
Distributed Multi-Robot
Exploration under

Complex Constraints

Alberto Viseras

Distributed Multi-Robot

Exploration under Complex

Constraints

Escuela de Doctorado
Universidad Pablo de Olavide

Crta. Utrera, km. 1
41013 Seville, Spain

Distributed Multi-Robot

Exploration under Complex

Constraints

Tesis Doctoral

para la obtención del t́ıtulo de
Doctor por la Universidad Pablo de Olavide

Sevilla, 5 de abril de 2018

por

Alberto Viseras

Directores:
Dmitriy Shutin, German Aerospace Centre
Luis Merino, Universidad Pablo de Olavide

Committee

Simon Lacroix Centre National de la Recherche Scientifique (CNRS)
Jesús Capitán Fernández Universidad de Sevilla
Juan Andrade Cetto CSIC/Universidad Politéctina de Cataluña

International Reviewers

Simon Lacroix Centre National de la Recherche Scientifique (CNRS)
Pedro Lima Instituto Superior Técnico, Universidade de Lisboa

Acknowledgments

A Michael, por introducirme en el mundo de la robótica y la exploración con
múltiples robots.

A Luis, por los ánimos, las discusiones técnicas y por confiar desde el principio
en la idea que presentamos en esta tesis.

A Uwe, Dmitriy y mis compañeros en DLR, por su apoyo y por hacerme el d́ıa
a d́ıa tan sencillo.

A los estudiantes que he tenido la oportunidad de supervisar, por transmitirme
su motivación y por ayudarme a replantearme mis ideas.

A mi familia, por apoyarme durante todo el proceso, a pesar de no haber llegado
a entender nunca lo que pretend́ıa resolver en esta tesis.

A cosiii, por estar siempre ah́ı y, ante todo, por aguantarme y no echarme de
casa.

Múnich Alberto Viseras
Febrero de 2018.

v

Abstract

Mobile robots have emerged as a prime alternative to explore physical processes
of interest. This is particularly relevant in situations that have a high risk for
humans, like e.g. in search and rescue missions, and for applications in which
it is desirable to reduce the required time and manpower to gather informa-
tion, like e.g. for environmental analysis. In such context, exploration tasks
can clearly benefit from multi-robot coordination. In particular, distributed
multi-robot coordination strategies offer enormous advantages in terms of both
system’s efficiency and robustness, compared to single-robot systems. However,
most state-of-the-art strategies employ discretization of robots’ state and action
spaces. This makes them computationally intractable for robots with complex
dynamics, and limits their generality. Moreover, most strategies cannot handle
complex inter-robot constraints like e.g. communication constraints.

The goal of this thesis is to develop a distributed multi-robot exploration
algorithm that tackles the two aforementioned issues. To achieve this goal we
first propose a single-robot myopic approach, in which we build to develop a non-
myopic informative path planner. In a second step, we extend our non-myopic
single-robot algorithm to the multi-robot case. Our proposed algorithms build
on the following techniques: (i) Gaussian Processes (GPs) to model the spatial
dependencies of a physical process of interest; (ii) sampling-based planners to
calculate feasible paths; (iii) information metrics to guide robots towards in-
formative locations; and (iv) distributed constraint optimization techniques for
multi-robot coordination.

We validated our proposed algorithms in simulations and experiments. Specif-
ically, we carried out the following experiments: mapping of a magnetic field
with a ground-based robot, mapping of a terrain profile with two quadcopters
equipped with an ultrasound sensor, and exploration of a simulated wind field
with three quadcopters. Results demonstrate the effectiveness of our approach
to perform exploration tasks under complex constraints.

vii

En la actualidad, los robots móviles son una de las principales alternativas para
explorar procesos f́ısicos de interés. Una de las razones más relevantes de esta
elección es su utilización en aplicaciones que suponen un alto riesgo para los
humanos, como por ejemplo en misiones de búsqueda y rescate. Además, su uso
brinda otras ventajas como la reducción del tiempo y recursos humanos necesar-
ios para obtener información, por ejemplo, en el caso de análisis medioambiental.
En este contexto, las tareas de exploración se pueden claramente beneficiar de la
coordinación entre múltiples robots. En particular, las estrategias distribuidas
de coordinación presentan grandes ventajas en términos de la eficiencia y ro-
bustez del sistema, en comparación con las estrategias que emplean un único
robot. Sin embargo, la mayoŕıa de las estrategias de la literatura emplean una
discretización del espacio de estados y acciones del robot, lo cual las hace com-
putacionalmente irresolubles y limita su generalidad. Además, la mayor parte
de las estrategias no es capaz de lidiar con restricciones complejas entre robots
como, por ejemplo, restricciones de comunicación.

El objetivo de esta tesis es desarrollar un algoritmo de exploración distribuido
para múltiples robots que sea capaz de solucionar los dos problemas menciona-
dos anteriormente. Para lograr este objetivo, primero proponemos una estrategia
miópica para un único robot, en la cual nos basamos para desarrollar un plan-
ificador de caminos informativo no miópico. En un segundo paso, extendemos
nuestro algoritmo no miópico de un sólo robot para considerar múltiples robots.
El algoritmo que proponemos se basa en las siguientes técnicas: (i) procesos
Gaussianos (GPs) para modelar las dependencias espaciales del proceso f́ısico
de interés; (ii) planificadores por muestreo para calcular posibles caminos; (iii)
métricas de información para dirigir a los robots hacia localizaciones informati-
vas; y (iv) técnicas distribuidas de optimización con restricciones para lograr la
coordinación entre múltiples robots.

En esta tesis hemos validado los algoritmos propuestos tanto en simulaciones
como en experimentos. En particular, hemos llevado a cabo los siguientes ex-
perimentos: mapeado de la intensidad de un campo mágnetico con un robot de
superficie, mapeado de un perfil de altura con dos drones equipados con sensores
de ultrasonido, y exploración de un campo de viento simulado con tres drones.
Los resultados obtenidos nos han permitido demostrar la efectividad de nuestro
método para llevar a cabo tareas de exploración bajo restricciones complejas.

viii

Contents

Acknowledgments v

Abstract vii

List of Figures xv

List of Tables xix

Acronyms xxi

Notation xxiii

List of Symbols xxv

I Introduction and Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Gaussian Processes Based Exploration 5
1.3 Research Problem . 5
1.4 Thesis Overview and Objectives 6
1.5 Thesis Contributions . 9

2 Methods 13
2.1 Gaussian Process Model for Spatial Data 13

2.1.1 Signal and Sensor Models 13
2.1.2 Gaussian Processes for Regression 14
2.1.3 Learning of Gaussian Process Model 18

2.2 Decision Making . 18

ix

2.2.1 Discrete Graph-Based Myopic Approach 18

2.2.2 Sampling-Based Non-Myopic Actions Planning: RRTs . . 20

2.3 Information Metrics for Exploration 24

2.3.1 Differential Entropy . 24

2.3.2 Mutual Information . 25

2.3.3 Differential Entropy and Mutual Information for GPs . . 26

3 Robotic Exploration using GPs 29

3.1 Model-based Exploration . 29

3.2 Information Metrics for Exploration 31

3.3 Path Planners for Information Gathering 33

3.4 Multi-Robot Architectures and Inter-Robot Constraints 35

3.5 Final remarks . 38

II Single-Robot Exploration 39

4 Myopic Single-Robot Exploration 41

4.1 Robot and Sensor Model . 41

4.2 Model-Based Information-Driven Myopic Exploration using GPs 42

4.2.1 GPs Regression for Exploration 42

4.2.2 Entropy-Driven Exploration with GPs 44

4.3 Simulations and Discussion of Results 47

4.3.1 RMSE Evolution . 48

4.3.2 Algorithm’s Scalability . 49

4.4 Experiments and Discussion of Results 50

4.5 Summary and Outlook . 51

5 Sampling-Based Single-Robot Exploration 53

5.1 Efficient Information Gathering using RRT-Based Planners and
GPs . 54

5.2 Search for Highly Informative Stations 56

5.3 Informative Path Planner using RRT* 58

5.4 Information Metric . 60

5.5 Computational Complexity . 62

5.6 Simulations and Discussion of Results 62

5.6.1 Simulations Setup . 63

5.6.2 Analysis of the Informative Path Planner 63

5.6.3 Analysis of the Exploration Strategy 67

5.7 Experiments and Discussion of Results 72

5.7.1 Experimental Setup . 72

x

5.7.2 Experimental Results . 74

5.8 Summary and Outlook . 75

III Multi-Robot Exploration 79

6 Myopic Multi-Robot Exploration 81

6.1 Inter-Robot Communication . 82

6.1.1 Communication Model . 82

6.1.2 Communication Network Topology 83

6.2 Multi-Robot Exploration with Online-Learning of GPs 85

6.3 Simulations and Discussion of Results 87

6.4 Experiments and Discussion of Results 89

6.4.1 Experimental Setup . 89

6.4.2 Experimental Results . 91

6.5 Summary and Outlook . 94

7 Sampling-Based Multi-Robot Constrained Exploration 97

7.1 Problem Statement . 98

7.2 Algorithm Overview . 99

7.3 Distributed Constraint Optimization: Max-Sum 100

7.4 Information Metric . 103

7.4.1 Differential Entropy . 104

7.4.2 Mutual Information Non-Measured 105

7.4.3 Mutual Information All 105

7.4.4 Choice of Information Metric 106

7.5 Algorithm Subsystems . 108

7.5.1 Calculate Candidate Paths and Generate Clusters 108

7.5.2 Search Neighbors and Exchange Domains 109

7.5.3 Calculate Robot Utilities and Execute Max-Sum 110

7.5.4 Follow Path and Collect Measurements 113

7.5.5 Exchange Measurements (Data Fusion) 113

7.5.6 Update GPs Model . 113

7.6 Computational Complexity . 113

7.6.1 NoCluster . 114

7.6.2 Cluster . 115

7.6.3 ClusterSimplified . 115

7.6.4 Summary . 116

7.7 Simulations and Discussion of Results 116

7.7.1 Simulations Setup . 116

7.7.2 Analysis of the Exploration Strategy 118

xi

7.7.3 Analysis of the Multi-Robot Coordination Strategy 120

7.7.4 Analysis of the Clustering Procedure 121

7.8 Experiments and Discussion of Results 122

7.8.1 Experimental Setup . 123

7.8.2 Experimental Results . 126

7.9 Summary and Outlook . 128

7.A Appendix - Analysis of Algorithm Parameters 131

IV Conclusion and Future Work 135

8 Conclusion and Future Work 139

8.1 Conclusion . 139

8.2 Future Work . 145

Appendices 149

A Single-Robot Path Planning 151

A.1 Introduction . 152

A.2 Ant Colony Optimization for Continuous Domains 155

A.3 ACO-RRT/RRT* Algorithm . 156

A.3.1 Initialize Ants . 158

A.3.2 Sample ACO . 158

A.3.3 Construct Tree . 159

A.3.4 Calculate Utility . 159

A.3.5 Update Ants . 161

A.4 Anytime ACO-RRT* . 162

A.5 Simulations and Discussion of Results 163

A.5.1 Time to Find a First Path and Associated Cost 164

A.5.2 Algorithm Performance with Time 165

A.5.3 Anytime ACO-RRT* Performance 166

A.5.4 Performance with respect to the Algorithm Parameters . 167

A.5.5 Examples of Paths Planned with the ACO-RRT* Algorithm168

A.6 Summary and Outlook . 168

B Multi-Robot Path Planning 173

B.1 Introduction . 173

B.2 Problem Statement . 174

B.3 Asynchronous Distributed Constraint Optimization 175

B.4 Algorithm Overview . 176

B.5 Multi-Robot Path Planning for a Connected Subnetwork 178

xii

B.5.1 Path Replanning . 179
B.5.2 Robots Synchronization 179
B.5.3 Stations Separation . 180

B.6 Simulations and Discussion of Results 180
B.6.1 Leader Election and Depth-First Search Tree Creation . . 181
B.6.2 Distributed Assignment of Paths 181
B.6.3 Multi-Robot Path Planning for a System with Multiple

Subnetworks . 184
B.7 Experiments and Discussion of Results 184
B.8 Summary and Outlook . 185

Bibliography 187

xiii

List of Figures

1.1 Examples of two physical processes of interest considered in the
thesis. 4

1.2 Thesis content. 10

2.1 Example of GPs regression. 14

2.2 Impact of the model’s hyperparameters on GPs regression. . . . 17

2.3 Example of an environment’s graph representation, and a robot’s
action graph for a myopic planning approach. 19

2.4 Evolution of RRT and RRT* algorithms as we increase the number
of iterations. 23

2.5 Venn diagram for several information metrics. 26

3.1 Multi-robot architectures. 37

4.1 Magnetic field intensity. 43

4.2 MSE between estimate and ground truth as we increase the num-
ber of measurements. 44

4.3 Entropy at each individual cell after taking some measurements
with a robot along a path. 45

4.4 Algorithm block diagram. 46

4.5 Graphical representation of an exploration scenario. 47

4.6 Experimental setup employed to test the algorithm’s performance. 48

4.7 Trajectories employed to benchmark our algorithm for the explo-
ration of a magnetic field intensity. 49

4.8 Evolution with time of the RMSE between estimate with GPs and
ground truth for four different trajectories. 50

4.9 Scalability of the algorithm respect to the environment’s size. . . 51

4.10 Evolution with time of the RMSE in real experiments on magnetic
field exploration. 52

xv

5.1 Algorithm block diagram. 54

5.2 Search for highly informative stations. 57

5.3 Simulation scenarios used to test the performance of our informa-
tive path planner algorithm. 64

5.4 Performance analysis of Alg. 5.3 as we increase the planning time. 66

5.5 Scenarios employed to test our proposed information gathering
strategy. 68

5.6 RMSE between the estimation of the process and the ground truth. 70

5.7 Quality of the solution achieved by Alg. 5.1, a myopic, and a
random trajectory after a 900 seconds mission. 71

5.8 GPs hyperparameters learned during the information gathering
task for Alg. 5.1, a myopic, and a random trajectory. 73

5.9 Ground-based robot exploring the magnetic field intensity within
an indoor environment populated with obstacles. 74

5.10 Evolution of the RMSE during a 940 seconds exploration task. . 75

5.11 Screenshots showing the algorithm execution as we run the exper-
iment. 76

6.1 Example that illustrates the concept of a disk communication model. 83

6.2 Communication graphs of the network topologies, classified ac-
cording to its connectivity properties. 84

6.3 Algorithm block diagram. 86

6.4 Performance evaluation of Alg. 6.1 as we increase the number of
robots in the system. 88

6.5 Two quadcopters explore an unknown terrain profile with Alg. 6.1. 89

6.6 Ultrasound sensor measurement. 90

6.7 RMSE with respect to the ground truth for five different algorithms. 91

6.8 Hyperparameters learned during the exploration run. 93

6.9 Reconstruction of the terrain profile after running Alg. 6.1. . . . 94

7.1 Algorithm block diagram. 99

7.2 Example of a factor graph. 102

7.3 Graphical representation of the notation employed in this chapter. 104

7.4 Evaluation of several information metrics as we increase the num-
ber of potential measurements. 107

7.5 Illustration of a constraint that we introduce in the RRT to guar-
antee inter-robot collision-free paths. 108

7.6 Spatio-temporal clustering. 109

7.7 Graphical illustration of UC(·). 112

7.8 Illustration of a thermal (7.8a) and the two dimensional wind field
to be explored (7.8b). 117

xvi

7.9 RMSE reduction during an exploration task as we increase the
number of robots in the system. 119

7.10 Network connectivity. We depict the percentage of iterations in
which the network fulfills a periodic connectivity constraint. . . . 121

7.11 Algorithm’s performance as we vary the two most relevant param-
eters: spatial-temporal clusters, and communication radius. . . . 123

7.12 Experiment’s environment. 124

7.13 Nominal position and actual position of the quadcopters during
the exploration task. 127

7.14 Process reconstruction and entropy after performing an explo-
ration run. 128

7.15 RMSE between estimate and ground truth resulting from a field
experiment that we carried out with one and three quadcopters. 129

7.16 Original data employed to carry out the curve fitting needed for
Figure 7.11a. 132

7.17 Original data employed to carry out the curve fitting needed for
Figure 7.11b. 133

A.1 Example of one path generated with the proposed ACO-RRT*
algorithm. 153

A.2 T-table of the ACOR algorithm. 155

A.3 ACO-RRT/RRT* algorithm block diagram. 156

A.4 Graphical representation of the exploitation utility in the path
found mode. 161

A.5 Simulation scenarios. 163

A.6 Box plot representation of the number of iterations and time to
find a first path, and its associated cost. 164

A.7 Evolution of the best path cost over time and iterations once we
found a first solution, and time complexity. 166

A.8 Anytime ACO-RRT* performance. 167

A.9 Analysis of the algorithm performance as we change the algo-
rithm’s parameters. 168

A.10 Example of one path planned with the ACO-RRT* algorithm for
each of the analyzed scenarios. 169

B.1 State machine that describes the algorithm’s execution. 177

B.2 Example of an scenario where multiple robots aim to visit a set
of stations. 178

B.3 Leader election and DFS tree creation. Fully and sparsely con-
nected subnetworks. 181

xvii

B.4 Algorithm’s performance respect to the domain size and number
of agents. 182

B.5 Algorithm’s performance respect to the number of exchanged mes-
sages. 183

B.6 Number of subnetworks and maximum number of robots per sub-
network for a typical scenario with 10 robots. 184

B.7 The three holonomic robots employed to carry out the experimen-
tal validation of the proposed algorithm. 185

xviii

List of Tables

2.1 Computational complexity of information metrics for GPs. 28

3.1 GPs-based exploration. Pre-learned vs. online update. 30
3.2 Classification of works according to the information metric em-

ployed to select robots actions. 31
3.3 Classification of informative path planners according to the plan-

ning space representation. 33
3.4 Classification of informative path planners according to the plan-

ning horizon. 34
3.5 Multi-robot state-of-the-art algorithms sorted according to the

employed multi-robot architecture. 35
3.6 Classification of multi-robot works according to the inter-robot

constraints they can handle. 36

5.1 Analysis of the information function. 65
5.2 Evaluation of path cost and posterior entropy evaluated over the

complete environment. 68
5.3 RMSE at t = 600s resulting after exploring scenario B. 72

7.1 Evaluation of algorithm’s complexity. 116

A.1 Simulation parameters. 164

xix

Acronyms

ACO Ant Colony Optimization.

DCOP Distributed Constraint Optimization.
DFS Depth-First Search.
DLR Deutsches zentrum für Luft- und Raumfahrt

(German Aerospace Center).

GP Gaussian Process.

LML Log-Marginal-Likelihood.

MI Mutual Information.

RL Reinforcement Learning.
RMSE Root Mean Squared Error.
ROS Robot Operating System.
RRT Rapidly exploring Random Trees.

SE Squared Exponential covariance function.

xxi

Notation

A random variable.
A \ B elements of set A that are not part of B.
A set/graph.
NA(a) neighborhood of a node a in graph A.
A matrix.
a vector.
a constant.
|A| cardinality of set A.

xxiii

List of Symbols

Decision maker

Np parameter that sets the maximum number of
iterations that we let a planning algorithm
run.

η parameter that sets the maximum branch size
in RRT/RRT* algorithms.

G(V, E) planning graph (tree), with a set of vertices
V and edges E .

LXfree(VXfree , EXfree) lattice graph defined over Xfree, with VXfree
the set of vertices and EXfree the set of edges.

PxA,xB path that consists of an ordered list of
waypoints from xA to xB; PxA,xB =
{xA, ...,xi, ...,xB}, with xi ∈ Xfree.

Gaussian processes

Σ∗ covariance matrix of the predictive distribu-
tion that results from the Gaussian processes
regression.

µ∗ mean vector of the predictive distribution
that results from the Gaussian processes re-
gression.

xxv

θ∗ optimal hyperparameters of a Gaussian pro-
cess that better fit the training data.

θ hyperparameters that define a Gaussian pro-
cess covariance function, θ = [σ2

f , l, σ
2
n]T .

σ2
f hyperparameter that models the variations in

the magnitude of the physical process.
σ2
n hyperparameter that models the sensor’s

noise.
m(x) mean function of the Gaussian processes for

regression.
k(x,x′) covariance function of the Gaussian processes

for regression defined between positions x
and x′.

l hyperparameter that models the length scale
of the spatial correlation.

Information metrics

H(X) entropy of random variable X.
H(X,Y) joint entropy of random variables X and Y .
H(X|Y) conditional entropy of random variable X

given a random variable Y .
I(X;Y) mutual information of random variables X

and Y .

Informative path planning

I(Px,x′) measure of the expected information, accord-
ing to a pre-specified information metric, at
Px,x′ .

I(x) measure of the expected information, accord-
ing to a pre-specified information metric, at
x.

s∗ position x ∈ Xfree that is highly informative
according to a pre-specified information met-
ric.

xxvi

b trajectory budget.
c(Px,x′(G)) cost to reach sample x′ from x following the

tree G.
c(Px,x′) cost of traversing path Px,x′ .
f(I(Px,x′), c(Px,x′)) function that evaluates an information-cost

trade-off of Px,x′ .

Multi-robot system

N number of robots in a multi-robot system.
U(·) global utility function that we aim to maxi-

mize.
UC(·) constraint satisfaction utility that we aim to

maximize.
UI(·) information gathering utility that we aim to

maximize.
Ui(·) utility of robot i.
A assignment of decision variables in max-sum,

with A∗ the optimal assignment.
D set of decision variables for which we aim

to solve a multi-robot coordination problem.
D = {d1, d2, ..., dN}, with di the decision vari-
able of robot i.

Gc(Vt, Et) network communication graph at time t, with
vertices Vt and edges Et.

xri robot’s i current position, for a system of N
robots, with xri ∈ Xfree and i ∈ [1, 2, ..., N].

kc maximum number of iterations we allow a
robots’ network to be disconnected.

rc communication radius. It specifies the maxi-
mum communication range between robots.

rs safety distance. It specifies the minimum
inter-robot distance.

Physical process of interest

YX′ random variable that represents a process
y(x), with x ∈ Xfree, at positions X′.

xxvii

ds dimensionality of the environment in which a
process of interest takes place.

y(x) unobserved process a robot aims to explore
at position x.

Robot and sensor model

ε(x) noise factor at position x, with ε(x) ∼
N (0, σ2

n) a gaussian probability density func-
tion of mean 0 and variance σ2

n.
Xfree free space in the robot’s configuration space.

It contains all states that are reachable by
the robot considering the environment.

fm(·) robot’s motion model, which relates the
robot’s current position xr(t) and future po-
sition xr(t + dt) given a control input u:
xr(t+ dt) = fm(xr(t),u).

xr robot’s current position, with xr ∈ Xfree.
n number of measurements collected by a

robot.
p number of points where a robot aims to make

a prediction. In our information gathering
setting, p is the number of potential next
measurements.

