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ABSTRACT:

DLRAD - a new vision and mapping benchmark dataset for autonomous driving is under development for the validation of intelligent
driving algorithms. Stationary, mobile, and airborne sensors monitored simultaneously the environment around a reference vehicle,
which was driving on urban, suburb and rural roads in and around the city of Braunschweig/Germany. Airborne images were acquired
with the DLR 4k sensor system mounted on a helicopter. The DLR research car FASCarE is equipped with the latest sensor technology
like front/rear radar, ultrasound and laser sensors, optical single and stereo cameras, and GNSS/IMU. Additionally, stationary terrestrial
sensors like induction loops, optical mono and stereo cameras, radar and laser scanners monitor defined sections of the path from the
ground. Simultaneously, the helicopter with the 4k sensor systems follows the reference car by keeping it all the time in the central
nadir view. A next crucial step in the construction of the DLRAD benchmark dataset is the annotation of all objects in the reference
dataset.
The DLRAD benchmark dataset enables a huge variety of validation capabilities and opens a wide field of possibilities for the devel-
opment, training and validation of machine learning algorithms in the context of autonomous driving. In this paper, we will present
details of the sensor configurations and the acquisition campaign, which had taken place between the 18th July and 20th July 2017 in
Braunschweig/Germany. Also, we show a first analysis of the data including the completeness and geometrical quality. The dataset
will be published as soon as the coregistration and annotations are complete.

1. OVERVIEW

Different benchmark datasets for autonomous driving were pub-
lished in the last year, each with slightly different focus. Datasets
dedicated to autonomous driving usually provide environment
information captured by various sensors equipped on a vehicle.
Color and grayscale images, in either mono, stereo or panorama
mode, are considered as the main data source by the vast majority
of the state-of-the-art datasets (Geiger et al., 2013, Cordts et al.,
2016, Wang et al., 2016, Li et al., 2017, Yu et al., 2018, Huang et
al., 2018).

However optical sensors cannot always be trusted, especially in
adversarial conditions like bad illumination or weather-related
visibility issues, and must be complemented by other sensors.
This safety-oriented information redundancy is often achieved
with LiDAR and RADAR data as in (Wang et al., 2016) and
(Ziegler et al., 2014). In addition, this data can be used to re-
construct the 3D environment around the ego-vehicle and accu-
rately localize static and dynamic objects, augmenting a system’s
capacity for situation analysis. The most challenging task that en-
sues is called sensor data fusion. This is a complex task given the
wide data diversity, and deep learning has emerged as the most
capable technology in this regard, as the leaderboards of the two
most renowned benchmarks prove (Geiger et al., 2013, Cordts et
al., 2016). Several tasks are being tackled in these benchmarks,
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among which semantic and instance segmentation, object and in-
stance detection, and, in the case of the KITTI dataset, instance
tracking.

Although achieving excellent performance, deep convolutional
neural networks (DCNNs) still have difficulties when encounter-
ing cases of occlusion. This ubiquitous issue, where for example
a large vehicle might hide a smaller one from the ego-vehicle
perspective, is a likely cause of danger for road users. Vision
systems must learn to detect cues of such risky situations. This
is best addressed using a top-down view of the scene to validate
the predictions of a DCNN. Some datasets already provide geo-
referenced aerial optical and LiDAR data matched in localization
with the ground imagery (Mattyus et al., 2016, Wang et al., 2016),
the benefits of which are limited to static, permanent objects like
buildings and road topology. A simultaneous capture of ground
and aerial data must be performed to allow for the matching of
dynamic objects like vehicles.

With its Application Platform for Intelligent Mobility (AIM)
(DLR, 2018), the German Aerospace Center (DLR) has created
a research infrastructure for future intelligent transportation and
mobility services. AIM enables DLR scientists and partners to
model and systematically study an unprecedented range of top-
ics related to intelligent mobility services, covering both multi-
modality as well as specific modes of transportation. Based on
the variety of data and sensors available from the city of Braun-
schweig, the AIM test field is an ideal target region for the acqui-



sition of a new benchmark data set.

