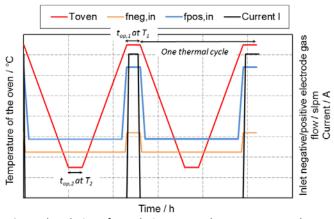


Objective and Scope


This test module deals with thermal cycling of solid oxide cell (SOC) either as a fuel cell (SOFC) or an electrolyser (SOEC), composed of several start-up/shut-down occurring for the overall SOC lifetime. It is a general characterization method that can be used in SOC R&D and for quality assurance.

Main Test Input Parameters (TIPs)

Static TIPs	Variable TIPs
Rate of oven temperature change $(\Delta T_{oven}/\Delta t)$	Temperature of the oven (T_{oven})
Dwell time of the plateau $d(t_{op,d})$	Flow rates of inlet gases (f_{in})
Number of cycles and plateaus (<i>m</i> and <i>d</i>)	Composition of inlet gases $(x_{i,in})$
Rate of current change ($\Delta I/\Delta t$)	Current (/)

Test Procedure

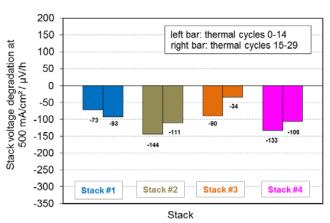
- Decrease temperature from the operating one under way to *d* plateau value at its specified rate of change.
- Wait for *t*_{op,d} to elapse and continuously record all TIPs & TOPs at their specified sampling rates, e.g. 1 Hz.
- Continue with the next *d*+1 plateau value until the number *m* of cycles is exhausted.
- Operating periods and/or electrochemical measurements (*j*-V curve and EIS) can be usefully performed between each cycle.
- The test can be interrupted or terminated when operational abnormalities (such as unexpected temperature evolution, signal instabilities) are observed or certain predefined cut-off criteria are fulfilled (threshold values on voltage, temperature or degradation rate).

General evolution of TIPs during TM14 when temperature drops below 600°C with gas and current changes for instance

Critical Parameters and Parameter Controls

 The furnace thermal inertia very often limits the rate of the cooling down process which is then often lower than the heating up rate.


When the lowest temperature is below 600°C, H₂ fraction at the negative electrode has to be kept below 4% to avoid explosive atmosphere.


Main Test Output Parameters (TOPs) and Derived Quantities

TOPs	Derived Quantities
Voltage of cell/RU/stack (V)	Current density (j)
Flow rates of outlet gases (fout)	Gas utilization (U_{gas})
Temperature of gas streams at cell/stack inlet/outlet, temperature of cell/stack (7)	Degradation rate of cell/RU/stack voltage (ΔV/Δt)
Composition of outlet gases (x _{i,out})	Average temperature (T_{av})

Data Post Processing and Representation

Data representation examples under thermal cycling:

Calculated stack voltage degradation rates at 0.5 A cm² (SOFC mode) during thermal cycling

SOCTESQA:

Solid Oxide Cell and Stack Testing, Safety and Quality Assurance

Project website: <u>www.soctesqa.eu</u>

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621245.