X∗ matrix with each of the rows corresponding
to a position where a robot aims to predict a
physical process value.

X matrix that contains all positions where a
robot collected measurements.

z magnitude of measurements taken at posi-
tions X.

xxviii

Part I

Introduction and Background

1

Chapter 1

Introduction

1.1 Motivation

2011. “Fukushima nuclear plant blast puts Japan on high alert.
Warnings of possible meltdown amid radiation leaks. Tens of thou-
sands evacuated after plant explosion. Up to 1300 killed in earth-
quake and tsunami” (theguardian, 2011).

2017. “Six years after Fukushima, robots finally find reactors’ melted
uranium fuel. The Japanese government and companies used radiation-
hardened machines to search for the fuel that escaped the plant’s
ruined reactors” (nytimes, 2017).

Fukushima was a major disaster that made us rethink about the use of nuclear
energy. It also showed the world, and the robotics community in particular,
that there is still an enormous gap between robotics research, and capabilities of
robots to perform real-world missions. We would like to remark at this point that
it took a team of experts more than six years to find Fukushima nuclear plant
reactors. For that, experts used a mobile robot that was remotely controlled.

Mobile robots have emerged as a prime alternative to explore a physical
process of interest, like e.g. fuel in Fukushima’s accident, in situations that
have a high risk for humans. Also mobile robots are becoming increasingly
popular for applications in which it is desirable to reduce the required time and
manpower to gather information of a physical process, like e.g. for prospecting
or environmental analysis.

In this thesis, we focus on exploration/information gathering1 methods for
autonomous mobile robots. Especially in situations where the interaction of a hu-

1In this thesis we will employ the terms exploration and information gathering indistinctively.

3

4 Chapter 1. Introduction

(a) One robot measuring a magnetic
field.

(b) Multiple robots measuring a wind
field.

Figure 1.1: Examples of two physical processes of interest considered in the
thesis. The pictures correspond to actual experiments that we performed to
validate the algorithms proposed in this work.

man operator with a robot is difficult or impossible, e.g. in space exploration, or
search and rescue missions, it is crucial that a robot is able to make autonomous
decisions. While robots could follow brute-force systematic measuring strategies
to explore a process of interest, we are motivated to derive algorithms that, with-
out previous knowledge of the process, allow robots to obtain desired exploration
results more rapidly, and/or with fewer resources. This may be economically ad-
vantageous in e.g. prospecting or environmental analysis applications, or even
life-critical in search and rescue missions, like e.g. Fukushima’s accident.

Besides autonomy, the information gathering task can clearly benefit from
multi-robot coordination. Specifically, we are interested in distributed coordi-
nation strategies, as they offer enormous advantages in terms of both system’s
efficiency and robustness. However, most distributed coordination strategies
employ discretization of the robots state and action spaces. This makes them
computationally intractable for robotic systems with complex dynamics, and
limits the generality of the strategies. In addition, most strategies cannot handle
inter-robot constraints like e.g. communication constraints.

In this thesis we propose a solution that tackles the aforementioned issues -
generality of the strategies, and handling inter-robot constraints. Our solution
allows multiple robots to cooperate in order to autonomously gather information
of a physical process. As a consequence, we expect to be one step closer to use
mobile robots in real-world information gathering tasks, like the one from our
motivational example of Fukushima’s accident.

1.2. Gaussian Processes Based Exploration 5

1.2 Gaussian Processes Based Exploration

In robotics, exploration covers a broad range of problems such as tracking, in-
truder detection, etc. (Thrun et al., 2005). In particular, in this thesis we focus
on the exploration of physical processes that are spatially distributed. Examples
of spatially distributed processes are fuel concentration, temperature, pollution,
radioactivity, terrain profiles, magnetic fields (see Fig. 1.1a), wind fields (see
Fig. 1.1b), etc. Gathering information of such processes is a fundamental task
in a wide range of applications, such as:

• prospecting, where information about the terrain profile, and magnetic
field is crucial;

• environmental analysis, where indicators such as temperature, pollution,
fuel concentration, radioactivity, and wind are fundamental; or

• search and rescue, where knowledge about the terrain profile, and the tem-
perature is needed to e.g. identify victims of a natural disaster with a
thermal camera.

One of our prime goals is exploration efficiency. Therefore, we are interested
in obtaining a map, i.e. a spatial representation of the process, with sufficient
information in the least amount of time. To this end, we propose to model
the process’ spatial dependencies. One of the most popular methods to model
spatial dependencies of a physical process are Gaussian Process (GP) for re-
gression (Rasmussen and Williams, 2005), also referred as kriging in the field of
geostatistics (Stein, 1999).

GPs are state-of-the-art for a broad range of information gathering tasks
such as environmental monitoring (Marchant and Ramos, 2012), exploration
of unknown environments (Jadidi et al., 2014), radio source localization (Fink
and Kumar, 2010), real time traffic monitoring (Chen et al., 2012), persistent
monitoring (Kai-Chieh et al., 2016), or autonomous soaring of an unpowered
aerial glider (Chung et al., 2014). The applicability of GPs to a large class of
problems is our fundamental motivation to use GPs as underlying model of a
physical process of interest.

Before we specify the individual objectives that we want to achieve in this
thesis, let us formulate this thesis’ research problem.

1.3 Research Problem

We aim to explore an a priori unknown physical process with N cooperative
robots autonomously, and as accurately as possible, in the sense of minimiz-
ing the difference between a process estimate and the (unknown) ground truth.

6 Chapter 1. Introduction

Additionally, the exploration task should be efficient provided the (i) available
resources, and (ii) complex constraints such as inter-robot collision avoidance
and communication constraints. To this end, we devise a decentralized coordi-
nation strategy that relies on the optimization of an information metric to control
robots actions. Such strategies have been shown to be effective to reduce the
difference between a process estimate and the (unknown) ground truth (Krause
and Guestrin, 2007a; Hollinger and Sukhatme, 2014).

The aforementioned information gathering problem is subject to the following
assumptions:

1. The physical process of interest can be modeled as a GP.

2. This process is time-invariant during the information gathering task. Time-
variant processes could be considered within the proposed framework (Ras-
mussen and Williams, 2005). However, it is out of the scope of this thesis.

3. The process typically takes place in an environment populated with obsta-
cles. The borders and obstacles that define the environment are a priori
known. This assumption allows us to isolate the exploration of the physical
process from the perception and mapping of the environment.

4. The robots’ position is known exactly and noise-free. We assume that there
exists an external positioning system that provides us with a highly accu-
rate localization, e.g., a Global Positioning System for outdoor scenarios,
or a motion tracking system for indoor environments. Uncertainty in posi-
tioning could also be accounted for using GPs (Muppirisetty et al., 2016),
but it is out of the scope of this work.

The research problem formulated in this section corresponds to the final goal
of this thesis. In order to solve the formulated research problem, we performed
incremental steps towards our goal. In next section, we describe each of the steps
in more detail.

1.4 Thesis Overview and Objectives

GPs allow us to model, and subsequently to exploit, the spatial dependencies
of a physical process. In the literature, the exploitation of spatial dependen-
cies with GPs focuses on two main aspects. First, exploitation in the sense of
predicting the value of the process at not yet visited positions, with the aim of
obtaining a map of the process with sufficient information as fast as possible.
Second, exploitation in the sense of predicting the informativeness of potential
measurement positions within the environment, with the aim of driving the robot
to highly informative positions.

1.4. Thesis Overview and Objectives 7

The informativeness of a potential measurement position is commonly mea-
sured via a so-called informativeness measure, also referred in this thesis as
information metric. An information metric, together with an underlying model
of the process of interest – GPs in this thesis, allows a robot to decide where to
move next by weighting the informativeness of potential next positions. Here we
distinguish two different approaches to select potential next positions: myopic
and non-myopic approaches.

Myopic vs. non-myopic approaches. On the one hand, myopic approaches
plan a potential next movement, without taking into account how this could af-
fect subsequent movements. On the other hand, non-myopic approaches plan
over a longer horizon. Non-myopic approaches generally result in a higher com-
putational complexity. However, they outperform myopic approaches, as the
future impact of robot’s movement is considered (see Sec. 3.3).

In this thesis, we first propose myopic algorithms as a first step, and then ex-
tend them to non-myopic approaches. For the latter ones, we introduce efficient
algorithms that can deal with the high computational requirements without sac-
rificing exploration performance. Non-myopic approaches require an additional
component compared to myopic approaches: an action planner.

Action planners for exploration. Essentially, an action planner calculates
an ordered set of potential positions – a path – that the robot could traverse,
subject to the robot’s kinematic constraints. Most of state-of-the-art works for
information gathering with GPs employ discrete graph-based planners, see e.g.
Dijkstra (Dijkstra, 1959) or A* (Hart et al., 1968) algorithms, to plan the robots
motion. However, discrete graph-based planners present two major limitations.
First, they are not suited to robots that have a large state space, typically con-
sisting of more than four states (LaValle and Kuffner, 2001). Second, a discrete
graph-based planner requires a discretization of the exploration environment.
The first aspect limits the generalization of the algorithms to a reduced class
of robots. Furthermore, the second aspect introduces an additional parameter
to the algorithm: the discretization factor. Let us point out that an incorrect
selection of the discretization factor could significantly reduce the algorithm’s
performance (LaValle and Kuffner, 2001).

The two aforementioned limitations motivate us to consider sampling-based
planners as, in contrast to discrete graph-based planners, they do not require any
discretization, and allow us to generalize the proposed algorithms to a larger class
of robots.

8 Chapter 1. Introduction

Single-robot exploration. The three main elements of the model-based in-
formation gathering algorithms proposed in this thesis are:

1. GPs to model the spatial dependencies of a physical process of interest,

2. a sampling-based action planner to calculate paths that are feasible given
a robot’s kinematic constraints, and

3. an information metric to guide a robot towards highly informative loca-
tions.

Previous works such as (Hollinger and Sukhatme, 2014; Yang et al., 2013)
considered the combination of the three aforementioned elements to perform
exploration with a single robot. However, the current literature lacks an algo-
rithm that considers those three elements to gather information with multiple
cooperative robots.

Multi-robot exploration. Information gathering with multiple robots offers
two main advantages compared to a single-robot system, as pointed out in (Bur-
gard et al., 2000). First, by means of parallelization, as the exploration tasks
could be splitted between robots. Second, in terms of robustness, as the tasks
of a faulty robot could be overtaken by the rest of the team. However, the de-
velopment of a multi-robot information gathering system presents an additional
challenge: the inclusion of complex multi-robot constraints. In particular, in this
thesis we focus on inter-robot collision avoidance, and inter-robot communica-
tion constraints. In the literature, most of the algorithms do not consider such
constraints (see Sec. 3.4 for an overview), which prohibits those algorithms to be
transferred from simulations to real world experiments.

We can distinguish two different architectures to exploit the advantages, as
well as to deal with the challenges, of a multi-robot system. The most common
approach in the literature is a centralized architecture (see Sec. 3.4 for related
works). A centralized architecture consists of the combination of multiple identi-
cal robots plus a “central” robot. The central robot typically collects information
from the other robots, and coordinates the subsequent robots’ movements. In
this thesis, we go one step forward. To the best of our knowledge, we propose
the first non-myopic decentralized coordination architecture for exploration that
can deal with (i) complex multi-robot constraints, and (ii) robots whose motion
can be planned with a sampling-based planner. A decentralized architecture,
in contrast to a centralized one, does not require a “central” robot. This im-
plies that coordination is performed by means of local communication between
neighboring robots.

1.5. Thesis Contributions 9

Experimental evaluation. We validate our proposed algorithms in simula-
tions, as well as in experiments with robots in the loop that consider either
simulated or actual sensors, depending on the concrete experiment. In particu-
lar, we performed the following experiments:

• mapping of a magnetic field intensity in an indoor environment with a
ground-based robot (see Fig. 1.1a), fundamental for e.g. indoor positioning
tasks (Angermann et al., 2012),

• mapping of a terrain profile with two quadcopters equipped with an ultra-
sound sensor, relevant in e.g. agriculture (Robinson et al., 2009), and

• exploration of a simulated wind field with three quadcopters (see Fig. 1.1b),
crucial to e.g. autonomous soaring (Lawrance and Sukkarieh, 2011).

Summary. In this thesis, we start proposing a myopic discrete graph-based
single-robot exploration algorithm. Then, we analyze its performance and
evolve the algorithm in subsequent chapters to incorporate non-myopic plan-
ners, sampling-based planners, multiple robots, and inter-robot constraints. We
finalize with a non-myopic sampling-based decentralized multi-robot exploration
algorithm that deals with complex constraints.

In addition to the cited contributions that are purely related to information
gathering, we also developed algorithms that contribute to the state of the art in
path planning. Path planning is a fundamental task for exploration algorithms.
These contributions are included in the appendices.

1.5 Thesis Contributions

We classified in Fig. 1.2 the content of the thesis according to the number of
robots, and decision makers employed in each of the chapters. Next we list the
main contribution of each of the chapters, together with the publications that
resulted out of each chapter.

• In Chapter 2 we introduce the three fundamental methods that we will
employ in this work: (i) GPs model for spatial data, (ii) information metrics
for exploration, and (iii) decision makers.

• In Chapter 3 we present an overview of the state-of-the-art in information
gathering with GPs.

• In Chapter 4 we employ a graph-based myopic single-robot algorithm to
explore a magnetic field intensity in an indoor environment. To the best

10 Chapter 1. Introduction

Chapter
4

Chapter
5

Chapter
6

Chapter
7

Single
Robot

Multi
Robot

Myopic

Non-myopic

Appendix
B

Appendix
A

Chapter
2

Chapter
3

Chapter
8

Chapter
1

Figure 1.2: Classification of the thesis content according to the number of robots,
and the nature of the decision maker employed in each chapter.

of our knowledge, this is the first algorithm that explores a magnetic field
intensity in an indoor environment. Results of this chapter were published
in the following papers:

– Alberto Viseras, Michael Angermann, Iris Wieser, Martin Frassl, and
Joachim Mueller. Efficient multi-agent exploration with Gaussian pro-
cesses. In Robotics and Automation (ACRA), 2014 Australasian Con-
ference on, 2014

– Alberto Viseras, Thomas Wiedemann, Christoph Manss, Lukas Magel,
Joachim Mueller, Dmitriy Shutin, and Luis Merino. Decentralized
multi-agent exploration with online-learning of Gaussian processes.
In Robotics and Automation (ICRA), 2016 IEEE International Con-
ference on, pages 4222–4229. IEEE, 2016b

• In Chapter 5 we derive a sampling-based non-myopic single-robot algo-
rithm that offers a nine-fold improvement respect to a greedy and a random
walk trajectories. Preliminary concepts related to non-myopic information
gathering, in which this chapter builds, were published in:

– Alberto Viseras and Calin Olariu. A general algorithm for explo-
ration with Gaussian processes in complex, unknown environments.
In Robotics and Automation (ICRA), 2015 IEEE International Con-
ference on, pages 3388–3393. IEEE, 2015

Results of this chapter are published and under review in the following
conference and journal, respectively:

1.5. Thesis Contributions 11

– Alberto Viseras, Dmitriy Shutin, and Luis Merino. Online information
gathering using sampling-based planners and GPs: An information
theoretic approach. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 123–130, Sept 2017b

– Alberto Viseras, Dmitriy Shutin, and Luis Merino. Online informa-
tion gathering using RRT-based planners and GPs. Robotics and Au-
tonomous Systems, (under review) 2017a

• In Chapter 6 we extend the algorithm proposed in Chapter 4 to handle
multiple robots. The content of this chapter was published in the afore-
mentioned papers (Viseras et al., 2014, 2016b).

• In Chapter 7 we propose a sampling-based non-myopic algorithm for in-
formation gathering with multiple robots, which permits incorporating
complex constraints such as inter-robot collisions and communication con-
straints. To the best of our knowledge, this is the first algorithm with
the aforementioned features in the literature. The content of this chap-
ter is accepted and under review in the following conference and journal,
respectively:

– Alberto Viseras, Zhe Xu, and Luis Merino. Distributed multi-robot co-
operation for information gathering under communication constraints.
In Robotics and Automation (ICRA), 2018 IEEE International Con-
ference on, (accepted) 2017

– Alberto Viseras, Zhe Xu, and Luis Merino. Distributed multi-robot in-
formation gathering under complex constraints. Autonomous Robots,
(under review) 2017b

The theory and results presented in this chapter were obtained during a
research stay at the Australian Centre for Field Robotics (ACFR) at the
University of Sydney.

• In Chapter 8 we present the conclusions of this thesis, as well as potential
venues for future work.

• In Appendix A we introduce an improvement into the sampling process of
the Rapidly exploring Random Trees (RRT)/RRT* algorithms. By incor-
porating an ant colony optimization algorithm, which learns the sampling
distribution of RRT/RRT*, we obtain a gain of performance of factor 3.6
respect to the standard algorithms. This was published in the following
journal:

12 Chapter 1. Introduction

– Alberto Viseras, Rafael Ortiz Losada, and Luis Merino. Planning with
ants: Efficient path planning with rapidly exploring random trees and
ant colony optimization. International Journal of Advanced Robotic
Systems, 13(5):1729881416664078, 2016a

• In Appendix B we present, the first multi-robot RRT-based path plan-
ning algorithm that only requires local communication between neighbor-
ing robots. The content of this appendix was published in:

– Alberto Viseras, Valentina Karolj, and Luis Merino. An asynchronous
distributed constraint optimization approach to multi-robot path plan-
ning with complex constraints. In Proceedings of the Symposium on
Applied Computing, pages 268–275. ACM, 2017a

Chapter 2

Methods

We describe in this chapter the three main tools that will be considered in this
thesis. First, we give an overview of GPs regression to model spatial data in
Section 2.1. Then, we discuss in Section 2.2 several methods to calculate a
robot’s trajectory. To finalize, we describe in Section 2.3 information metrics
that exploit a GP model to evaluate the relevance of a robot’s trajectory. These
three techniques will then be combined in the next chapters to offer solutions to
exploration tasks of increasing complexity.

2.1 Gaussian Process Model for Spatial Data

2.1.1 Signal and Sensor Models

Let us consider a signal y(x) ∈ R that takes values in positions x ∈ Rds , where
ds is the dimensionality of the environment in which a process of interest takes
place. For example, a signal could be a physical process like a magnetic field
intensity within a two-dimensional environment, where each of positions x would
correspond to a position of the environment. Typically, however, a signal is not
observed directly, but is measured using some sensors. Here we assume a simple
sensor model that represents a measured signal as:

z(x) = y(x) + ε(x), (2.1)

where z(x) is a signal sample, y(x) is the unobserved signal value, and ε(x) is
a random noise. In the following we will assume that, for different measure-
ments, noise samples ε(x) are independent and identically distributed according
to N (0, σ2

n); i.e. they follow a Gaussian distribution with zero mean and variance
σ2
n.

13

14 Chapter 2. Methods

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x∗

−4

−2

0

2

4

6

y ∗

Figure 2.1: Example of GPs regression. Blue crosses represent measurements
taken by a robot. Green bold line corresponds to the mean of the resulting
prediction, and shaded area is the 95% confidence interval of the prediction.

2.1.2 Gaussian Processes for Regression

In this section we introduce basic theory about GPs for regression, and give some
hints about their applicability in exploration tasks. Before explaining the details
of GPs, we provide an example of GPs regression for a one-dimensional space
(x ∈ R). This is illustrated in Figure 2.1. Blue crosses represent measurements
taken by a robot, according to model (2.1). Given those measurements, we aim
to predict the process value in the range x ∈ [−2.0, 2.5]. The green bold line
corresponds to the mean of the prediction calculated from the GPs regression,
and green shaded area represents the uncertainty about the prediction. The
green shaded area encloses predicted values that are within a range of two sigmas
from the mean of the prediction, which corresponds to a 95% confidence interval.
We observe that the predictions at locations that are close to the measurements
locations have a lower uncertainty than those that are in areas where we have
not measured yet. This property gives us a first hint about how to exploit
GPs regression for exploration tasks, since our goal in exploration is typically
to reduce uncertainty about our model, under the assumption that the model is
representative of the physical phenomena of interest.

GPs notation. We now state GPs regression formally. Essentially, a GP is
a collection of random variables, any finite number of which have a joint mul-
tivariate Gaussian distribution (Rasmussen and Williams, 2005). As such, it is
fully specified by:

2.1. Gaussian Process Model for Spatial Data 15

• a mean function m(x) that encodes the average value of y(x). Without
loss of generality, here we assume that m(x) is set to zero, which implies an
absence of prior values of the observed process. Alternative mean functions
could be used as suggested in (Rasmussen and Williams, 2005); and

• a covariance function k(x,x′) for any given positions x and x′. k(x,x′)
encodes information about the shape and structure we expect y(x) to have.
k(x,x′) = f(x,x′,θ) is a function of x and x′, and model hyperparameters
θ. Hyperparameters θ define the GPs model and completely specify its
properties.

Now, let us make the following definitions:

• X =
[
x[1] x[2] · · · x[n]

]
T is a matrix with n rows corresponding to

spatial locations where the robot has taken measurements. For ex-
ample, in Figure 2.1 matrix X would correspond to the vector x =[
−1.4 1.2 · · · 2.1

]
T .

• z =
[
z[1] z[2] · · · z[n]

]
T are the corresponding n measurements (e.g.

z =
[
0.4 0 · · · 4.4

]
T in Figure 2.1).

• X∗ =
[
x

[1]
∗ x

[2]
∗ · · · x

[p]
∗

]
T is a matrix with p rows corresponding to

“probe” locations – points in space where we predict the process value using
the learned model. In Figure 2.1, X∗ would correspond to an uniformly
sampled subset of all positions in the horizontal axis.

Furthermore, using the covariance function k(x,x′) we define

K =

k(x[1],x[1]) · · · k(x[1],x[n])
...

. . .
...

k(x[n],x[1]) · · · k(x[m],x[n])

 ,

K∗ =

k(x[1],x
[1]
i∗) · · · k(x[1],x

[p]
i∗)

...
. . .

...

k(x[n],x
[1]
i∗) · · · k(x[n],x

[p]
i∗)

 ,

K∗∗ =

k(x
[1]
i∗ ,x

[1]
i∗) · · · k(x

[1]
i∗ ,x

[p]
i∗)

...
. . .

...

k(x
[p]
i∗ ,x

[1]
i∗) · · · k(x

[p]
i∗ ,x

[p]
i∗)

 .

(2.2)

We would like to stress that K, K∗, and K∗∗ are all functions of the hyperpa-
rameters θ, and of sampling locations X and X∗. Yet we leave this dependency
implicit in the following to simplify the notation.

16 Chapter 2. Methods

GPs regression. Given z and X, we can now predict the process value y∗
and the corresponding uncertainty at probe locations X∗. The elements in y∗
are distributed according to: p(y∗|X∗,X, z) = N (µ∗,Σ∗). The mean vector
µ∗ and the covariance matrix Σ∗ of the predictive distribution are calculated
as (Rasmussen and Williams, 2005):

µ∗ = m(X∗) + KT
∗K−1(z−m(X)),

Σ∗ = K∗∗ −KT
∗K−1K∗.