For the new benchmark dataset DLRAD (DLR – Autonomous
Driving), data from stationary, mobile, and airborne sensors are
acquired simultaneously and fused together to provide a com-
plete and geometrically accurate view around a reference vehicle,
which is driving through the city of Brunswick. The different sen-
sor views are partly complementary and together the data provide
a complete picture of a traffic scene. Details of the surroundings
are captured from different angles. The view from the helicopter
gives a detailed overview of the overall situation, while from the
vehicle’s perspective one has a rather limited view of the over-
all situation (see Figure 1), for example, with the airborne view
distant and partially concealed objects can be better observed and
most of all, they can be geometrically precisely located.

Figure 1. Different views at the same time

As the reference vehicle FAScarE, a Volkswagen eGolf, travels
along the test track and scans the environment with the vehicle-
based sensors, it is recorded by the optical camera system, the 4k
sensor system, which is installed on the DLR Bo105 helicopter.
At some positions on the route, the vehicle is also recorded by
terrestrial sensors. The route of the reference vehicle was planned
to cover different scenarios in the benchmark data set: city areas,
motorways, rural roads, industrial and suburbs areas (see Figure
2). The planned benchmark path has a total length of 156km,
with 34km urban and suburbs roads, 50km rural roads, 26km
roads in industrial areas and 46km motorways, but some parts
were optionally planned and some parts of the path were canceled
during campaign. A section of about 100km was driven in total.

In this paper, a first look on the new DLRAD benchmark dataset
is provided by listing all available sensors with a description of
their configuration and properties. Potential applications in the
field of machine vision are addressed by showing examples of
data annotations. Focus will lay on the classification of non-static
objects like vehicles and persons, as well as the classification of

Figure 2. Planned routes of the reference car in and around
Brunswick/Germany; blue: motorway, dark green: rural roads,
bright green: industrial area, red: city area, orange/magenta:

suburbs (from GoogleEarth)

(a)

(b)

Figure 3. FASCarE and BO105 helicopter; (a) team during
campaign days from 18th till 20th July 2017, (b) flight setup

static objects like lane-markings. The data set will be published
when necessary pre-processing steps like coregistration and an-
notations are completed.

2. SENSOR DATA

With the 4k sensor (Kurz et al., 2014) aboard the DLR helicopter
Bo105, the reference vehicle FASCarE (see Figure 3 a)) was
recorded while driving the previously defined routes. It was diffi-
cult for the helicopter pilots to hover vertically above the moving
reference vehicle at all times, as the flight altitude did not allow
a direct line of sight to the reference vehicle. Therefore, the cur-
rent position of the reference vehicle was sent to the helicopter
via microwave data link and displayed on a screen (showing a
scene map) so that the operator could provide the pilots with in-
structions (see Figure 3 b)).

2.1 Airborne sensors

The 4k system is designed weight-optimized, small, and rela-
tively low-cost, but equipped with a full real-time image process-
ing chain including a high-capacity data down-link to the ground
station. Figures 4 a) and b) show the composition of the 4k sys-
tem, which consists of three full frame non-metric off-the-shelf
cameras, a microwave data-link system including two antennas,
three processing units and a GNSS/IMU system (IGI IId). For the
benchmark acquisition, two cameras with different focal lengths,
50mm and 100mm, and with looking direction in nadir are used
(Figure 4 c)). The footprints of the images cover the area around
the reference car staggered according to the distance from the ref-
erence car with different GSDs of 7cm resp. 14cm. With a focal



length of 50mm an area of 320m × 240m is covered assuming
a flight height of 500m above ground. Assuming that the refer-
ence vehicle is at perfect nadir position below the helicopter, the
environment around the vehicle is mapped 120m resp. 240m in
forward and backward direction depending on the camera‘s fo-
cal length. The image repetition rate was set to 1Hz during the
whole campaign.

Another important database is the 3d surface model along the
routes, which are necessary to locate every object in the 3d space.
It is possible to generate the 3d surface models (DSM) directly
from the acquired aerial images based on structure from motion
and using semi-global matching (Hirschmüller and Bucher, 2008,
dAngelo and Reinartz, 2011). Based on frame rates around 1Hz,
it will be possible to create a 3D reference map and database with
the positions of all moving and non-moving objects around the
reference car including pedestrians, cyclists and all kinds of vehi-
cles. Gaps in the 3d surface model caused by occlusions and not-
moving helicopter can be filled with a HD surface models derived
from prior airborne acquisitions with the 4k camera system.

