisfies conditions (24)
or (26), see Fig. 6,

Example (continued):  If the parameter ry is gridded
within its stable interval, the three-dimensional region of
simultaneous stabilizers is built. The corresponding RobSin
command for the benchmark example treated in this paper
is,

>> sq.genall({linspace(0.34, 0.69, 21));

The resulting region of simultaneous stabilizers after back-
transformation into c—parameter space is shown in Fig.6.
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Fig. 6. Simultaneous stabilizers in the original c—parameter space for
the benchmark example

VIII. SUMMARY

This paper introduces the Matlab Toolbox RobSin, a
program for fast calculation of the three dimensional re-
gion of all robust stabilizing PID or three-term controller
parameters. Its algorithm, based on the method of singular
frequencies, uses the fact that 2D-slices of the stable region
consist of polygons for Hurwitz-, o- and circle-stability.
Thus, an extremely fast calculation of 3-D stable regions
in (kp,k;,kp)-parameter space is feasible. In addition to
time-continuous systems, the method described in this paper
is especially convenient for the design of time-discrete
PID and three-term controllers and time-delay systems.
Furthermare, RobSin supports amalysis of the calculated
region with on-line visyalization of the analysis plots. There
are two diffenent ways of using RobSin: by command-line
and by GUL With the GUI the usage of RobSin is very
comfortable and additional functionalities are accessible.

RobSin can be obtained for free in the internet at
http://www.robotic.de/control/robsin.
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