(2.3)

GPs covariance function. The effectiveness of regression strongly depends
on the covariance function k(x,x′). Specifically, we employ a Squared Exponen-
tial covariance function (SE) because of its ability to model smooth processes,
as the ones we often aim to explore. SE is stationary and isotropic. Let us also
note that the proposed scheme is not restricted to SE; spatially non-stationary
non-isotropic covariances or other choices (Rasmussen and Williams, 2005) can
be easily incorporated in the proposed scheme.

The definition of SE relies on the notion of similarity, which implies that
we expect that closer points are more likely to be similar. For SE, a measure
of similarity is merely a form of Euclidian distance between two points x, x′.
Specifically:

k(x,x′) = σ2
f · exp

(
− ||x− x′||2

2l2

)
+ σ2

nδxx′ , (2.4)

where δxx′ = 1 iff x = x′ is the Kronecker’s delta, and θ = [σ2
f , l, σ

2
n]T ∈ R>0.

In the following, we give a physical interpretation of θ and analyze their
impact in the regression:

• σ2
f is a scaling factor that models the variations in the magnitude of the

physical process; i.e. a process whose magnitude has a slow rate of variation
will be modeled with a small σ2

f .

• l models the covariance between variables separated by a certain distance.
A high value of l means that variables that are separated a large distance
are correlated. This factor is used to trade-off between model complexity
and representability of the data.

• σ2
n models the process noise, and allows us to account for the measurements

noise caused by the sensors.

We showed in Figure 2.1 the result of GPs regression employing the optimal
hyperparameters that better fit the training data (blue crosses). These hyper-
parameters corresponds to σ2

f = 3.39, l = 0.37, σ2
n = 0.02. Now, in order to

2.1. Gaussian Process Model for Spatial Data 17

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x∗

−6

−4

−2

0

2

4

6

8

y ∗

(a) σ2
f = 3.39, l = 0.37, σ2

n = 1.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x∗

−6

−4

−2

0

2

4

6

y ∗

(b) σ2
f = 3.39, l = 0.08, σ2

n = 0.02.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x∗

−1

0

1

2

3

4

5

6

y ∗

(c) σ2
f = 3.39, l = 1, σ2

n = 0.02.

Figure 2.2: Impact of the model’s hyperparameters. Blue crosses represent the
measurements taken by the robot. Green bold line corresponds to the mean of
the resulting prediction, and shaded area is the 95% confidence interval of the
prediction.

understand the impact of the model’s hyperparameters, we show in Figure 2.2
the result of the regression when we modify the values of l and σ2

n. We fix σ2
f ,

since it is merely a scaling factor. We can observe in Figure 2.2a that the mean
of the prediction becomes smoother when we increase the process noise σ2

n. In
Figures 2.2b and 2.2c we evaluate the impact of a small and a large l parameter,
respectively. We notice that for a small value of l the correlation is restricted
to neighboring locations. Therefore, the uncertainty of the prediction heavily
increases as we get farther from the training points. We observe the opposite
behavior when we increase the value of l. Now the range in which measurements
are correlated increases and the mean and variance of the prediction becomes
smoother. Another important point is that the model’s complexity is reduced as
we increase l. However, the training data loses representability.

18 Chapter 2. Methods

2.1.3 Learning of Gaussian Process Model

GPs represent a powerful method to perform regression of spatially correlated
data. In addition they allow us to learn the process model from the measured
data. Given some measurements as training data, we can compute the hyper-
parameters θ∗ that better fit the collected measurements. This is achieved via
the maximization of the Log-Marginal-Likelihood (LML) with respect to θ (Ras-
mussen and Williams, 2005):

θ∗ = argmax
θ∗

LML(θ|X, z), (2.5)

with

LML(θ|X, z) = log p(z|X,θ) = −1

2
zTK−1z− 1

2
log |K| − n

2
log 2π, (2.6)

where matrix K is constructed by evaluating the covariance function, defined by
the hyperparameters θ, at positions X (2.2). The LML is composed by three
terms. The first term corresponds to the data-fit. The second term is a com-
plexity penalty that decreases proportionally with the model’s complexity. The
third term is a normalization constant. The LML is a differentiable function
and, therefore, multiple optimization methods such as gradient descent, conju-
gate gradients, newton method etc. could be used to find θ∗.

2.2 Decision Making

The second fundamental element that we employ in this thesis is the decision
making component, which permits robots planning their next actions. In partic-
ular, we describe first in Section 2.2.1 a discrete graph-based myopic approach.
This is followed by a sampling-based non-myopic approach in Section 2.2.2. For
a more complete overview of planning methods we refer the reader to (LaValle,
2006).

2.2.1 Discrete Graph-Based Myopic Approach

The first alternative we consider in this thesis to plan robots actions is a dis-
crete graph-based myopic approach. A graph-based approach relies on a graph
representation of the robot’s state space. We denote the graph representation as
L(V, E), with V the graph vertices, and E the graph edges. V contains all possible
robot states, and edges contained in E represent transitions between two states;
i.e. two vertices are linked with and edge iff a robot can transition between
them. Specifically, in this thesis we define L(V, E) as a lattice graph. This is a

2.2. Decision Making 19

Motivation
> Institute Seminar > Alberto Viseras Ruiz • 14/11/2016 DLR.de •

Chart 1

(a) Environment graph’s representation. (b) Robot’s planning graph.

Figure 2.3: Example of an environment’s graph representation, and a robot’s
action graph for a myopic planning approach. Orange node represents a robot
current position, and white nodes represent all possible next positions.

common approach in the literature that better suits holonomic robots, as they
do not have kinematic constraints. Nevertheless, a lattice graph representation
have been also employed to plan actions for robots that are subject to kinematic
constraints, as in (Pivtoraiko et al., 2009).

Lattice graph. A lattice graph is typically defined over the full robot’s state
space. However, robots perform exploration tasks in environments populated
with obstacles, which limits the exploration space to the free space in the robot’s
configuration space, denoted as Xfree. Xfree contains all states that are reachable
by the robot considering the environment. To make explicit that L(V, E) is
defined over Xfree, we denote the lattice graph as LXfree(VXfree , EXfree). As an
example, in Fig. 2.3a we depict a lattice graph representation of a holonomic
robot that operates in a two-dimensional environment, where the blue square
corresponds to an obstacle.

Myopic planning. Given a graph representation of the environment, we intro-
duce next a myopic approach to select a robot’s next action. A myopic approach
is a particularization to decision making of a greedy paradigm. Greedy refers
to an algorithmic paradigm that follows the heuristic of making the locally op-
timal choice at each stage with the hope of finding a global optimum. In many
problems, a greedy strategy does not in general produce an optimal solution,
but nonetheless a greedy approach may yield locally optimal solutions that ap-
proximate a global optimal solution in a reasonable time. Specifically, for robot
decision making, a greedy approach would select as next position one of the
nodes in the robot’s neighbourhood, according to a user-defined cost. Multi-
ple costs could be considered according to the application of interest such as

20 Chapter 2. Methods

Euclidian distance between two nodes, expected energy consumption while tran-
sitioning between two states, or any of the information metrics described latter
in Section 2.3.

Let us assume a robot located at xr, and a cost c(Pxr,x) associated to Pxr,x,
with Pxr,x a straight line between xr,x; and x ∈ NLXfree (xr) the node’s xr

neighbourhood in graph LXfree . A myopic approach would select the robot’s
next position xnext as:

xnext = argmin
x∈NLXfree

(xr)
c(Pxr,x). (2.7)

An example of a robot’s myopic motion graph that corresponds to Figure 2.3a
is depicted in Figure 2.3b. Orange node represents xr, white nodes represent
x ∈ NLXfree (xr), and arrows indicate the direction of movement. As we can

observe, a myopic approach is restricted for this particular situation to seven
possible movements that the robot can perform in the current iteration. For
example, for a robot located in one corner of the environment, there exists only
three possible movements.

2.2.2 Sampling-Based Non-Myopic Actions Planning: RRTs

Limitations of graph-based planners (discussed in Section 1.1), regarding the
dimensionality of the robot’s state space and the need of an environment dis-
cretization, motivates us to extend exploration algorithms to handle a robot’s
continuous motion and arbitrary robot kinematics. Sampling-based path plan-
ning algorithms (LaValle and Kuffner, 2001; Kavraki et al., 1996; Karaman and
Frazzoli, 2011) are natural candidates for solving such problems. Specifically,
we propose the use of RRT (LaValle and Kuffner, 2001) and RRT* (Karaman
and Frazzoli, 2011) for exploration tasks. In the following we briefly review the
contents of (LaValle and Kuffner, 2001; Karaman and Frazzoli, 2011).

RRT algorithm. The RRT algorithm is a solution to the path planning prob-
lem in complex high dimensional spaces (LaValle and Kuffner, 2001). The RRT
algorithm iteratively constructs a graph G(V, E) (tree), with a set of vertices V
and edges E , with the goal of establishing a path between an initial state xA

and a goal state xB in the state space - a feasible trajectory PxA,xB . PxA,xB
corresponds to an ordered list of waypoints:

PxA,xB = {xA, ...,xi, ...,xB} (2.8)

with xi ∈ Xfree.

2.2. Decision Making 21

Algorithm 2.1. RRT-Path Planner(xA,xB, Np,G(V, E),Xfree)

1: V ← {xA}; E ← ∅; PxA,xB ← ∅;
2: for i = 1, . . . , Np do

3: xrand ← SampleFree(Xfree);
4: xnearest ← Nearest(xrand,V);

5: xnew ← Steer(xnearest,xrand, η);

6: if CollisionFree(Pxnearest,xnew ,Xfree) then

7: V ← V ∪ {xnew}; E ← E ∪ {Pxnearest,xnew};
8: PxA,xB ← FindBestPath(xA,xB ,G);

9: return PxA,xB ;

The key steps of the RRT algorithm are summarized in Algorithm 2.1. In
the following we explain Alg. 2.1 in more details. First, we draw a sample
xrand randomly from an uniform distribution defined over Xfree using function
SampleFree. Then the Nearest function finds the nearest neighbor (in terms of
the cost-to-reach) of xrand from the set of vertices V. We use the function Steer

to simulate driving the robot from xnearest to xrand according to our controller.
We drive the robot a maximum distance η. This is a user-selected parameter
that sets the maximum branch size. As output we obtain xnew. If the trajectory
Pxnearest,xnew does not collide with any obstacles (line 6, Alg. 2.1), we add the
vertex xnew and the edge Pxnearest,xnew to G. Given the current tree, we search
the best path PxA,xB , in terms of an user-defined cost metric, using function
FindBestPath. In case there is no feasible path, the output would be a void set.
We repeat this process during Np iterations.

RRT* algorithm. The RRT* algorithm is an evolution of the RRT algorithm
that finds asymptotically optimal solutions to the path planning problem (Kara-
man and Frazzoli, 2011). RRT* is a cost-based algorithm that allows a robot to
plan actions that minimize a desired cost such as distance, energy consumption,
or a process entropy. There exist alternative asymptotically optimal cost-based
algorithms like e.g. T-RRT (Jaillet et al., 2008). However, we employ RRT* due
to its wide adoption in the robotics community.

We describe the RRT* in Algorithm 2.2. It differs from RRT in two aspects:
choosing a parent and rewiring. In contrast to RRT, RRT* chooses the parent
of xnew as the node from the set Xnear that allows us to reach xnew with the
minimum cost. Xnear is calculated using the function Near that is defined as

Near(x,V) :=
{
‖x− x′‖ ≤ r(|V|)

}
, (2.9)

with
r(|V|) = min{γ(log(|V|)/|V|)1/ds , η}, (2.10)

22 Chapter 2. Methods

Algorithm 2.2. RRT*-Path Planner(xA,xB, Np,G(V, E),Xfree)

1: V ← {xA}; E ← ∅; PxA,xB ← ∅;
2: for i = 1, . . . , Np do

3: xrand ← SampleFree(Xfree);
4: xnearest ← Nearest(xrand,V);

5: xnew ← Steer(xnearest,xrand, η);

6: if CollisionFree(Pxnearest,xnew ,Xfree) then

7: xmin ← xnearest;

8: cmin ← c(PxA,xnearest(G)) + c(Pxnearest,xnew);

9: Xnear ← Near(xnew,V);

10: for xnear ∈ Xnear do . choose parent

11: cnew ← c(PxA,xnear (G)) + c(Pxnear,xnew);

12: if cnew < cmin then

13: if CollisionFree(Pxnear,xnew ,Xfree) then

14: xmin ← xnear; cmin ← cnew;
15: V ← V ∪ {xnew}; E ← E ∪ {Pxmin,xnew};
16: for xnear ∈ Xnear do . rewire near nodes

17: cnear ← c(PxA,xnew (G)) + c(Pxnew,xnear);

18: if cnear < c(PxA,xnear (G)) then

19: if CollisionFree(Pxnew,xnear ,Xfree) then

20: xparent ← Parent(xnear);

21: E ← E \ {Pxparent,xnear}; E ← E ∪ {Pxnew,xnear};
22: PxA,xB ← FindBestPath(xA,xB ,G);

23: return PxA,xB ;

where |V| is the cardinality of set V, γ is a constant. r(|V|) controls the tree
branch’s size. In particular, it reduces the branch’s size as V grows and, as a
consequence, paths are refined over time.

RRT* incorporates a rewiring process in order to find an optimal trajectory.
This is done by finding minimum cost sub-paths. Here, we define two different
costs: c(Px,x′(G)) is the cost to reach sample x′ from x following the tree G.
c(Px,x′) would be the cost of path Px,x′ = [x,x′]. For example, a cost between
two samples c(Px,x′) could be defined as the Euclidean distance between them.
In this case c(Px,x′(G)) would be the sum of these Euclidean distances along the
edges towards x. Alternative costs could be defined depending on the application,
as we will show in next chapters. More information about the properties that
a cost must meet can be found in (LaValle and Kuffner, 2001; Karaman and
Frazzoli, 2011). Let us remark that RRT* requires that two states must be
connected exactly during the rewiring process. This implies that the system
must be controllable.

To finalize, we depict in Figure 2.4 the evolution of RRT and RRT* algo-

2.2. Decision Making 23

(a) Nodes number: 100.

(b) Nodes number: 1000.

(c) Nodes number: 5000.

Figure 2.4: Evolution of RRT and RRT* algorithms as we increase the number
of iterations. These figures were extracted from (Yiqun Dong, 2015).

24 Chapter 2. Methods

rithms as we increase the number of nodes. We consider an initial position
xA =

[
0 0

]
and no goal; i.e. xB is not defined. The total number of nodes is

set to 5000, and we show the current tree at iterations 100, 1000 and 5000. We
can observe that the tree created with RRT* algorithm is more structured than
the one generated with RRT. This is due to the rewiring process that rewires
branches to create minimum-cost subpaths.

2.3 Information Metrics for Exploration

One definition of exploration is “the act of searching for the purpose of dis-
covery of information or resources”. In a mobile robotics context, discovery of
information typically translates in where to move next in order to obtain more
information. Multiple criteria have been defined in the literature, as we indicate
in Chapter 3, to decide where a robot should move next. In this thesis we focus
on information-theoretic metrics (Cover and Thomas, 2012) to decide about a
robot’s next actions.

Information metrics have been widely employed in combination with GPs
(see introduction in (Krause et al., 2008) for a detailed overview). In partic-
ular, we employ in this work the following information metrics: (i) differential
entropy, and (ii) Mutual Information (MI); as they have been shown to per-
form well together with GPs (Krause and Guestrin, 2007a; Krause et al., 2008;
Hollinger and Sukhatme, 2014). Next we highlight the most relevant properties
of differential entropy and mutual information. For a deeper analysis, we refer
the reader to (Cover and Thomas, 2012). Then we particularize in Section 2.3.3
the two metrics for random variables that are distributed as GPs.

2.3.1 Differential Entropy

Differential entropy is an extension of the idea of entropy from discrete to con-
tinuous probability distributions. Differential entropy of a random variable X
with probability density function f whose support is a set X is defined as:

H(X) = −
∫
X
f(x) log f(x)dx. (2.11)

A conditional entropy of X given a random variable Y with support Y and
a joint probability density function f(x, y) is given by:

H(X|Y) = −
∫
Y

∫
X
f(x, y) log f(x|y)dxdy. (2.12)

Given the definitions of differential and conditional entropy, we can now
review some relevant properties that we will use in the remainder of the thesis:

2.3. Information Metrics for Exploration 25

• Differential entropy H(X) can take negative values, in contrast to entropy
that only takes positive values.

• Conditioning never increases differential entropy: H(X|Y) ≤ H(X). In
other words “information never hurts”.

• Joint entropy H(X,Y) can be expressed as H(X,Y) = H(X|Y) +H(Y).

• The chain rule for differential entropy of p random variables X [1], . . . , X [p]

is given by:

H(X [1], X [2], . . . , X [p]) =

p∑
i=1

H(X [i]|X [1], ..., X [i−1]). (2.13)

Note that H(X [1], . . . , X [p]) ≤ ∑p
i=1H(X [i]), which implies that joint en-

tropy is upper-bounded by individual entropies.

A final remark: in this work, we focus on random variables that are dis-
tributed as GPs, which implies that random variables are continuous. Therefore
we will employ differential entropy as information metric; not entropy. For sim-
plicity, we will use the terms differential entropy and entropy interchangeably.

2.3.2 Mutual Information

MI of two random variables is a measure of the interdependence between the
two variables. More specifically, it quantifies the “amount of information” ob-
tained about one random variable, through the other random variable. For two
continuous random variables X, Y , MI is defined as:

I(X;Y) =

∫
Y

∫
X
f(x, y) log

f(x, y)

f(x)f(y)
dxdy. (2.14)

The concept of MI is intrinsically linked to that of entropy of a random
variable. Specifically, we can reformulate the previous definition to express MI
in terms of entropies:

I(X;Y) = H(Y)−H(Y |X) (2.15)

= H(X)−H(X|Y) (2.16)

= H(X) +H(Y)−H(X,Y). (2.17)

The relationship between MI and entropy can be better understood in terms
of a Venn diagram. In Figure 2.5, we depict a Venn diagram that illustrates that
relationship, where colors represent different elements of equations (2.15-2.17).

26 Chapter 2. Methods

Figure 2.5: Venn diagram, from Wikipedia, the free encyclopedia (2017), for
several information metrics associated with random variables X and Y . The
area contained by both circles is the joint entropy H(X,Y). The circle on the
left (red and violet) is the individual entropy H(X), with the red area being
the conditional entropy H(X|Y). The circle on the right (blue and violet) is
the individual entropy H(Y), with the blue area being the conditional entropy
H(Y |X). The violet area is the MI I(X;Y).

Typically, in the context of information gathering we calculate MI given
some prior knowledge. For example, some previously gathered measurements of
the process we aim to explore, or some previous knowledge about the process
properties. Calculation of MI given prior knowledge leads us to the concept
of conditional MI. The conditional MI of two random variables X, Y given a
random variable Z is given by:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z). (2.18)

Let us now highlight some of the most relevant properties of MI:

• MI is always equal or greater than zero; i.e. I(X;Y) ≥ 0.

• The chain rule for MI is given by:

I(X;Y ;Z) = I(X;Y |Z) + I(X;Z). (2.19)

• I(X;Y) can in general be greater or lower than conditional MI I(X;Y |Z).
This is particularly relevant, since adding a priori knowledge does not
necessarily translates into a decrease of MI; as opposed to entropy.

2.3.3 Differential Entropy and Mutual Information for GPs

Definitions and properties of entropy and MI, described in Sections 2.3.1 and 2.3.2,
hold in general for any continuous random variable. Now let us particularize en-
tropy and MI for the specific case we consider in this thesis: random variables
that are distributed as GPs.

2.3. Information Metrics for Exploration 27

For example, let us imagine that we aim to calculate the entropy of a process

at a single probe location x
[1]
∗ given some previously acquired measurements at

positions X. This would correspond to calculating entropy H(Y∗|X), where Y∗

is a Gaussian random variable that represents the process at x
[1]
∗ . Then, entropy

H(Y∗|X) would be given by the following expression:

H(Y∗|X) =
1

2
log(2πeσ2

∗), (2.20)

with σ2
∗ a variance calculated according to (2.3). Let us emphasize that we refer

to σ2
∗ instead to Σ∗ because we consider a single probe location. Also note that

entropy is independent of the actual measurements values, given a GPs model.
This is a property that will be exploited latter in the thesis.

Now let us extend previous definition to multiple probe locations. For exam-
ple, this could be relevant to evaluate the entropy of a potential path composed
of p waypoints. In this case, the random variable Y∗ would correspond to a set

of random variables Y∗ ,
{
Y

[1]
∗ , Y

[2]
∗ , . . . , Y

[p]
∗

}
, where Y

[i]
∗ , with i = 1, 2, ..., p, is

a random variable associated to a process at a probe location x
[i]
∗ . For multiple

probe locations entropy is given by:

H(Y∗|X) =
1

2
log((2πe)p|Σ∗|), (2.21)

with |Σ∗| being the determinant of covariance matrix Σ∗ computed according
to (2.3). Note that H(Y∗|X) is independent of the order of variables in Y∗ and
X.

An final remark: as MI can be expressed as a difference of entropies (2.15-
2.17), we can easily compute MI for GPs with (2.20, 2.21).

Computational complexity. To finalize, we would like to add a few remarks
about the computational complexity of the calculation of entropy and MI for
GPs. Two most complex operations to calculate entropy are the matrix inversion
required in (2.3), and calculation of determinant from (2.21). Both of them have a
computational complexity that scales cubically with the matrix dimensions if we
use standard methods; i.e. Gauss-Jordan elimination for the matrix inversion,
and LU decomposition for the calculation of determinant. Let us also point
out that faster methods could be considered, which would reduce computational
complexity to a 2.373 factor. For simplicity, here we restrict to standard methods
previously mentioned. This implies that computational complexity of a n × n
matrix inversion and determinant is O(n3). These two operations define the
computational complexity of the information metrics we consider in this thesis.
In Table 2.1, we summarize the computational complexity of several definitions

28 Chapter 2. Methods

Computational complexity

H(YA) O(n3
A)

H(YA|YB) O(n3
A + n3

B)
H(YA|YB, YC) O(n3

A + (nB + nC)3)
I(YA;YB) O(2n3

A + n3
B)

I(YA;YB|YC) O(2n3
B + 2n3

C + (nA + nC)3)

Table 2.1: Computational complexity of several definitions of entropy and MI
for GPs. We employ the big O notation to represent the computational com-
plexity. Note that we include scalars to exemplify the actual complexity and to
differentiate entropy and MI.

of entropy and MI. Specifically, we consider as an example random variables YA,
YB and YC containing nA, nB, nC positions respectively. We have chosen the big
O notation to represent the order of the computational complexity. According
to Table 2.1, we can conclude that MI has a higher computational complexity
than entropy because it requires the calculation of an entropy twice.