(a) (b)

(c) (d)

Figure 4. 4k sensor on Bo105 helicopter; (a) 4k sensor mounted
on multi-purpose carrier, (b) sensor components, (c) viewing

geometry and (d) footprints of the two cameras with focal length
50mm and 25mm

The completeness of airborne data acquisition plays an impor-
tant role. The data sets in which the reference vehicle is located
outside the cover of the two cameras cannot be used any longer.
Ideally, the reference vehicle is located exactly vertically below
the helicopter so that the environment can be mapped with the
highest resolution. In Figure 5, the achieved completeness with
regard to the coverage of the reference vehicle from the aerial im-
ages is illustrated for two scenarios. The colored points in green,
yellow and red mean the reference vehicle is mapped in optimal
resolution and in the center nadir direction (green), outside the
footprint of the long focal length, but still mapped (yellow), and
not mapped at all (red).

On motorways the completeness was relatively high (61% green,
21% yellow, 18% red) (see Figure 5 a), as the reference vehicle
was traveling with more or less constant speed in a manageable
environment. At rural roads the completeness (43% green, 27%
yellow, 30% red) was low, as the helicopter pilots had to cope
with strong wind and low altitude cloud cover on the one hand, as

(a)

(b)

Figure 5. Completeness of image acquisition (examples) on
motorways (a) and over the city (b); green and yellow dots

indicate the reference vehicle within the footprint of the camera
with 50mm resp. 25mm lense; gaps (in red) indicate the

reference vehicle outside the footprints

Figure 6. Position and field of view of vehicle based sensors

well as with temporary problems with the aboard map for guiding
the pilots. Similar situation in the urban scenarios, even though
the completeness (45% green, 44% yellow, 11% red) is relatively
high, the reference vehicle is often mapped off nadir. The reasons
are, that the pilots had problems to follow the reference vehicle
due to the complex terrain in cities, long waiting times at traf-
fic lights and necessary manoeuvers to avoid overheating of the
motor in the helicopter.

2.2 Vehicle sensors

The reference vehicle FASCarE is a Volkswagen eGolf. It is
equipped with different range detectors as follows: four rear and
six front ultrasound sensors for the close range detection smaller
than 5m, three (five planned) front and one rear IBEO laser scan-
ner with range up to 70m, each two front and three rear SMS
radar, and one front Bosch radar (see Figure 6). Also a stereo
camera system is installed at the car roof for 3D and object de-
tection purposes. For scene overview, there is a webcam behind
the front window.

The calibrated stereo camera system acquires 1380 × 800 pixel
gray value images with a frame rate of 10Hz and it is synchro-
nized with the a board GNSS/Inertialsystem (see Figure 7). The
setup can be used to calculate a depth map or to use the single
frame images for classification purposes.



(a)

(b) (c)

(d)

Figure 7. Screen shot from video (a) and image examples from
stereo cameras left (b) resp. right (c) acquired from the FASCar

reference vehicle. (d) shows the corresponding aerial image
overlaid with LIDAR reflectance points (green dots) from the

reference vehicle.

Other vehicle based data are read out from the car bus, e.g. steer
angles, pedal actions and gear shift. A smartcam from Mobileye
and from eGolf detects traffic lanes and moving obstacles like
pedestrians and cyclists.

2.3 Stationary sensors

This database will be augmented with the data from the stationary
sensors at the AIM research intersection to have a more detailed
view at defined sections. The stationary sensors are installed on
gantries at a main crossing. There are various viewing angles
that cover the entirety of the inside area of the intersection and
also partly the roads that lead to the intersection. The system
uses mono and stereo camera systems and radar sensors to detect
and classify all moving and stationary traffic participants (cars,
trucks, buses, pedestrians, bicyclists) in real-time. The trajecto-
ries (containing position, velocity, heading, size, object type) of
all objects are recorded. Also available is a low-resolution scene
video stream for every viewing angle. Furthermore, data from
traffic signals at this particular intersection is available. Figure
8 shows examples of detected objects and trajectories at the re-
search intersection.

2.4 Other data

Auxiliary data set from other sources are quite useful as addi-
tional reference. A set of geodetic SAR points in and around

(a) (b)

Figure 8. (a) Examples of detected objects and (b) trajectories of
vehicles (blue) and passengers (green) at the research

intersection

Brunswick (Gisinger et al., 2017), which are derived from
TerraSAR-X satellite, can be used as very accurate (< 10cm)
absolute reference points. The points can be used to further im-
prove the geolocalization of the aerial images.