Chapter 3

Robotic Exploration using GPs

Exploration is one of the fundamental problems in mobile robotics. In this chap-
ter we review the most relevant approaches, to the best of our knowledge, which
have been proposed in the literature in the context of model-based exploration
of spatially distributed physical processes. In particular, we focus here on pro-
cesses than can be modeled as a GP. To facilitate the state-of-the-art review we
classified the different approaches according to four categories: (i) underlying
model of the process of interest, (ii) information metric that determines robots
actions, (iii) planning algorithm that calculates robots’ paths, and (iv) multi-
robot architecture and inter-robot constraints that the algorithms can handle.

3.1 Model-based Exploration

A model that can accurately represent the information we aim to gather – pro-
cess of interest – is crucial to perform an efficient exploration. Obviously, the
better we are able to represent the process, the better we can exploit the gath-
ered measurements to take decisions about robots’ actions. Multiple models have
been considered in the literature to represent physical processes. Examples of
such models are: occupancy grid maps (Julian et al., 2014), a grid-based hier-
archical decomposition of the environment (Dames et al., 2015), certainty grids
together with information filters (Grocholsky et al., 2006), Gaussian mixture
models (Merino et al., 2010), Markov random fields (Williams and Sukhatme,
2012), or GPs (Krause and Guestrin, 2007b). In this thesis we focus on the latter
ones – GPs, as we pointed out in Sec. 1.1.

GPs hyperparameters learning. One of the fundamental aspects in GPs is
the learning of the hyperparameters that characterize the GPs mean and covari-
ance function (see Section 2.1.3). In the information gathering literature we can
find two main approaches that deal with this problem. On the one hand, works

29

30 Chapter 3. Robotic Exploration using GPs

Approach Employed by...

Pre-learned

Doo-Hyun et al. (2016), Kai-Chieh et al. (2016), Chen et al.
(2015), Jadidi et al. (2015), Jadidi et al. (2014), Hollinger and
Sukhatme (2014), Patten et al. (2013), Yang et al. (2013), Kemp-
painen et al. (2010), Stranders et al. (2010), Singh et al. (2009),
Stranders et al. (2009), Krause et al. (2008), Low et al. (2008).

Online update
Ouyang et al. (2014), Marchant and Ramos (2012), Fink and Ku-
mar (2010), Singh et al. (2010), Stranders et al. (2008), Krause
and Guestrin (2007b).

Table 3.1: GPs-based exploration. The table classifies works according to how
they deal with the hyperparameters that characterize the GPs mean and covari-
ance function. In particular, two approaches are considered: approaches that
assume the hyperparameters are pre-learned prior to the exploration task, and
approaches that update the hyperparameters online as robots collect measure-
ments.

such as (Singh et al., 2009; Hollinger and Sukhatme, 2014; Doo-Hyun et al.,
2016) assume that the hyperparameters are known prior to the start of the in-
formation gathering task. This assumption implies that we posses some prior
knowledge of the process we aim to explore. In contrast, works such as (Krause
and Guestrin, 2007b; Marchant and Ramos, 2012; Ouyang et al., 2014) perform
an online update of the hyperparameters. That is, the hyperparameters are up-
dated as robots collect measurements, which allows robots to gather information
without prior knowledge of the process of interest. Singh et al. (2010) go one
step further and derive an algorithm that, in addition to performing an online
update of the hyperparameters, selects a covariance function that better fits the
measured data.

An online update of the hyperparameters is crucial to generalize algorithms to
multiple information gathering applications. However, algorithms that incorpo-
rate an online update of the hyperparameters typically offer a lower performance
at the initial phase of the exploration task, compared to those methods that as-
sume the hyperparameters as pre-learned. This lies on the fact that algorithms
that perform an online update must first learn the process spatial variation in
order to exploit such knowledge. We tackle this issue in Chapter 6 of this thesis.
Specifically, we evaluate the proposed algorithm’s performance, with and with-
out prior knowledge of the process, in an experiment where quadcopters explore
a terrain profile.

To conclude we present in Table 3.1 a classification, according to the update
of the model hyperparameters, of works that deal with information gathering

3.2. Information Metrics for Exploration 31

Approach Employed by...

Entropy
Chen et al. (2015), Cliff et al. (2015), Jadidi et al. (2014), Ouyang
et al. (2014), Merino et al. (2010), Stranders et al. (2009), Stran-
ders et al. (2008), Krause and Guestrin (2007b).

Mutual information

Doo-Hyun et al. (2016), Dames et al. (2015), Jadidi et al. (2015),
Choi and Lee (2015), Julian et al. (2014), Patten et al. (2013),
Yang et al. (2013), Choi and How (2010), Hoffmann and Tom-
lin (2010), Kemppainen et al. (2010), Singh et al. (2010), Singh
et al. (2009), Krause et al. (2008), Krause and Guestrin (2007b),
Grocholsky et al. (2006).

Others

Kai-Chieh et al. (2016), Charrow et al. (2015), Miller and Mur-
phey (2015), Gan et al. (2014), Lan and Schwager (2013), Car-
rillo et al. (2012), Marchant and Ramos (2012), Williams and
Sukhatme (2012), Fink and Kumar (2010), Levine (2010), Low
et al. (2008).

Table 3.2: Classification of works according to the information metric employed
to select robots actions during the information gathering task.

with GPs.

3.2 Information Metrics for Exploration

Autonomous robotic exploration encompass a class of algorithms that allow a
robot to autonomously decide where to move next in order to get a better un-
derstanding of a physical process of interest. The decision about where to move
next could obviously be a random choice from a pool of possible potential po-
sitions, or could be based on a pre-defined pattern. However, such choices do
not offer in general a high performance. In the literature, multiple metrics have
been proposed, which outperform a random and a pre-defined trajectory.

Frontier cells. For example, one classic exploration approach is based on the
concept of frontier cells (Yamauchi, 1997). A frontier cell denotes an explored cell
that is an immediate neighbor of an unknown, unexplored cell. In (Yamauchi,
1997), the authors showed that by guiding a robot towards frontier cells they
were able to obtain a superior performance compared to state-of-the-art methods.
Another example is the algorithm proposed in (Williams and Sukhatme, 2012).
In (Williams and Sukhatme, 2012) the authors aim to track the level curve of
a process of interest. To this end they employ a Lyapunov control law that

32 Chapter 3. Robotic Exploration using GPs

ensures that the system is stable at the level curve, which leads to a selection of
a robot’s control inputs that results in system’s stability and, as a consequence,
in an efficient tracking.

Information theoretic exploration. In contrast to (Yamauchi, 1997;
Williams and Sukhatme, 2012), in this thesis we focus on information theoretic
metrics to decide robots’ actions, as such metrics have been proven to be effec-
tive in conjunction with GPs. Examples of information metrics, together with a
respective work where they were utilized, are Fisher information (Levine, 2010;
Miller and Murphey, 2015), predictive variance of the process estimation (Lan
and Schwager, 2013), Upper Confidence Bound and Distance-based Upper Con-
fidence Bound (Marchant and Ramos, 2012), A/D-optimality (Carrillo et al.,
2012), entropy (Cliff et al., 2015), or MI (Krause et al., 2008).

Entropy and mutual information. Specifically, in this thesis we consider
entropy and MI as information metrics (Section 2.3). These have been widely
used in the information gathering with GPs literature, and have been shown to
yield a superior performance compared to another metrics.

The most remarkable works that employ entropy and MI for information
gathering with GPs are (Krause and Guestrin, 2007b) and (Krause et al., 2008),
respectively. In (Krause and Guestrin, 2007b), the authors address the question
of when an active sensing strategy, where locations are selected based on previous
measurements, will perform better than a strategy where sensing takes place at
an a priori specified set of locations. The main result of (Krause and Guestrin,
2007b) is a bound that trades off exploration and exploitation respect to the GPs
hyperparameters. On the one hand, exploration aims to decrease the uncertainty
about the model parameters. On the other hand, exploitation aims to select the
best observations given a fixed model.

The work from (Krause et al., 2008) extends (Krause and Guestrin, 2007b) by
deriving a near-optimal strategy for the exploitation phase. In particular, Krause
et al. (2008) define a grid of measurements locations, and employ as information
metric the MI between the potential measurements, i.e. positions where we
aim to measure, and the not measured locations. By exploiting submodularity
properties of MI, the authors derive an algorithm that selects a next measurement
position that is within 1− 1/e of the optimum.

Krause and Guestrin (2007b) and Krause et al. (2008) present algorithms that
offer important theoretical guarantees. However, these algorithms employ a dis-
cretization of the environment, which is not suitable for real world applications,
as we pointed out in Sec. 1.1. In addition to (Krause et al., 2008) and (Krause
and Guestrin, 2007b), there are multiple papers that employ information met-

3.3. Path Planners for Information Gathering 33

Approach Employed by...

Discrete

Doo-Hyun et al. (2016), Kai-Chieh et al. (2016), Chen et al.
(2015), Choi and Lee (2015), Cliff et al. (2015), Dames et al.
(2015), Jadidi et al. (2015), Jadidi et al. (2014), Julian et al.
(2014), Ouyang et al. (2014), Patten et al. (2013), Williams and
Sukhatme (2012), Kemppainen et al. (2010), Stranders et al.
(2010), Singh et al. (2009), Stranders et al. (2009), Krause et al.
(2008), Low et al. (2008), Stranders et al. (2008), Krause and
Guestrin (2007b), Grocholsky et al. (2006).

Continuous

Charrow et al. (2015), Miller and Murphey (2015), Nguyen et al.
(2015), Gan et al. (2014), Hollinger and Sukhatme (2014), Lan
and Schwager (2013), Yang et al. (2013), Marchant and Ramos
(2012), Choi and How (2010), Fink and Kumar (2010), Hoffmann
and Tomlin (2010), Levine (2010), Merino et al. (2010), Singh
et al. (2010), Meliou et al. (2007).

Table 3.3: Classification of informative path planners according to the planning
space representation.

rics for information gathering tasks. For a more complete classification of the
information gathering literature according to the employed information metric
we refer the reader to Table 3.2.

3.3 Path Planners for Information Gathering

Robotic information gathering algorithms aim to plan robots’ paths that max-
imize the information gathered along the path while avoiding collisions with
robots/obstacles. This is commonly referred in the literature as informative
path planning. Informative path planning is one of the key components in any
information gathering algorithm. In particular, here we classify informative path
planners according to two features that are the most relevant for our work. These
features are: planning space representation, and planning horizon.

Planning space representation. The representation of the planning space
can be either discrete, i.e. robots plan on a discrete graph that is overlaid
on top of the robot’s configuration space, or continuous, i.e. robots plan in
the full configuration space. Discrete planners like e.g. A* (Hart et al., 1968)
are suited for low-dimensional problems (Sec. 2.2.1). In contrast, continuous
planners like e.g. potential fields (Hwang and Ahuja, 1992) or sampling-based
planners (LaValle and Kuffner, 2001; Kavraki et al., 1996) are state-of-the-art

34 Chapter 3. Robotic Exploration using GPs

Approach Employed by...

Myopic

Doo-Hyun et al. (2016), Choi and Lee (2015), Cliff et al. (2015),
Dames et al. (2015), Jadidi et al. (2015), Jadidi et al. (2014),
Julian et al. (2014), Ouyang et al. (2014), Patten et al. (2013),
Marchant and Ramos (2012), Williams and Sukhatme (2012),
Fink and Kumar (2010), Hoffmann and Tomlin (2010), Kemp-
painen et al. (2010), Merino et al. (2010), Singh et al. (2010),
Krause et al. (2008), Stranders et al. (2008), Grocholsky et al.
(2006).

Non-myopic

Kai-Chieh et al. (2016), Charrow et al. (2015), Chen et al. (2015),
Miller and Murphey (2015), Nguyen et al. (2015), Gan et al.
(2014), Hollinger and Sukhatme (2014), Lan and Schwager (2013),
Yang et al. (2013), Choi and How (2010), Levine (2010), Stran-
ders et al. (2010), Singh et al. (2009), Stranders et al. (2009), Low
et al. (2008), Krause and Guestrin (2007b), Meliou et al. (2007).

Table 3.4: Classification of informative path planners according to the planning
horizon.

to solve high-dimensional problems (Sec. 2.2.2).
State-of-the-art informative path planners employ either discrete or continu-

ous path planners, depending on the specific problem (see Table 3.3 for a detailed
classification). In this thesis, our goal is to develop information gathering algo-
rithms that can be generalized to a large class of robots. Therefore, as robots
may have arbitrarily large state spaces, we propose the use of continuous planners
for exploration tasks.

Planning horizon. The second feature that we consider to classify exploration
algorithms is the planning horizon. Here we distinguish between two approaches:
myopic, and non-myopic. Myopic approaches select the immediate next best
action without accounting for the impact of that action into the future behaviour
of the algorithm (Sec. 2.2.1). Alternatively, non-myopic approaches plan over a
longer horizon several steps ahead by evaluating the impact of the actions over
the horizon (Sec. 2.2.2).

Myopic approaches are in general suboptimal as they only select the next
best action. If the action taken leads to a poor future behaviour, this is not
considered while planning. An exception of a myopic algorithm that is able to
find a solution that is close to optimal is (Krause et al., 2008), which guarantees
that the solution is within 1 − 1/e of the optimum. However, as pointed out
in Sec. 3.2, (Krause et al., 2008) does not satisfy our problem requirements
(Sec. 1.3).

3.4. Multi-Robot Architectures and Inter-Robot Constraints 35

Approach Employed by...

Centralized
Doo-Hyun et al. (2016), Kai-Chieh et al. (2016), Dames et al.
(2015), Singh et al. (2009), Krause et al. (2008), Low et al. (2008).

Decentralized

Chen et al. (2015), Choi and Lee (2015), Gan et al. (2014), Pat-
ten et al. (2013), Williams and Sukhatme (2012), Hoffmann and
Tomlin (2010), Stranders et al. (2010), Stranders et al. (2009),
Stranders et al. (2008), Grocholsky et al. (2006).

Semi-decentralized Ouyang et al. (2014), Levine (2010).

Table 3.5: Multi-robot state-of-the-art algorithms sorted according to the em-
ployed multi-robot architecture.

In contrast, non-myopic algorithms offer a higher performance compared to
myopic approaches (see references in Table 3.4). A higher performance comes at
the cost of a higher computational complexity, as planning over a longer horizon
involves a larger number of states and actions to be considered.

In Table 3.4 we classify state-of-the-art informative path planners according
to the planning horizon. By observing Tables 3.3, 3.4 we can conclude that there
exist few algorithms in the literature that plan in a continuous space, and are
non-myopic. This gap in the current literature is due to the difficulty to derive
an algorithm that can deal with the computational complexity required to plan
non-myopically in a continuous space. In this thesis, we overcome this issue and
propose algorithms that are able to plan online and non-myopically in continuous
spaces.

3.4 Multi-Robot Architectures and Inter-Robot Con-
straints

The objective of this thesis is to derive a multi-robot exploration algorithm
(Sec. 1.3). Multi-robot systems offer clear advantages in terms of efficiency to
gather information, and robustness to robots failures; respect to a single-robot
system (Burgard et al., 2000). However, multi-robot systems introduce new
aspects with which algorithms have to cope with. Specifically, we address in
this thesis two aspects that, to our understanding, are the most relevant for
multi-robot systems. These are the following:

• multi-robot architecture, i.e. how robots organize themselves to carry out
an exploration task; and

36 Chapter 3. Robotic Exploration using GPs

Approach Employed by...

Collision avoidance
Dames et al. (2015), Gan et al. (2014), Williams and Sukhatme
(2012).

Network connectivity Stranders et al. (2009).

Others Doo-Hyun et al. (2016), Gan et al. (2014).

None

Kai-Chieh et al. (2016), Chen et al. (2015), Choi and Lee (2015),
Ouyang et al. (2014), Patten et al. (2013), Hoffmann and Tomlin
(2010), Levine (2010), Stranders et al. (2010), Singh et al. (2009),
Krause et al. (2008), Low et al. (2008), Stranders et al. (2008),
Grocholsky et al. (2006).

Table 3.6: Classification of multi-robot works according to the inter-robot con-
straints they can handle.

• inter-robot constraints, i.e. which constraints must algorithms handle be-
cause of the presence of multiple robots.

Next we discuss in detail the two aforementioned aspects.

Multi-robot architecture. We distinguish between three classes of multi-
robot architectures:

(a) centralized, which consists of the combination of multiple identical robots
plus a “central” robot. The central robot typically collects information
from the other robots, and coordinates the subsequent robots movements
(see Fig. 3.1a).

(b) decentralized, which, in contrast to a centralized one, does not require a
“central” robot. This implies that the cooperation is performed by means
of local communication between neighboring robots (see Fig. 3.1b).

(c) semi-decentralized, where most of the system is decentralized but it has
some instances that run in a centralized fashion. An example of a semi-
decentralized architecture could be a system in which robots decide their
movements just by “talking” to their neighbors, but the data fusion is
performed in a central node and then broadcasted to the team.

In Table 3.5 we classify state-of-the-art information gathering works accord-
ing to the multi-robot architecture. In particular, we would like to comment
about two works that employ a semi-decentralized architecture: (Levine, 2010)

3.4. Multi-Robot Architectures and Inter-Robot Constraints 37

(a) Centralized. (b) Decentralized.

Figure 3.1: Multi-robot architectures. We depict robots by circles, with the size
of the circle representing the computational load of the robot. Lines link two
circles if the corresponding robots interact with each other.

and (Ouyang et al., 2014). Levine (2010) proposes an algorithm that incor-
porates a decentralized planning architecture in which gathered measurements
are filtered locally by individual robots. Then the estimates of the individual
robots are shared among the team in a consensus framework that employs local
communication between robots. However, measurements gathered by robots are
processed in a central node that broadcasts the measurements to the individual
robots. In contrast, in (Ouyang et al., 2014) the data fusion is realized in a decen-
tralized fashion while the multi-robot cooperation is partially decentralized. This
implies that cooperation is not solvable only with local communication between
robots, and, therefore, requires either a central node or a broadcast mechanism.

Inter-robot constraints. A multi-robot exploration algorithm must meet ad-
ditional constraints compared to a single-robot system. For example, two funda-
mental constraints are inter-robot collision avoidance, and maintenance of net-
work connectivity. Let us remark that not considering multi-robot constraints
could lead to e.g. unfeasible trajectories, and/or network disconnections that
could interrupt robots’ cooperation procedures.

In Table 3.6 we classify algorithms according to the inter-robot constraints
they can handle. In particular, we consider collision avoidance, network connec-
tivity, other constraints, and no constraints that can be handled by the algorithm.
We would like to highlight (Doo-Hyun et al., 2016) and (Gan et al., 2014) as an
example of works that consider other constraints. In (Doo-Hyun et al., 2016),
the authors assume that flying robots are affected by wind, which the authors
take into account for inter-robot collision. Also Gan et al. (2014) present an
approach that is general in the sense that they can incorporate objective and
constraints functions, with the restriction that the resulting function is differ-
entiable. However, differentiability required by (Gan et al., 2014) limits their

38 Chapter 3. Robotic Exploration using GPs

approach to a certain class of objective functions and constraints.

3.5 Final remarks

The review of the state-of-the-art lets us conclude that there is a need in the cur-
rent literature of a multi-robot exploration algorithm that (i) plans in a contin-
uous space, (ii) is non-myopic, (iii) is decentralized, and (iv) deals with complex
inter-robot constraints. These four points are our motivation to formulate our
research problem (Sec. 1.3), and to write this thesis. In the following chapters
we develop a step-by-step concept that guides us towards our objective.

Part II

Single-Robot Exploration

39

Chapter 4

Myopic Single-Robot Exploration

This chapter introduces a first method to explore a physical process with an
autonomous mobile robot. Specifically, we explore a magnetic field intensity
in this chapter. Our method combines the three main ingredients described
in Chapter 2: (i) a GPs underlying model to perform effective regression, (ii) a
decision maker to identify potential robot actions, (iii) and an information metric
to drive the robot’s motion. In addition to the proposed algorithm description,
we introduce as well in this section some of the notation and basic ideas that
will be used in the remainder of the thesis.

We organize this chapter as follows: first, we describe the robot and sensor
model in Section 4.1. Then we introduce the concept of model-based information-
driven exploration in Section 4.2. We demonstrate the effectiveness of the pro-
posed algorithm for the exploration of a magnetic field intensity within an indoor
environment, both in simulations (Section 4.3) and experiments (Section 4.4).
The use of the proposed algorithm to explore a magnetic field intensity represents
the main contribution of this chapter.

4.1 Robot and Sensor Model

We aim to explore a physical process y(x), for x ∈ Xfree, autonomously with a
robot. The robot measures y(x) (e.g. a magnetic field intensity or a wind field)
with a sensor that is characterized by (2.1). In this thesis we assume that y(x)
can be modeled with a GP of zero mean and covariance function k(x,x′). That
is, y(x) ∼ GP(0, k(x,x′)) (see Section 2.1).

Let us denote the robot’s position xr ∈ Xfree ⊂ Rds . The robot’s motion
model is given by a function

xr(t+ dt) = fm(xr(t),u), (4.1)

which relates the robot’s current position xr(t) and future position xr(t + dt)
given a control input u. This corresponds to a generic motion model that could

41

42 Chapter 4. Myopic Single-Robot Exploration

correspond to any robot, such as a holonomic robot, a car-like robot, or an
aircraft.

Note that the definition of the robot and sensor model is rather general. This
allows us to employ this notation throughout the thesis for multiple classes of
robots and sensors. For each of the chapters, we particularize the algorithms for
specific classes of robots. In the following, we present an algorithm, which uses
the proposed notation, to explore a magnetic field intensity.

4.2 Model-Based Information-Driven Myopic Explo-
ration using GPs

In this section we introduce the concept of model-based information-driven ex-
ploration. Information-driven exploration means that robot’s actions are deter-
mined by an information metric (Section 2.3). This works as follows: first the
robot calculates potential next actions. Then it ranks those actions according to
an information theoretic function, and follows the trajectory that maximizes this
function. In this chapter we consider a myopic decision maker to select poten-
tial next actions (Section 2.2.1), and differential entropy as information metric
(Section 2.3.1).

Calculation of entropy, and of any information metric in general, requires an
underlying model of y(x). Given a model we can calculate, for example, the
entropy at a position of interest (see Section 2.3.1). Obviously, the better the
model represents y(x), the better the information metric will guide the robot to
perform an efficient exploration. As we pointed out in Chapter 2.1, we employ
in this work GPs for regression because of their ability to model phenomena
with spatial variations. Next, we show in Section 4.2.1 some first insights on the
performance of the regression with GPs for exploration tasks. This is followed
by a description of the proposed algorithm in Section 4.2.2.