2.5 Summary of sensor data

In Table 1, the specifications of airborne and vehicle based sen-
sors are listed including a small product description. From a ge-
ometrical view point, the ranges of the vehicle based sensors are
covered by the aerial images, and more important, the geolocal-
ization accuracy of the aerial maps outperforms any vehicle based
sensor. The optimal accuracy of around 10cm can be reached, if
geodetic SAR points are within the image footprints, in regions
without these points, absolute accuracies around 30cm can be
reached (Fischer et al., 2017). Thus, the airborne imagery could
be used as reference for the validation of any vehicle based sensor
data classification in terms of a geometrical and semantic qual-
ity analysis. Nevertheless, every classification method requires
geometrically accurate coregistered data from aerial and vehicle
based sensors. Thus, the coregistering of all data and semantic
annotations are the next important processing steps before publi-
cation of the benchmark data set.

3. ANNOTATIONS

Annotations are planned for the aerial images as well as for ve-
hicle based sensors in pixel-wise format in which each pixel is
assigned to a specific category. All non-static and most of the
static object will be annotated as illustrated in Figure 9 for aerial
images. In this example 22 classes are labeled: eight vehicle
classes, eight road classes, lane markings, buildings, two vegeta-
tion classes, impervious surface and clutter.

Annotations of the vehicle based sensors comprise non-static ob-
jects like vehicles, pedestrians as well as static object like lane-
markings and road areas. In addition, sidewalks, bike path,
and parking places can be annotated containing distinguished
paved and non-paved areas like in Figure 10. This example with
28 classes was semi-automatically generated using a pre-trained
FCN (Long et al., 2015) and data from (Neuhold et al., 2017).

Based on these annotations, the development of automatic classi-
fication methods will be possible separately and in combination
for air and vehicle-based sensors.



Data Specifications

4k sensor HD 2D orthophoto map
HD 3D model of static objects

True ortho; σXY < 0.1m∗; GSD = 0.7cm∗∗ @1Hz
SGM derived DSM σXY Z < 0.1m∗; GSD = 20cm

Stereo camera Depth map
Front view frame images

b = 0.45m→ @25m : σdist = 1.1m @10Hz
1360× 800 px (cropped, 8bit, gray value) @10Hz

Lidar 4× IBEO Lux 4L Cloud of measurement points
4 layers, range < 50m @10%permission
σdist = 10cm, FOV = 110◦h/3.2

◦
v @25Hz

Radar 5× SMS UMRR ∗∗∗ Object distance, angle and speed
dist < 70m, σdist < 0.5m or 1%
FOV = 130◦h/15

◦
v @20Hz

Radar 1× Bosch ACC Object distance, angle and speed

Ultrasound 10× ∗∗∗ Object distances
in the near range < 5m

GNSS/IMU Novatel SPAN CPT
Reference vehicle
position and speed corrected by SAPOS

Video Bosch Smart-camera
Lane detection, detection of
traffic signs and other objects

Video Mobileye Smart-camera
Lane detection, detection of
traffic signs and other objects

Video Scene camera front view videostream VGA 640× 480 video stream @22Hz

Vehicle Data
Data from vehicle bus like
stearing wheel angle,
pedal activity, indicator lights

up to 100Hz

Research Intersection

Video streams from 8 mono
cameras and 7 stereo cameras;
trajectory data from all
objects inside detection area

25Hz

∗ using geodetic SAR points
∗∗ based on focal length of 50mm
∗∗∗ not present in dataset

Table 1. All sensors (first row is airborne, the others are vehicle based) with their specifications

Figure 9. Example of pixel-wise annotations with 22 classes
containing both static and non-static objects.

Figure 10. Example of pixel-wise annotations with 28 classes
containing both static and non-static objects.



4. FUTURE WORK/APPLICATIONS

Before the data is published, the following processing steps are
required:

• Geometrical accurate coregistering of all data in one map-
ping frame, which is prerequisite for any further develop-
ments

• Annotations of aerial and vehicle based sensor data

Possible applications and research priorities are outlined below:

• Geometrical validation of vehicle based GNSS/IMU sys-
tems by airborne images and geodetic SAR points

• Validation of vehicle based multi-sensor naviga-
tion/localization approaches by airborne imagery

• Development of combined airborne and terrestrial mobile
mapping approaches

• Joint utilization of aerial and ground sensor data to per-
form SLAM, road topology estimation and road segmenta-
tion, and urban zoning classification (residential, commer-
cial, etc.)
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