4.2.1 GPs Regression for Exploration

We depict in Figure 4.1 a magnetic field intensity within an indoor environment.
The magnetic field was measured in our Deutsches zentrum für Luft- und Raum-
fahrt (German Aerospace Center) (DLR) lab with a spatial resolution of 10 cm.
That is, we considered an horizontal and vertical separation of 10 cm between
any two consecutive measurements. We would like to point out that exploring a
magnetic field intensity is motivated by research carried out at DLR on indoor
localization systems (Angermann et al., 2012).

We denote the measured magnetic field intensity as yG(XG), measured at
positions XG ⊂ Xfree. yG(XG) is a subset sampled from y(x), for x ∈ Xfree. We

4.2. Model-Based Information-Driven Myopic Exploration using GPs 43

5.2. EXPERIMENTAL DATA 63

0
1

2
3

4
5

0
1

2
3

4
5
0

0.5

1

Magnetic Field Intensity [normalized]

x[m]y[m]

Figure 5.4: Magnetic Field Intensity. Dataset 4. 3D representation. Mea-
surements collected in the DLR holodeck.

Figure 4.1: Magnetic field intensity captured on the ground in an indoor envi-
ronment with a resolution of 10 cm. The data is normalized, with values ranging
between 0 and 1.

assume yG(XG) = [y
[1]
G , ..., y

[nG]
G], with y

[i]
G ∈ R the magnetic field intensity value

at position x
[i]
G ∈ XG, to be the ground truth for the subsequent experiments.

Here we investigate the impact of the number of measurements z we take,
and the reconstruction error. The reconstruction error is measured as the Root
Mean Squared Error (RMSE) between yG(XG) and the process estimate µ∗ =

[µ
[1]
∗ , ...,µ

[nG]
∗], calculated with (2.3) at X∗ = XG given z, X. Specifically, the

RMSE corresponds to the following expresion:

RMSE =

√∑nG
i=1 (µ

[i]
∗ − y[i]

G)
2

nG
. (4.2)

We perform the following experiment: first a robot measures at random
vertices x ∈ VXfree , with |VXfree | = nG, and calculates µ∗. Then we compute the
RMSE with (4.2) for three different classes of GPs covariance functions: squared
exponential (SEiso), and Matèrn covariance function with ν = 3

2 (Matern3) and
ν = 5

2 (Matern5). We refer to (Rasmussen and Williams, 2005) for more details in
the later covariance function. Figure 4.2 shows the result of this experiment. We
evaluate the RMSE as the robot increases the percentage of measured values, and
compare the aforementioned GPs covariance functions against the non-predictive
case. Here we term it NoPrediction. This takes the measured value for the
measured cells and predicts the mean value of the process, calculated a priori
from yG(XG), for the rest.

We can observe that estimation with GPs offers clear advantages in terms

44 Chapter 4. Myopic Single-Robot Exploration

6.2. ALGORITHM PERFORMANCE ANALYSIS 75

0 10 20 30 40 50 60 70 80 90 1000

50

100

150

200

250

300

350

Prediction Gain vs. % Known Values

% Known Values

P
re

d
ic

ti
o
n

G
a
in

SEiso
Matern3

Figure 6.10: Prediction Gain Evolution with the % of Known Values. Gaus-
sian Processes Prediction. Dataset 3. We compare how much we win with
the use of the prediction in terms of the mean squared error. For example,
if we use the Matern3 covariance function the prediction gain will be 125 for
a fifty percent of known values.

lution with the number of sensed samples for the dataset 4.

0 10 20 30 40 50 60 70 80 90 1000

0.05

0.1

0.15

0.2

0.25

% Known Values

RM
S
E

No Prediction
SEiso
Matern3
Matern5

Figure 6.11: MSE Evolution with the % of Known Values. Gaussian Pro-
cesses Prediction. Dataset 4.

If we look at Figure 6.12, we observe that the Matern3 covariance func-
tion models the data better than the squared exponential. It is the same
as it happens for the dataset 3. Another conclusion we can take from this

Figure 4.2: RMSE between estimate and ground truth as we increase the
number of measurements. Here we select the measurements positions ran-
domly. We compare a non-predictive case (NoPrediction) against GPs regres-
sion (SEiso,Matern3,Matern5).

of prediction capabilities since we are able to decrease the RMSE more rapidly.
However, in previous experiment we chose the measured positions simply ran-
domly. This arises the question: could we select the sampling locations in a more
intelligent way to decrease the RMSE even faster? The answer is yes. In next
section we describe an algorithm that performs an intelligent and more efficient
sampling.

4.2.2 Entropy-Driven Exploration with GPs

The algorithm we describe next was first proposed by Shewry and Wynn (1987)
and Cressie (1992). Here we review it and adapt the notation to meet our prob-
lem requirements. The algorithm is based on the principle of maximum entropy.
That is, the robot moves next to the position, from a set of potential positions,
that has a maximum entropy. Entropy can be easily calculated with (2.20).

Before describing the algorithm in detail, let us illustrate the concept of
entropy-driven exploration with an example. We show in Figure 4.3 the entropy
at each individual x ∈ VXfree after taking some measurements with a robot along
a path. The color scale represents the process entropy. Regions coloured in dark
blue (low entropy) correspond to the robot’s path, and regions coloured in red
(high entropy) correspond to areas that are far from the measured positions.
This has a clear interpretation: areas that are far from the explored regions are
more informative and, therefore, have a higher entropy.

Our goal is to drive the robot to unexplored areas; i.e. to areas of high
entropy. This can be realized with the algorithm introduced in Fig. 4.4, which

4.2. Model-Based Information-Driven Myopic Exploration using GPs 45

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y[
m

]

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

Figure 4.3: Entropy (measured in bits) at each individual cell after taking some
measurements with a robot along a path. Dark blue areas correspond to the
robot’s path – low entropy – and red areas correspond to non-measured positions
– high entropy.

we summarize in Algorithm 4.1. This takes as inputs the following parameters:

• Robot’s current position xr.

• GPs hyperparameters θ that define the model. In this chapter we assume
we know a priori the hyperparameters; i.e. we assume we have some prior
knowledge about the process spatial correlations. In the following chap-
ters we will extend the algorithm to incorporate the learning of the GPs
hyperparameters online as the robot takes measurements.

• Graph LXfree(VXfree , EXfree) that determines how the robot can move (see
Fig. 2.3a).

• Stop criterion that stops the algorithm’s execution. Possible stop criteria
could be an user-defined number of iterations, a fixed running time of the
algorithm, or remaining uncertainty about the explored process.

Algorithm 4.1 works as follows: first, the robot takes a measurement at
position xr with a sensor. The sensor choice will be motivated by the concrete
application. For example, for exploring the magnetic field intensity we use a
magnetometer. Then the robot incorporates the new measurement z and its
location xr into a measurements’ vector z and positions’ vector X (line 5).

46 Chapter 4. Myopic Single-Robot Exploration

Move One
Step

Select Next
Position

Measure
Process

Calculate Potential
Positions

Figure 4.4: Algorithm block diagram. First step corresponds to measuring the
process of interest at the robots’ current locations. Then the algorithm is exe-
cuted in a loop.

Algorithm 4.1. SingleRobotExploration(xr,θ,LXfree , StopAlgorithm)

1: z← NULL; X← NULL
2:
3: while ! StopAlgorithm do
4: z ← Measure(xr)

5: z← [z; z]; X← [X; xTr]

6: X∗ ← CalcNextPotentialPositions(LXfree ,xr) . with (2.7)

7: . Calculate maximum entropy position

8: hmax ← −∞
9: for x

[j]
∗ ∈ X∗ do

10: µ∗, σ
2
∗ ← PredictGP(z,X,x

[j]
∗ ,θ) . with (2.3)

11: h∗ ← CalculateEntropy(σ2
∗) . with (2.20)

12: if h∗ > hmax then

13: hmax ← h∗; xnext ← x
[j]
∗

14: xr ← MoveTo(xnext)
15: µ∗,Σ∗ ← ReconstructProcess(z,X,VXfree)

Next, the robot selects the set of potential positions X∗ where it can move in
the current iteration (line 6). In this chapter we consider a discrete graph-based
myopic approach (Section 2.2.1) to select the agent’s next position with (2.7) (see
Figure 4.5). We would like to stress that the use of a myopic approach makes
the exploration algorithm myopic, as the robot plans sequentially the immediate
next best action towards its exploration goal (reduction of the RMSE between a
process estimate and yG(·)).

Once the robot calculates the set of potential positions X∗, it selects the
position from X∗ with the highest entropy (lines 8-13). This is done as follows:
first it predicts the process mean µ and variance σ∗ for each of the positions

x
[j]
∗ ∈ X∗ using a GPs model defined by hyperparameters θ. Mean and variance

are calculated according to (2.3), where the inputs are z, X (line 10). Variance is

then used in line 11 to calculate entropy at position x
[j]
∗ . This is done with (2.20).

After calculating entropy at all locations in X∗, the robot moves to position xnext

that has the highest entropy.

The robot continues running the algorithm by moving towards positions with

4.3. Simulations and Discussion of Results 47

Figure 4.5: Graphical representation of an exploration scenario. Nodes corre-
spond to x ∈ VXfree . Blue dotted nodes are positions where a robot took a
measurement. The orange node is the robot’s current position, and nodes linked
to the orange one are potential robot’s next actions.

high entropy. Once the algorithm stops, the collected measurements z,X are
used to predict µ∗,Σ∗ at positions x ∈ VXfree (line 15). Following a maximum
likelihood criterion we select µ∗ as our exploration result.

4.3 Simulations and Discussion of Results

In this section we evaluate the performance of Algorithm 4.1 to explore a mag-
netic field intensity within an indoor environment. Here yG(XG) corresponds to
the magnetic field depicted in Figure 4.1. This was measured with a holonomic
robot (see Figure 4.6) that is a modified version of the commercially available
Slider platform by Commonplace Robotics. Due to its four mecanum wheels the
platform is able to perform omnidirectional movements, following input com-
mands for forward, lateral and rotational velocities. The magnetic field sensor
module used in the reported experiments is part of a commercial integrated
sensor package (Xsens MTx). We mounted the sensor on a wooden beam that
extended 0.75 m from the center of the robot. The purpose of this beam is to sep-
arate the sensor from the robot’s ferromagnetic components and electromagnetic
field generating devices. We employ a commercial motion capture system (Vi-
con) to provide ground truth information of the robot’s position. Our particular
setup consists of 16 infrared sensitive cameras and infrared strobes.

Benchmark trajectories. We compare the performance of Algorithm 4.1
against three predefined trajectories and a random walk. Trajectories are de-

48 Chapter 4. Myopic Single-Robot Exploration

Figure 4.6: Experimental setup employed to test the algorithm’s performance.
We show a mobile robot and projection on the ground of the magnetic field
intensity within our DLR lab.

picted in Figure 4.7. In the following, we explain each of the trajectories in
detail:

• Meander: meander-like trajectory starting from the left bottom corner.

• Spiral: spiral-like trajectory starting from the left bottom corner.

• SplitTwo: trajectory that consists of halving the space consecutively.

• Random: random walk that selects the next position randomly given the
robot’s motion graph. We add some intelligence to the random trajectory
so that it does not measure twice at the same position. It would only
measure twice if it has no other choice. Adding some intelligence makes
the comparison against the other algorithms fairer.

For all trajectories, including Alg. 4.1, horizontal and spatial separation be-
tween two consecutive measurements at x,x′ ∈ VXfree is equal to the process
spatial resolution; i.e. 10 cm in our particular setup. Predefined trajectories
correspond to a single run of the algorithm. On the contrary, results of Alg. 4.1
and the random walk strategy correspond to the average, together with corre-
sponding 2σ error bars, over 100 simulation runs.

4.3.1 RMSE Evolution

We evaluate the evolution with time of the RMSE, calculated with (4.2). Specif-
ically, we employ the following θ: l = 0.2, σ2

f = 0.07, σ2
n = 4e−4. These were

4.3. Simulations and Discussion of Results 49

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y
[m

]

Algorithm

(a) Meander.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y
[m

]

Algorithm

(b) Spiral.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y
[m

]

Algorithm

(c) SplitTwo.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x[m]

y
[m

]

Algorithm

(d) Random.

Figure 4.7: Trajectories employed to benchmark our algorithm for the explo-
ration of a magnetic field intensity.

learned from a subset of the data using (2.5). Let us also add that we employ
the pyGPs1 library to carry out all operations related to GPs. We show the
RMSE evolution with time for the analyzed trajectories in Figure 4.8. We can
observe that Algorithm 4.1 offers the best performance in terms of the RMSE of
the considered algorithms. It is also relevant to point out that SplitTwo trajec-
tory performs very well. However, it requires a rectangular environment to plan
the trajectory. Notice that an environment with, for example, one obstacle in the
middle would not allow planning this trajectory. On the contrary, the proposed
algorithm would allow exploring the magnetic field intensity in an environment
of arbitrary shape.

4.3.2 Algorithm’s Scalability

Another key feature of Alg. 4.1 is its scalability with respect to the environment’s
size in which the physical process of interest takes place. We define the scalability
respect to the environment’s size in terms of the exploration time, measured as
the time needed to obtain an RMSE of 0.005. We carried out simulations for

1pyGPs - A Package for Gaussian Processes - http://www-ai.cs.uni-
dortmund.de/weblab/static/api docs/pyGPs/

50 Chapter 4. Myopic Single-Robot Exploration

0 200 400 600 800 1000 1200 1400
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RM
SE

Meander

Random

Spiral

SplitTwo

Alg. 4.1

Figure 4.8: Evolution with time of the RMSE between estimate, calculated with
GPs regression given the gathered measurements, and ground truth. We bench-
mark Alg. 4.1 against three predefined trajectories and a random walk.

different environment sizes. For each of the environment sizes we performed 100
simulation runs. Figure 4.9 shows the obtained results. Red dots correspond to
the mean over the performed simulation runs. The blue line corresponds to a
linear regression performed over the blue dots. Results illustrate that algorithm’s
scalability respect to the environment size is linear. Moreover, the slope of the
obtained regression line is below one; 0.25 to be precise. This indicates that,
for example, an environment that it is four times bigger than another one would
only take double time to explore it with the proposed algorithm.

4.4 Experiments and Discussion of Results

In addition to the simulation results, we carried out an experiment 2 to demon-
strate the effectiveness of Alg. 4.1 to explore a magnetic field intensity. We use
the same hardware setup as in Section 4.3. Figure 4.6 illustrates a snapshot of
the experiment. We show the robot, together with a projection on the floor of
the previously measured ground truth data.

We compare the proposed algorithm with a meander-like and a random tra-
jectory. Specifically, we evaluate the evolution of the RMSE with time, depicted
in Figure 4.10. On the one hand, we can observe that the performance of a
random and Alg. 4.1 trajectory are similar at the beginning of the algorithm’s
execution. This lies on the fact that, before taking a few measurements, is
not relevant to move in an intelligent way since we can not exploit the inter-

2A video that shows the experiment execution can be found in: https://vimeo.com/

253575604; https://rebrand.ly/myopi596a.

https://vimeo.com/253575604
https://vimeo.com/253575604
https://rebrand.ly/myopi596a

4.5. Summary and Outlook 51

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

600

700

800

900

1000

1100

Environment Size [Samples]

E
x
p
lo

ra
ti
o
n

T
im

e
[S

a
m

p
le

s]

Simulation Results
Linear regression

y = 0.25 · x + 82.16

Algorithm

Figure 4.9: Scalability of the algorithm respect to the environment’s size.

measurements correlation. Instead, it is sufficient to move and collect data to
perform a good estimation. On the other hand, we can conclude that once the
robot has collected sufficient measurements (approx. after 500 seconds), differ-
ence between random and Alg. 4.1 performance gets larger. This translates in
a reduction on the RMSE of 0.4 (four-fold improvement) after a 1200 seconds
exploration task.

4.5 Summary and Outlook

In this chapter we described a first approach that allows a mobile robot to
autonomously explore a physical process of interest – magnetic field intensity in
an indoor environment. We evaluated the performance of the algorithm both in
simulations, and experiments with a robot in the loop. Results illustrate that
the proposed approach is able to explore a magnetic field intensity much more
efficiently than with a trajectory consisting of a predefined pattern – four-fold
improvement in the experimental evaluation.

However there are a few aspects that will be considered in this thesis to
improve the algorithm performance. These are the following:

1. We are considering only one robot. An extension of this algorithm to
multiple robots will be proposed in Chapter 6.

2. The robot plans in a myopic fashion, which is in general suboptimal (see
Section 1.4). Alternative path planning schemes will be considered in
Chapters 5 and 7 to improve the algorithm performance.

52 Chapter 4. Myopic Single-Robot Exploration

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
t[s]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

RM
SE

meander
random
algorithm

Figure 4.10: Evolution with time of the RMSE between estimate, calculated with
GPs regression given the collected measurements, and ground truth. We test
three different algorithm’s in an experiment with a robot in the loop equipped
with a magnetometer to measure a magnetic field intensity.

3. The use of entropy as information metric leads to a superior performance
compared to predefined trajectories. However, more complex metrics have
been proposed in the literature, like e.g MI (see Section 2.3.2), which we
expect would yield a better performance. In Chapters 5 and 7 we consider
some of those metrics. In addition we will propose alternative metrics for
exploration.

4. We employed a holonomic robot to carry out the exploration task. In
Chapters 5 and 7 we expand the algorithm to handle a larger class of
robots.

In next chapter (Chapter 5) we will consider points 2,3,4 and will propose a
more efficient exploration algorithm. In particular, in Chapter 5 we introduce an
information gathering algorithm based on RRT* (see Section 2.2.2) that plans
non-myopically in a continuous space, and trades off path informativeness and
path cost.

Chapter 5

Sampling-Based Single-Robot Exploration

We proposed in Chapter 4 an algorithm that allows a robot to autonomously
explore a physical process. The algorithm proposed in Chapter 4 employs a
discrete graph-based myopic approach to drive the robot. In contrast, here
we extend the algorithm proposed in Chapter 4 to plan non-myopically in a
continuous space. This allows us to account for robots with large state spaces,
i.e. larger than four states (LaValle and Kuffner, 2000), which are subject to
differential constraints, like e.g. UAVs (Nguyen et al., 2015), as pointed out in
Section 1.1.

Many recent works have proposed algorithms for information gathering in
continuous spaces (see Section 3.3). However, these algorithms are not suited
for online information gathering tasks, as we demonstrate in Section 5.6 of this
chapter. Thus, in this chapter we propose a novel approach that allows an online
exploration of a physical process. Specifically, we introduce an algorithm that
consists of two main steps: (i) a search mechanism to identify locations that
are highly informative – stations – as measured by an information metric (Sec-
tion 2.3), and (ii) a planning mechanism to find a path towards the station that
trades-off informativeness and cost. We realize this last step via an adaptation
of the RRT* planner (Section 2.2.2).

The algorithm proposed in this chapter adds an additional feature respect to
Chapter 4. Here the robot learns the GPs hyperparameters as it collects mea-
surements, which allows a robot to explore a process without prior information.

We organize this chapter as follows: first, we describe the proposed algorithm
in detail in Sections 5.1-5.4. Then we evaluate the algorithm’s computational
complexity in Section 5.5, and its performance through simulations in Section 5.6.
This is followed in Section 5.7 by an experiment in which a robot autonomously
gathers information of a magnetic field intensity in an indoor environment. We
finalize with a summary and outlook of the chapter in Section 5.8.

53

54 Chapter 5. Sampling-Based Single-Robot Exploration

Initialize
Algorithm

Update Model’s
Hyperparameters

Search
Station

Informative
Path Planner

Follow Path
&

Take Measurements
xr = s∗?completed?

θ∗ s∗ Pxr,s∗

no

yesno

Reconstruct
Process

yes

θ∗xr XfreeXz Xfreexr

b bX X

z,X

Figure 5.1: Algorithm block diagram.

5.1 Efficient Information Gathering using RRT-Based
Planners and GPs

We aim to explore with a robot an unknown process y(x), for x ∈ Xfree. As we
employ GPs as underlying model of y(x), the lack of prior information about y(x)
implies that hyperparameters θ need to be estimated and updated as the robot
collect measurements. In fact, the spatial distribution of the information metric
is directly related to the values of θ. An adaptation of θ while the robot moves
will essentially make any planning suboptimal, since the information metric com-
puted at any region in space will follow the fluctuations of the hyperparameter
estimates θ∗. Instead, we propose updating θ only at some point in the vicinity
of the robot’s current location that maximizes the information gained about the
modeled process. This point we name it a station, a concept inspired by frontiers
in autonomous robotic exploration (Yamauchi, 1997). Then, given θ∗, the robot
plans a route towards the station so as to further increase the amount of infor-
mation about y(x). In this case the resulting information metric calculated at all
points in space is fixed and thus planning (conditioned on θ∗) will optimize the
desired utility function. In the following, we describe the exploration strategy in
detail.

Algorithm overview. A block diagram of the whole scheme is shown in Fig-
ure 5.1. We present in Algorithm 5.1 a detailed pseudo-code. Our proposed
algorithm works as follows. First, the robot learns the θ∗ that best model the
acquired measurements z,X (line 4 in Alg. 5.1). This is done with (2.5), finding
θ∗ that maximize the LML.

Once the robot estimates θ∗, it searches for a highly informative station
s∗ (line 5) using Algorithm 5.2. Algorithm 5.2 takes as input xr and Xfree, a

5.1. Efficient Information Gathering using RRT-Based Planners and GPs 55

Algorithm 5.1. SBSRE Algorithm(xr,Xfree, b, StopAlgorithm)

1: z← NULL; X← NULL;
2:
3: while ! StopAlgorithm do
4: θ∗ ← LearnHyp(z,X); . update process model with (2.5)

5: s∗,Ps, us ← SearchStation(xr,θ∗,X, b,Xfree); . with Algorithm 5.2

6: Pp, up ← InformativePlanner(xr, s∗,θ∗,X, b,Xfree); . with Algorithm 5.3

7: if Pp 6= ∅ AND up > us then . choose the best solution

8: Pxr,s∗ ← Pp;
9: else

10: Pxr,s∗ ← Ps;
11: for xi ∈ Pxr,s∗ do . follow and measure along the path

12: xr ← MoveTo(xr,xi);

13: z ← Measure(xr);

14: z← [z; z]; X← [X; xTr];
15: µ∗,Σ∗ ← ReconstructProcess(z,X,X ⊂ Xfree); . with (2.3)

budget constraint on the path cost b, and θ∗ that allow the robot to calculate
the expected information contained at a station. In addition to s∗, the algorithm
outputs a suboptimal, yet feasible path Ps = [xr, ...,xi, ..., s∗], with xi ∈ Xfree,
and the corresponding path utility us. More on the computation of the utility
and its properties will be discussed in Sec. 5.3.

Then the robot plans a trajectory from xr to s∗ (line 6) using an informative
path planner (Alg. 5.3) in order to refine Ps. In Sec. 5.3 we describe Alg. 5.3
in more details. The algorithm result is a trajectory Pp, together with its cor-
responding utility up that trades off the information gathering with the path
cost.

Alg. 5.3 has an anytime nature; i.e. it aims to find a feasible solution and
then to improve it with time. Note however, that it is possible that, for the stop
criterion pre-defined by the user, e.g. planning time, Alg. 5.3 is either not able
to find a path or the found path is of worse quality (in terms of used utility)
than Ps. To guarantee that a solution is found, the robot compares solutions
from Algorithms 5.2 and 5.3 in lines 7-10 of Alg. 5.1, and selects the best path
Pxr,s∗ according to an information metric.

Finally, the robot follows Pxr,s∗ until it reaches s∗, while it measures y(xi),
for all xi ∈ Pxr,s∗ , and incorporates z and X to its knowledge database (lines
11-14, Alg. 5.1). Then, the main loop is repeated until some stopping criterion is
fulfilled, e.g., maximum exploration time, or the remaining process uncertainty.
Once the robot finishes gathering information, it can predict the value of the
process µ∗ and the associated uncertainty Σ∗ of the prediction for any X ⊂ Xfree

using (2.3) (line 15, Alg. 5.1).

56 Chapter 5. Sampling-Based Single-Robot Exploration

Algorithm 5.2. SearchStation(xr,θ∗,X, b,Xfree)

1: V ← {xr}; E ← ∅; s∗ ← {xr}; Ps ← ∅;
2: Imax ← −∞; us ← −∞;
3:
4: while ! StopStation do
5: xrand ← SampleFree(Xfree);
6: xnearest ← Nearest(xrand,V);

7: xnew ← Steer(xnearest,xrand, η);

8: if CollisionFree(Pxnearest,xnew ,Xfree) then

9: cnew ← c(Pxr,xnearest(G)) + c(Pxnearest,xnew);

10: if cnew < b then . budget constraint

11: Inew ← InformationS(xnew,θ∗,X); . calculate node informativeness

12: Nnew ←< xnew, Inew, cnew >; . add node to tree

13: V ← V ∪ {Nnew}; E ← E ∪ {PxNnearest
,xnew};

14: if Inew > Imax then . search most informative node

15: s∗ ← xNnew ; Imax ← Inew;
16: Ps, Is, cs ← FindPath(xr, s∗,G); . find path from root to station
17: us ← f(Is, cs); . calculate path utility
18: return s∗,Ps, us; . return the station, path to station, and path utility

5.2 Search for Highly Informative Stations

Let us now consider the algorithm to search for a highly informative station in
more detail. A station is a x′ ∈ Xfree that is highly informative according to
a pre-specified information metric. In addition, the search of a station must
fulfill the following two requirements: (i) it must be reachable for the robot; (ii)
its calculation must have an anytime nature to allow the online realization of
the algorithm. To realize these requirements, we propose an adaptation of the
kynodinamic RRT algorithm (Section 2.2.2) where we extend the RRT nodes to
incorporate an information metric. The RRT algorithm has an anytime nature,
and fulfills the first requirement since it is able to account for the robot’s kinemat-
ics and avoid possible collisions with obstacles. Note that in SearchStation we
are not concerned about the optimality of the path, but rather about reachabil-
ity of the next point of interest – the station. Therefore we employ a simple, yet
suboptimal path planner such as RRT, which provides a quick way to “sort out”
stations that are not reachable by the robot. Using e.g. RRT* (Section 2.2.2)
for realizing this test is possible, but computationally less efficient.

Formally, the search of s∗ can be formulated as:

s∗ = argmax
x′∈Xfree

I(x′) s.t. c(Pxr,x′) ≤ b, (5.1)

where I(x′) is a measure of the expected information at x′ (the particular mea-

5.2. Search for Highly Informative Stations 57

𝒙𝒙𝑟𝑟

𝑠𝑠∗

Figure 5.2: Search for highly informative stations. The color scale represents the
informativeness, as measured by a predefined information metric, at a particular
location. In particular, dark blue corresponds to low informativeness and red
represents high informativeness. Algorithm 5.2 selects s∗ as the location with
the highest informativeness among all x ∈ V.

sure employed is described in Section 5.4), c(Px,x′) is the cost of traversing Px,x′ ,
and b is a trajectory budget. We assume c(·) as strictly positive, additive1 and
monotonically increasing. Examples of such cost measures are the total time or
fuel required to traverse the path; the number of measurements taken along the
path can also serve as valid cost function. Here we choose time as path cost.

SearchStation. The key steps of the SearchStation algorithm are summa-
rized in Algorithm 5.2. Algorithm 5.2 is an extension of the RRT algorithm for
information gathering tasks. The first modification with respect to RRT con-
sists of an extension of the standard RRT node N ∈ V. Like in (Hollinger and
Sukhatme, 2014), in Alg. 5.2 a node includes (i) the spatial location of node xnew,
(ii) the expected information Inew at xnew, and (iii) the cost cnew of reaching xnew

from xr (line 12). The latter is computed using the robot motion model, while
Inew is calculated with function InformationS (line 11). For more details on the
information calculation we refer the reader to Section 5.4. In addition to RRT
we include as well a budget constraint b (line 10).

The ultimate goal of Alg. 5.2 is selecting s∗ that has the highest informative-
ness (lines 14-15). In addition we calculate the path Ps that drives the robot
from its current position to the station with function FindPath (line 16). This
function also outputs the information Is and the total cost cs of Ps. Given Is
and cs we calculate the utility us of Ps (line 17). Details about the calculation of
utility function (5.3) and information of the path (5.4) are given in Section 5.3

1If we have two partial trajectories P1,2 and P2,3 that can be concatenated to yield a tra-
jectory P1,3, a cost function is considered additive if c(P1,3) = c(P1,2) + c(P2,3).

58 Chapter 5. Sampling-Based Single-Robot Exploration

and Section 5.4, respectively.
To finalize this section, we depict the concept behind Alg. 5.2 in Fig. 5.2.

5.3 Informative Path Planner using RRT*

The goal of the informative path planner is to refine Ps calculated with Alg. 5.2.
Here we aim to calculate a path that fulfills the following two requirements:
(i) it is feasible given the robot’s kinematics and does not incur collisions with
obstacles; and (ii) it is efficient, in the sense of maximizing the information
gathering, while minimizing the path cost. Formally, we aim to find the optimal
path Pxr,s∗ between states xr and s∗. This can be formulated as the following
optimization problem:

argmax
Pxr,s∗⊂Xfree

f(I(Pxr,s∗), c(Pxr,s∗)),

s.t.: c(Pxr,s∗) < b.
(5.2)

Here I(·) and c(·) are functions that evaluate the information and cost of
the path, respectively, f(·, ·) is a function that evaluates the information-cost
trade-off (the utility), and b is a budget for the path cost. We summarize the
InformativePlanner in Algorithm 5.3.

InformativePlanner. Algorithm 5.3 is an extension of RRT* (Section 2.2.2)
that allows a robot to gather information efficiently and autonomously. In con-
trast to RRT*, here we replace the concept of the path cost by the concept of
utility. The utility u of a path is a value that weights the importance of a path.
In this paper, we formulate the utility, given by f(·, ·), so that it fulfills our
information gathering objective. That is, we aim to gather as much information
as possible along the path towards s∗ while generating trajectories with the min-
imum cost. This implies that f(I(Pxr,s∗), c(Pxr,s∗)) should grow with I(Pxr,s∗)
and decrease as c(Pxr,s∗) becomes large. We represent this trade-off with the
following function:

f(I(Pxr,s∗), c(Pxr,s∗)) = α
I(Pxr,s∗)
c(Pxr,s∗)

, (5.3)

with α a coefficient that determines the trade-off. c(Pxr,s∗) is chosen as a
time needed to traverse Pxr,s∗ . I(Pxr,s∗), which we calculate with function
InformationP, will be explained in detail in Section 5.4. Let us also empha-
size that the formulation of (5.3), which includes both the information and cost,
allows us to extend the algorithm to applications where taking a measurement in-
curs a high cost. That is, in such an application, gathering information becomes

5.3. Informative Path Planner using RRT* 59

Algorithm 5.3. InformativePlanner(xr, s∗,θ∗,X, b,Xfree)

1: V ← {xr}; E ← ∅; Pp ← ∅; up ← −∞;
2:
3: while ! StopPlanner do
4: xrand ← SampleFree(Xfree);
5: Nnearest ← Nearest(xrand,V);

6: xnew ← Steer(xnearest,xrand, η);

7: . Check trajectory feasibility and budget constraint

8: if CollisionFree(Pxnearest,xnew ,Xfree) AND cmax < b then

9: xmax ← xnearest;

10: . Calculate cost and information of path to node

11: cmax ← c(Pxr,xnearest(G)) + c(Pxnearest,xnew);

12: Imax ← InformationP(xnew,Nnearest,G,θ∗,X);

13: umax ← f(Imax, cmax); . calculate path utility

14: Vnear ← Near(xnew,V);

15: for Nnear ∈ Vnear do . choose parent

16: if CollisionFree(Pxnear,xnew ,Xfree) then

17: cnew ← c(Pxr,xnear(G)) + c(Pxnear,xnew);

18: Inew ← InformationP(xnew,Nnear,G,θ∗,X);

19: unew ← f(Inew, cnew);

20: if unew > umax then . parent that results in highest path utility

21: xmax ← xNnear ; cmax ← cnew; Imax ← Inew; umax ← unew;

22: Nnew ←< xnew, Imax, cmax >; . add node to tree

23: V ← V ∪ {Nnew}; E ← E ∪ {Pxmax,xnew};
24: V ′near ← CyclesFree(xnew,Vnear,G); . discard the nodes that will create a cycle

25: for N ′near ∈ V ′near do . rewire near nodes

26: cnew ← c(Pxr,xnew (G)) + c(Pxnew,x′near
);

27: Inew ← InformationP(x′near,Nnew,G,θ∗,X);

28: unew ← f(Inew, cnew);

29: if CollisionFree(Pxnew,x′near
,Xfree) then

30: if unew > f(I ′near, c
′
near) then . rewire if higher path utility

31: I ′near ← Inew; c′near ← cnew;

32: Nparent ← Parent(N ′near);
33: E ← E \ {Pxparent,x′near

} ∪ {Pxnew,x′near
};

34: Pp, up ← FindBestPath(xr, s∗,G); . find best path to station
35: return Pp, up;

expensive and therefore the exploration algorithm should be able to balance the
trade-off information-cost. In contrast to prior work, our algorithm incorporates
this trade-off. The definition of (5.3) introduces an additional difference between
RRT* and Alg. 5.3, since (5.3) is non-monotonic.

60 Chapter 5. Sampling-Based Single-Robot Exploration

Non-monotonicity of the utility function. The non-monotonicity of (5.3)
compromises the optimality guaranty of RRT* (Section 2.2.2). Despite this,
our simulation results suggest that Alg. 5.3 is still able to approach the optimal
solution, as shown in Sec. 5.6.2. Furthermore, the non-monotonicity of our utility
function requires the inclusion of a mechanism to avoid the creation of cycles in
the tree. A cycle is a sequence of vertices starting and ending at the same
vertex (Godsil and Royle, 2013). Cycles might appear in the graph due to
our specific choice of the utility function, which is not guaranteed to increase
monotonically with the growing tree. Cycles can be created during the rewiring
process if a node N ′near, which belongs to the path that connects the robot’s
position with Nnew, could be reached with a higher utility from Nnew than its
previous utility. This problem does not arise with a monotonic utility function,
since the inclusion of a new node always incurs a higher cost. Here, however, a
longer path could have a higher utility if we gather more information along it.
In order to generalize RRT* to a larger class of utility functions, such as (5.3)
or the one used by Charrow et al. (2015), we propose a procedure to eliminate
cycles in G. This is implemented in function CyclesFree (line 24). This function
takes as input xnew and Vnear. Then it iterates over Nnear ∈ Vnear, and removes
those Nnear = {xnear, Inear, cnear} where xnear ∈ Pxr,xnew(G).

Best path calculation. Once the robot finishes the execution of the algo-
rithm, which is given by the StopP lanner criterion, it calculates the best path
Pxr,s∗ in terms of utility with function FindBestPath. This function connects
s∗ to x ∈ V ∈ G that are closer than a distance η from it. Then we calculate the
utility of all those possible paths and choose the one with the highest utility. The
utility, together with the computed path form the algorithm output. In case the
algorithm does not find a suitable path, it outputs an empty path with minus
infinite utility.

5.4 Information Metric

Algorithm 5.1 relies on an information metric to evaluate the informativeness of
a x ∈ Xfree and a Px,x′ ⊂ Xfree. In Chapter 4 we employed entropy at individual
locations as information metric. However, in Chapter 4 we also discussed that
more complex information metrics could be considered to, e.g., take into account
the cross-correlations between x,x′ ∈ Xfree. In this section, we extend the
discussion about possible information metrics. In particular, we argue about the
use of MI (Section 2.3.2) and mean entropy as information metrics. To finalize,
we motivate our particular choice: mean entropy as information metric.

5.4. Information Metric 61

Mutual information. MI has been extensively employed in the information
gathering literature (see Section 3.2). Indeed, it seems like a perfect fit for
selecting information sampling locations because it takes into account the cross-
correlations of the test points. However, we observed that MI is not adequate for
algorithms that require an extensive computation of the information metric, as
it is pointed out in (Stranders et al., 2009). Due to the long computation time
of the MI (see Table 2.1), the addition of nodes to the tree in Algs. 5.2 and 5.3
would be sacrificed to calculate the information metric. This reduces the size of
the explored region of the state space given a certain exploration time, resulting
in a loss of performance. There exists efficient algorithms to calculate MI, like
e.g. the one introduced in (Ramirez-Paredes et al., 2016). However, to the best
of our knowledge, they are not applicable to GPs.

Mean entropy. As a viable alternative, we decided to use mean entropy
H̄(Px,x′) as information metric. This is primarily motivated by the concept
of entropy rate, which is a limit of the joint entropy as the number of obser-
vations grows (Cover and Thomas, 2012). Entropy rate converges to the mean
entropy as a special case. Formally we define H̄(Px,x′) as:

I(Px,x′) = H̄(Px,x′) =
1

|Px,x′ |
∑

xi∈Px,x′

H(xi), (5.4)

with H(xi) calculated according to (2.20).

H̄(Px,x′) presents a diminishing property (Krause et al., 2008) similar to the
MI. For example, imagine two paths that have the same sum of entropies. An
averaged entropy would favor the one that requires fewer measurements. This
is a desirable property that would be crucial if we considered the cost of taking
a measurement. Note also that H(xi) only needs to be calculated once for each
xi ∈ V, as we can save H(xi) and reuse it each time we evaluate a path that
includes xi. In summary, H̄(Px,x′) is computationally efficient and favors those
paths that have higher information at smaller cost.

In the following, we specify the calculation of functions InformationP,
InformationS, and FindPath. InformationP computes the information of
Pxr,xnew with (5.4). In contrast InformationS computes the information of
a single xnew ∈ Xfree – a potential s∗. This is also calculated with (5.4), where
Px,x′ = [xnew]. Finally, FindPath searches Pxr,s∗ with highest utility. Notice
that in this case the information does not need to be calculated since it is stored
in each of the individual nodes.

62 Chapter 5. Sampling-Based Single-Robot Exploration

5.5 Computational Complexity

In this section we perform an assessment of the algorithm’s overall time com-
plexity. To this end we split the analysis in two main parts: (i) updating the
GPs model, which corresponds to estimating θ, and (ii) planning Pxr,s∗ .

The complexity of the estimation of θ is given by the inversion of the K
matrix, which is calculated with (2.2). The basic complexity of this matrix
inversion is O(n3), with n the number of collected measurements (Section 2.3.3).

The planning of Pxr,s∗ corresponds to the execution of Algs. 5.2 and 5.3,
which are based on RRT and RRT*, respectively. For Np tree’s nodes, the basic
complexity of RRT and RRT* is O(Np logNp) to create the tree, and O(Np)
to query the best path from the tree. We refer to (LaValle and Kuffner, 2000)
and (Karaman and Frazzoli, 2011) for a detailed analysis of the algorithms’ time
complexity.

In addition to the basic RRT and RRT* algorithms we must include the
computation of the information metric. As we explained in Sections 5.2 and 5.3,
the calculation of the information metric is delimited to

{
x | ||x− xr||22 ≤ b

}
.

Moreover, we assume that x,x′ are uncorrelated if k(x,x′) ≤ σn/10, with k(x,x′)
given by (2.4). This simplification is possible because of the definition of k(x,x′)
that decreases with distance. The presence of a trajectory budget, together with
the simplification regarding k(x,x′), allows us to reduce the time complexity of
calculation of the information metric from O(n3), which is unbounded and grows
with the number of measurements, to O(n3

b), which is bounded by parameter b
and does not necessarily grow as the number of measurements increases. Let us
also remark that we employ this simplification for the estimation of θ as well.
This implies that we only consider those measurements that are correlated with
those that lie within the bounded region.

In summary, the computational complexity of the overall algorithm (one
iteration of Algorithm 5.1) is O(n3

b + Np logNp). We remark that RRT and
RRT* algorithms have an anytime nature. Therefore, Np will depend on the
running time of the planning algorithm, which is a user-defined criterion.

5.6 Simulations and Discussion of Results

In this section we present the simulations setup and performance results of
Alg. 5.1. We divide this analysis in two main parts. First, we compare Alg. 5.3
against two state-of-the-art algorithms. Second, we evaluate Alg. 5.1 in an infor-
mation gathering task of an unknown physical process that takes place within a
complex environment.

5.6. Simulations and Discussion of Results 63

5.6.1 Simulations Setup

Here we describe the simulation setup used to validate Alg. 5.1 with synthetic
and real data. We test our algorithm with simulated and real data as ground
truth yG(XG). These data are stored as grids of 20×20 cells with a resolution of
5 and 10 centimetres. For the simulation we assume a round-shaped holonomic
robot with 5 centimetres radius that moves with a constant speed of 0.2 metres
per second. Here we employ a holonomic-robot (e.g. robot from Fig. 4.6) to
abstract the active sensing strategy from the robot’s motion. This is a common
strategy employed in works like e.g. (Hollinger and Sukhatme, 2014), one of
our benchmark algorithms. Nevertheless, Alg. 5.1 is valid for arbitrary robot’s
dynamics given the restrictions imposed by RRT or RRT* algorithms. We also
assume that the robot needs an infinitesimally small time to take a measurement.
The robot can move in a continuous space, and we assume that measurements
taken within one cell of the grid are equal.

For the SearchStation and InformativePlanner algorithms we select the
following parameters: the parameter η in the Steer function and the distance
employed by the function Near to search neighbors nodes are both set to the
measurement’s resolution, i.e., 5 or 10 centimetres depending on the concrete
simulation. We select the running time as stop criterion for the SearchStation

and InformativePlanner algorithms, with a value of 5 and 10 seconds respec-
tively. We consider a trajectory budget b = 10 seconds, which corresponds to
a planning horizon of 2 metres given the robot’s speed. We initialize θ to the
following values l = 1, σf = 1, σn = 0.1. We repeat each of the simulations 40
times.

5.6.2 Analysis of the Informative Path Planner

5.6.2.1 Setup

In this section, the objective is to analyze the individual performance of Alg. 5.3.
This assumes an available GP model with fixed hyperparameters. The goal of
Alg. 5.3 is, given this model, to find the trajectory that optimizes (5.2) as fast
as possible. Since our information metric corresponds to the mean entropy, we
simulate two scenarios with distinct entropy structures (see Figure 5.3):

• Scenario 1 recreates a physical process with low spatial correlation in which
a robot has already gathered two patches of measurements. The blue areas
correspond to the measured areas and the red areas to the non-measured
positions. We employ the following θ: l = 0.02, σf = 0.084, σn = 0.02.

• Scenario 2 recreates the same scenario, but now we consider a process with
higher spatial correlation. Here we set l = 0.13, σf = 0.084, σn = 0.09.

64 Chapter 5. Sampling-Based Single-Robot Exploration

0.0 0.3 0.6 0.9
x [m]

0.0

0.3

0.6

0.9
y

[m
]

Entropy

(a) Scenario 1.

0.0 0.3 0.6 0.9
x [m]

0.0

0.3

0.6

0.9

y
[m

]

Entropy

(b) Scenario 2.

Figure 5.3: Simulation scenarios used to test the performance of our informative
path planner algorithm.

We fix xr to (x = 0.2, y = 0.5) and s∗ to (x = 0.8, y = 0.5) for all the
simulations runs.

5.6.2.2 Choice of the Information Function

In this section we compare our proposed information metric (5.4) with MI. We
carry out the analysis for scenario 2, as it is the one that presents a higher spatial
correlation, which translates into a higher informativeness of (5.4). Let us remark
that here we run Alg. 5.3 and replace (5.4) with the mutual information. Results
correspond to the average over 40 simulations runs for a planning time of 180
seconds. We compare (5.4) with MI, in terms of: (i) time to find a first Pxr,s∗
(tfirst); (ii) posterior entropy that results after measuring along Pxr,s∗ output
by Alg. 5.3; and (iii) cost of Pxr,s∗ . Note that posterior entropy H(YXG

|Pxr,s∗)
can be calculated with (2.21), where YXG

is a random variable that estimates
yG(XG).

We show the results of the evaluation in Table 5.1. According to Table 5.1,
(5.4) finds a first path seven times faster than MI, reduces the posterior entropy
by one half, and the path calculated with (5.4) has a slightly smaller cost than
the one calculated with MI. This lets us conclude that our proposed information
metric, given by (5.4), outperforms the MI in an online sensing setting that
requires an extensive computation of the information metric.

5.6.2.3 Performance Analysis

We benchmark Alg. 5.3 against two state-of-the-art sampling-based informative
path planning algorithms:

5.6. Simulations and Discussion of Results 65

tfirst[s] Entropy [bits] Cost [s]

Mean Entropy 6.31 −6.93 6.79
Mutual Information 46.71 −3.54 6.86

Table 5.1: Analysis of the information function. We compare (5.4) with MI.

• (i) the technique of Yang et al. (2013), where multiple paths are obtained
by running an RRT planner several times, and then paths are evalu-
ated according to the information metric. This algorithm we will term
Multiples RRT;

• (ii) the RIG-tree planner (Hollinger and Sukhatme, 2014), to which we will
refer as RIG Algorithm.

In both cases, (5.3) is employed. For the RIG-tree we use one of the ap-
proaches suggested by the authors in (Hollinger and Sukhatme, 2014). Specifi-
cally, we consider the pruning based on the heuristic that the utility function is
modular. Here, we defined two nodes as co-located if they are within the same
cell of the grid. For more details about the implementation, we refer the reader
to the original paper (Hollinger and Sukhatme, 2014). We also tested the other
alternatives proposed by the authors, but they offered a lower performance in
our particular setup.

Moreover, the two benchmark algorithms are not designed to meet a goal
constraint; they explore the environment with no goal. This makes a comparison
with our algorithm difficult. We solve this by selecting all samples that are closer
than a distance η from the goal s∗, and then connecting them to s∗. This results
in paths that link xr with s∗. We analyze in Figure 5.4 the performance of
compared algorithms as a function of planning time.

Utility analysis. The difference in terms of utility (see first row of Fig. 5.4)
with respect to the other algorithms ranges between 0.05 and 0.15 bits per second.
We notice as well that the RIG algorithm only presents a minor improvement of
the utility as the planning time increases. We believe this is due to the inclusion
of the goal constraint, which the RIG algorithm is not able to handle.

Algorithm complexity analysis. Another important figure that character-
izes the algorithm is the number of nodes spanned by the path planner. We
observe in the second row of Fig. 5.4 that the Multiples RRT variant has a lim-
ited number of nodes since we reset the algorithm each time we find a new path.
Furthermore, Alg. 5.3 requires a larger number of nodes than the RIG Algorithm.

66 Chapter 5. Sampling-Based Single-Robot Exploration

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(
I(

P
),
c(

P
))

[b
it

s/
s]

Scenario 1

Alg. 5.3
Multiples RRT

RIG Algorithm

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(
I(

P
),
c(

P
))

[b
it

s/
s]

Scenario 2

Alg. 5.3
Multiples RRT

RIG Algorithm

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

0

500

1000

1500

2000

2500

3000

3500

N
od

es

Scenario 1
Alg. 5.3
Multiples RRT

RIG Algorithm

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

0

500

1000

1500

2000

2500

3000

3500

N
od

es

Scenario 2
Alg. 5.3
Multiples RRT

RIG Algorithm

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

4

5

6

7

8

9

10

11

12

lo
g(

I
te

ra
ti

on
s)

Scenario 1

Alg. 5.3
Multiples RRT

RIG Algorithm

0 20 40 60 80 100 120 140 160 180
PlanningT ime [s]

4

5

6

7

8

9

10

11

12

lo
g(

I
te

ra
ti

on
s)

Scenario 2

Alg. 5.3
Multiples RRT

RIG Algorithm

0.0 0.2 0.4 0.6 0.8 1.0
x[m]

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

Scenario 1

0.0 0.2 0.4 0.6 0.8 1.0
x[m]

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

Scenario 2

Figure 5.4: Performance analysis of Alg. 5.3 as we increase the planning time.
Here, from the first to the last row, we evaluate the utility of the best path, the
number of nodes spanned by the tree, and the algorithm’s complexity that is
represented as the curve number of iterations vs. planning time. In addition, we
plot the 40 paths output by Alg. 5.3 given 180 seconds of planning time.

5.6. Simulations and Discussion of Results 67

The latter employs a smaller number of nodes because of the pruning strategy
that removes those co-located nodes that have a smaller utility than the new
added node. However, this does not lead to a higher complexity per iteration, as
we can observe in the third row of Fig. 5.4, which shows the number of iterations
of the algorithm vs. the planning time. Here, the Multiples RRT alternative
offers the lowest complexity.

Paths output by Alg. 5.3. In the last row of Fig. 5.4 we depict the paths
output by Alg. 5.3. We observe that, for scenario 1, the robot takes the path that
has the most information and takes the least time, which results in a straight
line. However, in scenario 2 the straight line corresponds to a path that has little
information, and therefore the robot takes a path that is longer but allows it to
gather more information as it visits not yet measured locations. These results
illustrate the need of defining an utility function that trades off the information
gathering and the path’s cost (5.3). Moreover paths output suggest that Alg. 5.3
is able to approach the optimal solution of (5.2).

Posterior entropy analysis. We showed in Figure 5.4 that Alg. 5.3 out-
performs the considered state-of-the-art approaches in terms of our informa-
tion function. However, this does not necessarily imply that our algorithm can
find a more informative path. In order to make a fair comparison between the
three considered algorithms we evaluate them in terms of an independent met-
ric: H(YXG

|Pxr,s∗). In addition, we compare the cost of the resulting paths.
Table 5.2 shows the results for the three algorithms in the two scenarios, for
180 seconds of planning time. We can conclude that Alg. 5.3 offers the best
ratio entropy-cost for all scenarios. Specifically, the most relevant scenario for
this evaluation is scenario 2 since it presents a higher spatial correlation. Here
Alg. 5.3 results in a twofold and sevenfold increase respect to RIG Algorithm

and Multiples RRT, respectively, while offering a similar path cost.

5.6.3 Analysis of the Exploration Strategy

5.6.3.1 Setup

We validate in this section Alg. 5.1 in an environment populated with obstacles.
To this end we carried out simulations in two environments that are shown in
Figure 5.5. Scenario A emulates a corridor with different rooms, while scenario
B considers thicker block-like obstacles. The simulations employ real data, col-
lected with a ground-based robot at DLR (see Fig. 4.6), which corresponds to a
magnetic field intensity in an indoor environment.

68 Chapter 5. Sampling-Based Single-Robot Exploration

Entropy [bits] Path Cost [s]

Scenario 1
Alg. 5.3 383.25 3.03

Multiples RRT 383.75 3.26
RIG Algorithm 383.86 4.24

Scenario 2
Alg. 5.3 −6.93 6.79

Multiples RRT −3.68 6.23
RIG Algorithm 0.03 5.65

Table 5.2: Posterior entropy and path cost evaluated over the complete environ-
ment after measuring Pxr,s∗ , calculated for 180 seconds of planning time.

0.0 1.0
x[m]

0.0

0.6

1.2

1.8

y
[m

]

MagneticF ield Intensity [normalized]

0.024

0.096

0.168

0.240

0.312

0.384

0.456

0.528

0.600

0.672

1.8

(a) Scenario A.

0.0 1.0
x[m]

0.0

0.6

1.2

1.8

y
[m

]

MagneticF ield Intensity [normalized]

0.024

0.096

0.168

0.240

0.312

0.384

0.456

0.528

0.600

0.672

1.8

(b) Scenario B.

Figure 5.5: Scenarios employed to test Alg. 5.1. Black polygons correspond to
the obstacles and the underlying picture is the magnetic field intensity we aim
to explore.

5.6.3.2 Performance Analysis

The goal of our information gathering algorithm is to reduce the RMSE, calcu-
lated with (4.2), as fast as possible. In this section, we compare Alg. 5.1 with
the following strategies:

• Myopic approach: according to the notation introduced in Sec. 2.2.1, we
assume LXfree(VXfree , EXfree) defined over scenarios A and B, where VXfree
corresponds to the cells depicted in Fig. 5.5. A myopic approach corre-
sponds to a widely used state-of-the-art strategy for information gathering
that has been employed in Chapter 4, as well as in works such as (Krause
and Guestrin, 2007b; Marchant and Ramos, 2012).

5.6. Simulations and Discussion of Results 69

• Random approach: an RRT is grown from xr for the same planning time
and budget b as in SearchStation algorithm. The next station is selected
randomly from the leaves of the RRT and the associated path is employed
to reach the station.

Let us clarify our motivation to employ a myopic and random benchmarks.
The algorithms Multiples RRT and RIG Algorithm are one-shot algorithms. In
other words, given an a priori known model the algorithms run for some user
pre-defined time and produce a path. This is also what our informative planner
(Algorithm 5.3) is designed to do. This was the motivation to compare the algo-
rithms with each other. In this section we evaluate our full exploration strategy
(Algorithm 5.1) that is able to explore an a priori unknown process. Let us
remark again that Multiples RRT and RIG Algorithm do not consider this fea-
ture. In the literature, two common approaches to deal with an exploration of an
unknown process are a random trajectory and a myopic one. Therefore, we used
these two to benchmark Alg. 5.1. We believe that the proposed evaluation is the
fairest to compare each of the different approaches according to its capabilities.

RMSE analysis. Figure 5.6 shows the mean and variance of the RMSE for
all executions. This is done for the different strategies and for both scenarios.
We also test the methods under assumption that the optimal θ are known and
fixed (listed with an asterisk sign). Our goal is to shift the Mean(RMSE) curve
to the left bottom corner. This implies a small RMSE that is achieved efficiently
in terms of time resources. Observe that Alg. 5.1 clearly outperforms the other
strategies. The myopic approach with optimal θ is the only one that offers a
comparable performance after the 900 seconds mission. Note, however, that it
assumes an a priori known model, which is unrealistic for an actual information
gathering task.

Solution quality. We analyze in Figure 5.7 the quality of the solution respect
to the best possible performance that we could obtain by systematic sampling.
We consider the best possible solution as the estimation over the complete envi-
ronment that results after measuring at all x ∈ VXfree . Let us remark that this
solution considers optimal θ. We show in Figure 5.7 the percentage in terms
of the RMSE respect to the best solution that we obtain with greedy, random,
and Alg. 5.1. A percentage of 100% indicates that Alg. 5.1 is able to achieve an
RMSE that is equal to the best possible RMSE that we could obtain. According
to Figure 5.7, after 900 seconds Alg. 5.1 is able to obtain a RMSE that is the
90%, while the greedy and random approach achieve only 40%.

70 Chapter 5. Sampling-Based Single-Robot Exploration

0 100 200 300 400 500 600 700 800 900
Time[s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
(R

M
S
E

)

Alg. 5.1
Myopic
Random

Alg. 5.1∗

Myopic ∗

Random∗

(a) Scenario A. Mean.

0 100 200 300 400 500 600 700 800 900
Time[s]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

V
a
ri

a
n
ce

(R
M

S
E

)

Alg. 5.1
Myopic
Random

Alg. 5.1∗

Myopic ∗

Random∗

(b) Scenario A. Variance.

0 100 200 300 400 500 600 700 800 900
Time[s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
(R

M
S
E

)

Alg. 5.1
Myopic
Random

Alg. 5.1∗

Myopic ∗

Random∗

(c) Scenario B. Mean

0 100 200 300 400 500 600 700 800 900
Time[s]

0.000

0.001

0.002

0.003

0.004

0.005

V
a
ri

a
n
ce

(R
M

S
E

)

Alg. 5.1
Myopic
Random

Alg. 5.1∗

Myopic ∗

Random∗

(d) Scenario B. Variance.

Figure 5.6: RMSE between the estimation of the process and the ground truth.
Top: scenario A. Bottom: scenario B. We represent the mean and variance of
the RMSE over the 40 simulations we carried out. Here we test three different
trajectories: (i) Alg. 5.1, (ii) a myopic approach, and (iii) random trajectories.
For all of them we compare their performance assuming: (i) no prior knowledge
about the process, which implies an online learning of θ, and (ii) assuming they
know the optimal θ a priori (marked with an asterisk).

5.6. Simulations and Discussion of Results 71

0 100 200 300 400 500 600 700 800 900
Time [s]

10

20

30

40

50

60

70

80

90

So
lu

tio
n

Q
ua

lit
y[

%
]

Alg. 5.1
Myopic
Random

Figure 5.7: Quality of the solution achieved by Alg. 5.1, a myopic, and a random
trajectories after a 900 seconds mission.

Comparison with RIG algorithm. According to the simulation results, we
can conclude that Alg. 5.1 outperforms the myopic and random approaches. In
order to get a better understanding of our proposed algorithm capabilities we
compare our full exploration strategy with the RIG Algorithm. Specifically, we
consider the following for the RIG Algorithm: (i) the model is a priori known; i.e.
we know the GPs hyperparameters and they do not need no be estimated, (ii) the
utility function corresponds to the MI, as suggested by the authors in (Hollinger
and Sukhatme, 2014), and (iii) the planning time is 600 seconds and then we let
the robot follow and measure along the planned path. Let us remark that these
are favorable conditions for the RIG Algorithm as our algorithm assumes an a
priori unknown model that needs to be estimated online. We run the simulation
40 times starting from different positions in the environment. Then we calculated
the RMSE after measuring along the calculated path. The average RMSE that
we obtained for the RIG Algorithm is 0.27, which is much higher than the one
obtained by Alg. 5.1 that is 0.05 (see Table 5.3). We believe that the lower
performance of the RIG Algorithm lies on the fact that the algorithm grows a
single tree to explore the complete environment. Notice that the complexity
of adding a new sample grows exponentially as the tree grows, which difficult
the exploration of the complete environment. In contrast, our algorithm runs
multiple consecutive trees using our devised two-step approach that permits an
efficient online exploration.

5.6.3.3 Hyperparameters Analysis

Finally, in Figure 5.8 we show the evolution of the estimated θ (and their vari-
ances) for Scenario A. To estimate θ we use the LML (2.5). The LML is a

72 Chapter 5. Sampling-Based Single-Robot Exploration

RMSE at t = 600s

Alg. 5.1 0.05
RIG Algorithm 0.27

Table 5.3: RMSE at t = 600s resulting after exploring scenario B. For this
comparison Alg. 5.1 employs (5.3), (5.4), and RIG Algorithm uses MI.

differentiable function and, therefore, conjugate gradients are a proper alterna-
tive to obtain θ∗. Let us remark that the non-convexity of the LML could drive
the optimizer to local minima. To overcome this issue we run the optimization
algorithm several times (10 to be specific) with initial values drawn randomly
from a uniform distribution defined over the set of feasible hyperparameter val-
ues. Then we pick the best solution.

We can observe that Alg. 5.1 converges slightly slower than the other ap-
proaches. In the myopic and random approach, the process is re-estimated more
often as compared to Alg. 5.1. This can explain a faster convergence of θ. How-
ever, a slower convergence of θ does not imply an inferior performance in terms
of the RMSE respect to these two strategies, as shown in Figs. 5.6 and 5.7. We
can also observe that σn for the random trajectory converges to a slightly higher
value compared to the myopic approach and Alg. 5.1. We believe this is due
to the fact that the random trajectory often repeats measurements at the same
positions and this has an impact on the learned θ.

5.7 Experiments and Discussion of Results

Now we test Alg. 5.1 in an experiment 2 employing a real ground-based holonomic
robot that is used to autonomously explore a magnetic field intensity within an
indoor laboratory environment populated with obstacles (see Figure 5.9).

5.7.1 Experimental Setup

The information gathering takes place in an environment that measures 3 by
6 metres. It contains 8 boxes of different sizes that are arbitrarily placed. We
remark again that we assume an a priori known location of obstacles in order to
abstract from the mapping of the environment. Also, we employ the same sensor
and hardware setup as described in Section 4.3.

2A video that shows the experiment execution can be found in: https://vimeo.com/

253576265; https://rebrand.ly/sampld3c1.

https://vimeo.com/253576265
https://vimeo.com/253576265
https://rebrand.ly/sampld3c1

5.7. Experiments and Discussion of Results 73

0 100 200 300 400 500 600 700 800 900
Time[s]

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
ea

n
(l

og
(l

))

log(l)

Alg. 5.1
Myopic
Random

0 100 200 300 400 500 600 700 800 900
Time[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
a
ri

a
n
ce

(l
og

(l
))

log(l)

Alg. 5.1
Myopic
Random

0 100 200 300 400 500 600 700 800 900
Time[s]

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
ea

n
(l

og
(σ

f
))

log(σf)

Alg. 5.1
Myopic
Random

0 100 200 300 400 500 600 700 800 900
Time[s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
V

a
ri

a
n
ce

(l
og

(σ
f
))

log(σf)

Alg. 5.1
Myopic
Random

0 100 200 300 400 500 600 700 800 900
Time[s]

−3.8

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

M
ea

n
(l

og
(σ

n
))

log(σn)

Alg. 5.1
Myopic
Random

0 100 200 300 400 500 600 700 800 900
Time[s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
a
ri

a
n
ce

(l
og

(σ
n
))

log(σn)

Alg. 5.1
Myopic
Random

Figure 5.8: GPs hyperparameters learned during the information gathering task
for Alg. 5.1, a myopic, and a random trajectory. We represent the mean and
variance over 40 simulation runs. We show the hyperparameters θ = [σ2

f , l, σ
2
n]T

in logarithmic scale.

74 Chapter 5. Sampling-Based Single-Robot Exploration

Figure 5.9: Ground-based robot exploring the magnetic field intensity within
an indoor environment populated with obstacles. The projection corresponds
to the ground truth data that we previously measured before performing the
experiment.

Prior to the experiment we scanned the magnetic field intensity with a reso-
lution of 10 cm. Given the dimensions of the environment this corresponds to a
grid of 1800 cells. The magnetic field intensity ranges between 5 and 84 µT . This
data is then used as a ground truth to test the performance of our algorithm.
Considering these measurements as ground truth is a realistic assumption since
the sensor can be considered as almost noise-free according to its specifications.

For the algorithm parameters we use the same ones as described in Sec. 5.6.1.
We run the algorithm in a central computer and then we send the corresponding
waypoints to the robot using the Robot Operating System (ROS) (Quigley et al.,
2009) with a WiFi connection. The robot is equipped with a Raspberry Pi that
runs the robot’s controller to guide the robot to the desired position.

5.7.2 Experimental Results

We benchmark the performance of Alg. 5.1 with a greedy and a random trajec-
tory. We show in Figure 5.11 screenshots of the algorithm execution for three
instants of time. Specifically, we show the estimation of the physical process,
the entropy of the process model, and the tree that was produced by the robot
to plan a path toward the next station. The robot is represented with a circle
and the path planned by our RRT*-based informative planner is indicated with
a thick red line. We can also observe that the estimation of the robot at 946
seconds, which corresponds to the end of the experiment, is really close to the
ground truth data shown in Figure 5.9. Let us also remark that the blue areas
in the figures that represent the model’s entropy correspond to the already ex-

5.8. Summary and Outlook 75

0 100 200 300 400 500 600 700 800 900
Time[s]

0

5

10

15

20

25

30

35

R
M

S
E

[μ
T

]

Alg. 5.1
Myopic
Random

Figure 5.10: Evolution of the RMSE during a 940 seconds exploration task that
was carried out with a ground-based robot.

plored positions. Therefore, the entropy resulting at the end of the execution
shows that the robot covered all areas except the ones that are occupied by the
obstacles.

Finally, Figure 5.10 illustrates the evolution of the RMSE, calculated
with (4.2), for the three compared strategies. We remark that the RMSE is
computed over all x ∈ VXfree . As we concluded in simulations, here we ver-
ify that our algorithm greatly outperforms the myopic and random trajectories.
The proposed strategy is able to decrease the RMSE to approx. 1.24 µT , which
represents a nine-fold improvement respect to the other approaches.

5.8 Summary and Outlook

In this chapter we described an extension of the algorithm proposed in Chap-
ter 4 that allows a robot to explore an unknown process that takes place in
an environment populated with obstacles. The proposed algorithm employs a
sampling-based method (RRT/RRT*) to plan a robot’s trajectory in a continu-
ous space. In contrast to Chapter 4, where we employ a myopic approach, the
algorithm proposed in this chapter allows us to incorporate any robot whose
motion can be planned with an RRT-like algorithm. Moreover, we proposed
the introduction of an utility function into the standard RRT/RRT* algorithms.
This utility function trades-off informativeness, measured as a mean entropy, and
path cost. Performance of the algorithm was benchmarked both in simulations
and experiments against several state-of-the-art algorithms. Results illustrate
that the proposed approach represents a nine-fold improvement respect to state-
of-the-art methods.

However there are a few aspects that will be considered in this thesis to

76 Chapter 5. Sampling-Based Single-Robot Exploration

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y[
m

]

0

10

20

30

40

50

60

70

80

90

100

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y[
m

]

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y[
m

]

0

10

20

30

40

50

60

70

80

90

100

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y
[m

]

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y[
m

]

0

10

20

30

40

50

60

70

80

90

100

-1.5 -0.5 0.5
x[m]

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

y
[m

]

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

Figure 5.11: Screenshots showing the algorithm execution as we run the ex-
periment. The three rows correspond to three instants of times: 133, 502 and
946 seconds. From left to right, the columns are the estimation of the process
(measured in µT), the entropy, and the planned path using Alg. 5.3.

5.8. Summary and Outlook 77

improve the algorithm performance. These are the following:

1. We are considering only one robot. An extension of this algorithm to
multiple robots will be proposed in Chapter 7.

2. The proposed algorithm requires an intensive computation of the informa-
tion metric. Therefore, we motivated the use of the mean entropy against
MI. However, mean entropy still does not consider the cross-correlation
between different points. We overcome this issue in Chapter 7 by intro-
ducing a clustering method that reduces the dimensionality of the RRT.
This way, we do not require a so intensive computation and more complex
information functions, like MI, can be considered as information metric.

In next chapter we consider point 1, and propose a first approach to gather
information with multiple robots. Specifically, we propose an extension of the
algorithm described in Chapter 4 that allows multiple robots to communicate
with each other and cooperate to gather information more efficiently.

Part III

Multi-Robot Exploration

79

Chapter 6

Myopic Multi-Robot Exploration

We proposed in Part II of this thesis two algorithms to autonomously gather in-
formation with a single robot. We showed both in simulations and experiments
that our proposed algorithms outperform state-of-the-art solutions. Neverthe-
less, we strongly believe that the task of information gathering can benefit from
the use of a team of multiple robots, instead of a single robot. A multi-robot
system offers two main advantages for exploration tasks over a single-robot sys-
tem (Burgard et al., 2000):

• robustness, as a multi-robot system does not suffer from the “single point
of failure” problem. That is, if designed properly, a multi-robot system is
able to perform an assigned task even if an individual robot fails.

• efficiency, as an increase in the number of robots translates into an increase
of resources available, such as computational resources or number of sen-
sors. For example, a multi-robot system could distribute the information
processing among all robots in the system, which results in a more efficient
information processing. Moreover, an increase in the number of robots
translates into an increase in the number of sensors available. Therefore,
in a fixed time a multi-robot system is able to gather more information
than a single-robot system.

Thus, a multi-robot system offers two essential advantages for information
gathering tasks: robustness and efficiency. However, a multi-robot system
presents additional challenges, which we must deal with, that are related to
the inclusion of a higher number of robots. In particular, there are two as-
pects that are crucial in a multi-robot system: (i) inter-robot cooperation, and
(ii) inter-robot coordination. Inter-robot cooperation refers to how a team of
robots should jointly perform a task, like e.g. maximize information gathering.
Inter-robot coordination is associated to how robots, which share common re-
sources, should fulfill team specific constraints, like e.g. collision avoidance or
communication constraints.

81

82 Chapter 6. Myopic Multi-Robot Exploration

To achieve inter-robot cooperation and coordination multiple approaches
have been proposed in the literature. One example of such approaches are
communication-less methods, where robots may reason without communication
by simply observing others robots states (Balch and Parker, 2002). In contrast,
and based on the fact that our robots are equipped with communication devices,
here we employ communication-based methods to allow robots to “talk to each
other”.

We have introduced the main advantages and challenges of a multi-robot
system. In this chapter, we propose a GPs-based algorithm that allows multiple
robots to gather information of an unknown physical process. The algorithm
introduced in this chapter is an extension of Alg. 4.1 to the multi-robot case. We
validate the proposed algorithm in simulations, and in an experiment in which
two quadcopters, equipped with an ultrasound sensor that faces down, explore
an unknown terrain profile. An efficient GPs-based multi-robot cooperation
algorithm that runs online, together with the application of mapping a terrain
profile, are the two main contributions of this chapter.

This chapter is organized as follows: in Section 6.1, we introduce notation
required to describe a multi-robot system, as well as the inter-robot communica-
tion model that we will employ in the remainder of this thesis. Then we describe
the proposed algorithm in detail in Section 6.2. This is followed by an evaluation
of the algorithm in simulations (Section 6.3), and experiments (Section 6.4). We
conclude this chapter with a summary and outlook in Section 6.5.

6.1 Inter-Robot Communication

We introduce in this section the basics of inter-robot communication that we will
need for the upcoming chapters. First, we describe in Section 6.1.1 a model that
characterizes the communication between any pair of robots. Communication
between robots allows them to conform a network. A formal definition of a
robotic network, together with an overview of network topologies, is given in
Section 6.1.2.

6.1.1 Communication Model

In the literature, we can find multiple inter-robot communication models that
range over a huge spectrum in terms of complexity, and representability of the ac-
tual communication channel (Zavlanos et al., 2011; Tekdas et al., 2012; Hollinger
et al., 2012; Wang et al., 2017). For simplicity, as research in inter-robot com-
munication is out of the scope of the thesis, we rely on a simple communication
model. A simple communication model that is widely used in the multi-robot

6.1. Inter-Robot Communication 83

Robot 1

Robot 2

Robot 3

Robot 4

𝑟𝑐

(a) Communication disk.

Robot 1

Robot 2

Robot 3

Robot 4

(b) Communication network.

Figure 6.1: Example that illustrates the concept of a disk communication model.

cooperation literature is a disk communication model (Dixon and Frew, 2009;
Sabattini et al., 2013).

Definition 6.1. (Disk communication model). A disk communication model
specifies that there is a communication link between two agents i and j, located
at positions xri, xrj , respectively, iff,

||xri − xrj ||2 ≤ rc, (6.1)

where rc defines the communication radius.

We show in Figure 6.1 an example that illustrates the concept of a disk
communication model. On the left hand side, we depict four robots together with
their corresponding communication disk. On the right hand side, we represent
the resulting communication network where two robots are linked iff they can
communicate with each other.

The example from Fig. 6.1 allows us to understand the concept of a disk com-
munication model. Also, in this work we introduce two additional assumptions
in our communication model that are widely used in the multi-robot cooperation
literature. That is, we assume that communication between a pair of robots is
instantaneous and error-free (Dixon and Frew, 2009; Sabattini et al., 2013).

6.1.2 Communication Network Topology

Let us denote a system composed of N robots, where each robot i is located at
position xri ∈ Xfree, with i ∈ [1, 2, ..., N]. We assume that robots are equipped

84 Chapter 6. Myopic Multi-Robot Exploration

Robot 1

Robot 4

Robot 2

Robot 3

(a) Fully connected.

Robot 1

Robot 4

Robot 2

Robot 3

(b) Connected.

Robot 1

Robot 4

Robot 2

Robot 3

(c) Disconnected.

Figure 6.2: Communication graphs of the network topologies, classified according
to its connectivity properties.

with a communication system that allows them to communicate with each other,
conforming a communication network.

A communication network is typically represented as a graph, where nodes
correspond to robots’ positions, and edges link two nodes iff there exist a physical
communication link between the two robots associated to the nodes. We term
the graph, which characterizes the communication network, the communication
graph.

Definition 6.2. (Communication graph). A communication graph Gc(Vt, Et)
at time t, with vertices Vt and edges Et, of N robots, located at positions xri(t),
is given by:

Vt = {xr1(t),xr2(t), ...,xrN (t)} , (6.2)

Et =
{

(xri(t),xrj (t))
}
i,j∈[1:N]; i 6=j; i,j are connected,

(6.3)

where connectivity implies that two robots i, j can communicate with each other,
with inter-robot communication given by Def. 6.1.

The communication graph allows us, for example, to check whether two
robots are connected, or whether a robot is disconnected from the rest of the
network. Network connectivity is a topology property that is crucial for multi-
robot cooperation/coordination algorithms, as these require a certain degree of
connectivity to allow robots to cooperate with each other. In this thesis we clas-
sify connectivity in terms of the communication graph that defines the network
topology (Godsil and Royle, 2013). In this sense we can identify three different
topologies:

• A fully connected topology implies that the communication graph is fully
connected (Figure 6.2a). That is, there exists an edge between any two
nodes in the communication graph.

6.2. Multi-Robot Exploration with Online-Learning of GPs 85

• A connected topology implies that the communication graph is connected
(Figure 6.2b). That is, there exists a direct or indirect path between any
two nodes in the communication graph.

• A disconnected topology is a topology that is not connected (Figure 6.2c).

In this chapter we assume rc =∞, which specifies a fully connected network.
Then we consider in next chapters a more realistic system that is subject to
communication constraints, yielding any of the three afore-described topologies.

6.2 Multi-Robot Exploration with Online-Learning
of GPs

We introduce in this chapter an algorithm that extends Alg. 4.1 to a multi-
robot system composed by N robots. As Alg. 4.1, the algorithm proposed in
this chapter also exploits GPs (Section 2.1) to model the physical process under
study, relies on a discrete graph-based myopic decision maker (see Section 2.2.1),
and employs entropy (Section 2.3) as information metric. In contrast to Alg. 4.1,
here we incorporate an online learning of the GPs hyperparameters, as we did
in Alg. 5.1. Let us recall that the online learning of the hyperparameters allows
robots to explore an a priori unknown process, as robots do not require prior
information about the process.

The proposed algorithm is able to coordinate multiple robots while avoiding
inter-robot collisions. In particular, we propose a semi-decentralized realization
of the algorithm (see Sec. 3.4), such that each robot takes its own decisions based
on the currently available information. A semi-decentralized realization of the
algorithm is crucial both in terms of robustness and efficiency as we pointed out
in this chapter’s introduction. Let us clarify that we consider our approach as
semi-decentralized, and not decentralized, because robots have an infinite com-
munication range (rc =∞), and employ a broadcast mechanism to exchange in-
formation. In contrast, we understand as decentralized a system that relies solely
on local inter-robot communication, according to the definitions in (Grime and
Durrant-Whyte, 1994; Capitan et al., 2011). In Chapter 7 we extend the concept
proposed in this chapter, and propose a system that performs a decentralized
coordination.

A block diagram of the whole scheme is shown in Figure 6.3. We present in
Algorithm 6.1 a detailed pseudo-code. Both the block diagram and algorithm
correspond to a single robot. That is, each individual robot runs Algorithm 6.1
independently and communicates with the other robots, through module “Broad-
cast & Receive Info” (see Figure 6.3), until a stopping criterion is fulfilled.

86 Chapter 6. Myopic Multi-Robot Exploration

Move One
Step

Select Next
Position

Broadcast &
Receive Info

Measure
Process

Update GPs
Model

Calculate Potential
Positions Multi-Robot

Figure 6.3: Algorithm block diagram. The shadowed block represents a module
that requires communication between robots.

Algorithm 6.1. MyopicMultiRobotExploration(xri ,LXfree , StopAlgorithm)

1: z← NULL; X← NULL; xnext ← NULL;
2:
3: while ! StopAlgorithm do
4: zothLast,XothLast,XothNext ← ReceiveInfo; . from all other robots

5: z ← Measure(xri);

6: z← [z; zothLast; z]; X← [X; XothLast; x
T];

7: θ∗ ← LearnHyp(z,X); . with (2.5)

8: X∗ ← CalcNextPotentialPositionsMR(LXfree ,XothLast,XothNext,xri);

9: . Calculate maximum entropy position

10: hmax ← −∞;

11: for x
[j]
∗ ∈ X∗ do

12: µ∗, σ
2
∗ ← PredictGP(z,X,x

[j]
∗ ,θ∗); . with (2.3)

13: h∗ ← CalculateEntropy(σ2
∗); . with (2.20)

14: if h∗ > hmax then

15: hmax ← h∗; xnext ← x
[j]
∗ ;

16: BroadcastInfo(z,xri ,xnext); . to all other robots

17: xri ← MoveTo(xnext);
18: µ∗,Σ∗ ← ReconstructProcess(z,X,VXfree);

Algorithm 6.1. Algorithm 6.1 works as follows: in a first step, each robot
receives the information broadcasted by the other robots (line 4). It consists of
the last measurement taken by each of the other robots, zothLast, as well as the
positions where those measurements were taken, XothLast, and the next positions
where the robots are heading to, XothNext. This information is sufficient to
achieve inter-robot coordination. On the one hand, the knowledge about XothLast

and XothNext allows us to implement a collision avoidance mechanism. On the
other hand, zothLast and XothLast act as an indirect mechanism to coordinate the
exploration efforts. Since all robots share the same data model, each of them
can reproduce what the other robots’ information look like. This leads to an
implicit cooperation that avoids, for example, that two robots measure at the
same position if it is not strictly necessary. It is important to notice that the
proposed inter-robot coordination mechanism is valid as along as robots do not

6.3. Simulations and Discussion of Results 87

execute Alg. 6.1 perfectly synchronously, which is an assumption that in practice
always holds.

In a second step, the robot takes a measurement z (line 5), and incorporates
z to its own vector of measurements z (line 6). Then it estimates θ∗ with (2.5)
to update the GPs model given z,X (line 7). The update of the GPs model is
essential to better model the process we aim to explore, and, therefore, to better
predict the process entropy that will guide the robots’ exploration. Next the
robot computes the position where it will move next. The computation of the
next position is carried out in lines 8-15, and is similar to the process described
in Alg. 4.1. However, it differs on a fundamental aspect. Here we consider a sys-
tem composed by multiple robots that share a common environment. Therefore,
inter-robot collisions must be prevented. This is done in line 8 with function
CalcNextPotentialPositionsMR, which calculates a set of next potential posi-
tions X∗. Here, in contrast to Alg. 4.1, we incorporate an additional constraint
to calculate X∗. That is, we forbid robots to be closer than a safety distance rs
to each other. Given these constraints, the robot calculates X∗ as follows:

X∗ =

x ∈ VXfree

∣∣∣∣∣∣
x ∈ NLXfree (xri),

min(||x−XothLast||2) > rs,
min(||x−XothNext||2) > rs,

 (6.4)

where min(||x−X||2) is the minimum euclidean distance between x and any of
the rows in X.

Once a robot calculates its next position xnext, it broadcasts z and xnext (line
16). Robots continue executing Alg. 6.1 loop until they reach their stopping
criteria. Then each individual robot is able to reconstruct the physical process
(line 18) as we described in Alg. 4.1.

6.3 Simulations and Discussion of Results

First, we evaluate Alg. 6.1 in simulations. Specifically, we explore a magnetic
field intensity, and employ the setup described in Sec. 4.3. In this chapter, we in-
troduced an extension of Alg. 4.1 that differs in three aspects: (i) online learning
of GPs hyperparameters, (ii) cooperation between multiple robots for gathering
information, and (iii) inter-robot collision avoidance. We evaluated first aspect in
Chapter 5. Moreover, we will extend the evaluation in an experiment in Sec. 6.4.
Therefore, we do not consider the first aspect in the simulations evaluation. Also,
we do not evaluate the last aspect in this section as we demonstrate in Sec. 6.4
that robots do not collide while using Alg. 6.1. Therefore, in this section we focus
on the evaluation of the second aspect: multi-robot cooperation for information
gathering.

88 Chapter 6. Myopic Multi-Robot Exploration

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

400

450

500

Number of Robots

M
ea
su
re
m
en
ts

 t
o

 R
ed

u
ce

 R
M

S
E

 a
 9

8
%

Alg. 6.1
Alg. 4.1 (MR)

Figure 6.4: Performance evaluation of Alg. 6.1 as we increase the number of
robots in the system.

Multi-robot cooperation for information gathering. We test Alg. 6.1
performance as we increase the number of robots in the system from one to
ten. As performance metric, we choose the number of total measurements per
robot, which robots need to take in order to reduce the initial RMSE a 98%.
We clarify that Alg. 6.1 with one robot is identical to Alg. 4.1. Also we test
an strategy where we divide the environment in a number of sectors equal to
the number of robots available. Then we assign a robot to a sector, which each
robot will explore with Alg. 4.1. This, strategy we term it Alg. 4.1 (MR). We
carried out each of the simulations 100 times, and results correspond to the
average calculated from all simulations. For Alg. 4.1 (MR) each robot starts at
a random position within its assigned sector, while for Alg. 6.1 robots start at a
random position in the environment.

In Figure 6.4 we show simulation results for both Alg. 6.1 and Alg. 4.1 (MR).
First fact is that performance of Alg. 6.1 increases as we increase the number of
robots, which demonstrates the effectiveness of the proposed multi-robot coop-
eration. Also we can observe that performance of Alg. 6.1 and Alg. 4.1 (MR)
are almost identical. This allows us to conclude that Alg. 6.1 is able to cover
the complete environment without the need of any sectorization. Notice that
in a real application, the environment is typically unknown beforehand. Here
Alg. 4.1 (MR) would not be applicable. In constrast, with Alg. 6.1 we obtain the
same performance as if we knew the environment before starting the exploration
task.

6.4. Experiments and Discussion of Results 89

Figure 6.5: Two quadcopters explore an unknown terrain profile with Alg. 6.1.

6.4 Experiments and Discussion of Results

6.4.1 Experimental Setup

We validate Alg. 6.1 in an experiment 1 in which two quadcopters explore an a
priori unknown terrain profile (see Figure 6.5) with a lateral resolution of 20 cm.
The built terrain profile measures approx. 60 cm from top to bottom, and has a
size of 8 × 3 m2. Each of the quadcopters flies at a different constant height of
1 m and 1.5 m above the floor to avoid the risk of collisions, although they are
not aware of it.

Ultrasound sensor. Quadcopters calculate the profile’s height as a difference
between the robot’s actual height, which is provided by a Vicon system and can
be assumed to be noise-free (see Sec. 4.3), and the range between the quad-
copter and the height profile. To compute this range we employ an ultrasound
sensor. Specifically, we mount a commercial ultrasound sensor from MaxBotix
that faces down to measure the range to the floor. The sensor has a nominal
range of approx. 7.5 m with opening angles of 45◦ in the near field and a cylin-
drical measurement profile for ranges greater than 1.5 m. An ultrasound sensor
works as follows: it sends an impulse and waits for the echo to calculate the
distance to the closest object within the sensor’s footprint (see Figure 6.6). It
could happen that reflections in the environment and oscillations of the quad-
copter’s pose could lead to missing measurements (the echo does not return to

1A video that shows the experiment execution can be found in: https://vimeo.com/

253576445; https://rebrand.ly/myopi389d.

https://vimeo.com/253576445
https://vimeo.com/253576445
https://rebrand.ly/myopi389d

90 Chapter 6. Myopic Multi-Robot Exploration

True
range

Measured
range

Figure 6.6: Ultrasound sensor measurement. Blue rectangles correspond to sam-
ple boxes, and the grey cone represents the sensor’s footprint.

the ultrasound sensor) or not-plausible measurements (the impulse gets affected
by multiple reflections and the resulting measurement is inconsistent considering
the environment structure). Therefore, multiple measurements need to be taken
to mitigate such effects. We solve this problem by averaging over 10 valid mea-
surements taken at the position of interest; i.e. we discard those measurements
that are not plausible, such as negative heights and heights that are above the
quadcopter actual z position. In case we obtain no valid measurements during
an interval of 30 seconds, we average over the last 10 valid measurements, which
are stored in a buffer.

The algorithm uses ROS (Quigley et al., 2009) and WiFi for the communica-
tion between quadcopters. It is important to notice that, although the algorithm
itself is decentralized, only parts of it run on the Raspberry Pi mounted on the
quadcopters due to the computational limitations of these devices. Instead, the
GPs regression and learning of hyperparameters run in one separate central com-
puter, but in a decentralized manner. This decentralization is possible because of
the nature of ROS, where nodes run in different threads. We employ the pyGPs
library to perform the GPs-related calculations.

Benchmark strategies. We benchmark the following five exploration strate-
gies:

1. meander-like trajectory with a single robot (see Sec. 4.3) with pre-set hy-
perparameters,

2. random trajectory with a single robot (see Sec. 4.3) and online learning of
hyperparameters,

6.4. Experiments and Discussion of Results 91

Figure 6.7: RMSE with respect to the ground truth for five different algorithms
during a 8 minutes exploration experiment.

3. an extension of Alg. 4.1 (single-robot) that includes an online learning of
hyperparameters,

4. Alg. 6.1, which is a multi-robot exploration algorithm with online learning
of hyperparameters, and

5. Alg. 6.1 with pre-set hyperparameters.

Let us clarify that both strategies 1 and 2 employ GPs regression to predict
the physical process values at positions that were not yet measured. Strategies 1
and 5 carry out the regression using the optimal hyperparameters learned from
the data collected with the meander trajectory in a previous exploration run.

Ground truth. For the evaluation, the terrain profile ground truth corre-
sponds to 13 markers placed randomly distributed along the terrain profile. The
markers positions were recorded using the Vicon tracking system.

6.4.2 Experimental Results

First, we analyze the RMSE between estimate and ground truth after running
Alg. 6.1 during the lifetime of the quadcopter’s battery, which is approx. 8
minutes in our case. Exchanging the batteries of the quadcopter is a highly time-
consuming process. Therefore, our goal is developing exploration algorithms that
are able to reconstruct the original process during this battery’s life-time. This
is done by both developing intelligent exploration strategies and increasing the
number of robots in the swarm. We present evaluation results in Figure 6.7.

Ultrasound sensing error. First thing we observe is that the minimum er-
ror we achieve with any of the strategies is approx. 7 cm. This error may seem

92 Chapter 6. Myopic Multi-Robot Exploration

relatively large. However, it is equal to the best performance we can obtain with
the ultrasound sensor in the explored environment. To verify that, we measured
all positions in the environment (we needed 3 batteries and 53 minutes) with
the meander trajectory and calculated the RMSE as benchmark. The resulting
RMSE was 7.64 cm, although we measured the complete physical process. This
error is considerably large and is due to the sensor’s footprint and sensor’s char-
acteristics, and to the oscillations of the quadcopter while flying. The sensor
takes the minimum range – maximum height – within its footprint. Therefore
it is not able to distinguish between different heights that lay within the sen-
sor’s footprint (see Figure 6.6). This fact induces the error. Since that is the
best performance we can get with the sensor without any postprocessing of the
measurements, we assume this error as the best possible solution we can obtain.

Comparison with predefined trajectories for a single robot. Next fact
we notice is that, in contrast to the results obtained for the exploration of a
magnetic field intensity (Figure 4.10), the error with strategies 2 (random) and
3 (single-robot) is larger than the one obtained with strategy 1 (meander). The
difference respect to Fig. 4.10 is that here strategies 2 and 3 learn the model’s
hyperparameters online, while in Fig. 4.10 they were pre-set to the optimal val-
ues. In strategies 2 and 3 the amount of measurements collected with a single
quadcopter in the initial phase of the exploration run is not enough to learn the
process model fast, which incurs in an initial loss of performance that is dragged
during the rest of the exploration.

However, attending at results from Figure 6.7, performance of strategy 2
(random) is comparable to the performance of strategy 3 (single-robot). Fig-
ure 6.8a demonstrates that this performance of the random trajectory is a mere
coincidence, since this trajectory does not guarantee the convergence of the hy-
perparameters learning – see interval between 210 and 320 seconds, where the
quadcopter could not converge to any hyperparameter value. In contrast, as
we show in Figure 6.8b, Alg. 6.1 converges fast to the optimal hyperparameters
given the available measurements because of the myopic nature of the algorithm.

Multi-robot exploration. Since one quadcopter is not sufficient to explore
this physical process, we use Alg. 6.1 (strategy 4) with two quadcopters. For this
case we observe in Figure 6.7 that the error has been reduced by one half respect
to strategies 1-3, which proves the correct coordination between robots. How-
ever, this error of 12.84 cm is still larger than our benchmark error of 7.64 cm.
Furthermore, the exploration time was 8 minutes, which is approx. seven times
smaller than the time needed to achieve our benchmark error. In order to un-
derstand where this remaining error lies, we run Alg. 6.1 with two quadcopters

6.4. Experiments and Discussion of Results 93

(a) Hyperparameters learned while following a random trajectory.

(b) Hyperparameters learned by two quads while exploring with Alg. 6.1.

Figure 6.8: Hyperparameters learned during the exploration run. The black
points represent the actual values. The color lines are the result of a linear
interpolation of those points.

but with the optimal hyperparameters (strategy 5).

Exploration with optimal hyperparameters. Here, with strategy 5, we
notice that the error is approx. equal as our best possible solution while the
exploration time is approx. seven times smaller. Figure 6.9 shows the trajec-
tories of the two robots for strategies 4 and 5. We can see that for the online
learning case (strategy 4), the robots fly around in a local area at the starting
phase. This response is due to the fact that robots did not learn a proper model
and cannot decide correctly where to measure next. We observe this behavior
as well in Figure 6.8b. In the first 220 seconds, the hyperparameters learning
does not converge and this causes an inferior performance compared to the set
hyperparameters trajectory.

Last remarks. We can conclude according to the simulations and experimen-
tal results that Alg. 6.1 is able to achieve the correct coordination between the
robots. However, experimental results showed that, as part of the future work, we
must improve the learning phase to get closer to the performance obtained while
using the optimal hyperparameters. For example, active learning approaches

94 Chapter 6. Myopic Multi-Robot Exploration

(a) Hyperparameters learning. (b) Hyperparameters set.

Figure 6.9: Reconstruction of the terrain profile (see Figure 6.5) after running
Alg. 6.1 for two different setups: online learning (left) and pre-set hyperparame-
ters (right). On top we show the trajectories of the two quadcopters. Blue dots
correspond to the markers’ positions that serve us as ground truth. The color
scale represents the estimated height (measured in cm), being red the highest
value.

could be considered to better learn the model’s hyperparameters (Krause and
Guestrin, 2007b).

6.5 Summary and Outlook

In this chapter we described a first approach that lets multiple mobile robots
autonomously explore an unknown physical process. The performance of the
algorithm has been shown in simulations, and in an experiment where two quad-
copters, equipped with an ultrasound sensor facing down, explore a terrain pro-
file. Results illustrate that the proposed approach is able to explore a process
more efficiently than several benchmark methods. Moreover, results show how
robots correctly learned the GPs hyperparameters online while performing the
exploration task.

However there are a few aspects that will be considered in this thesis to
improve the algorithm performance. These are the following:

6.5. Summary and Outlook 95

1. The robots plan in a myopic fashion, which is in general suboptimal as
pointed out in Chapter 5. A sampling-based path planning approach (Sec-
tion 2.2.2) will be considered in Chapter 7 to improve the algorithm per-
formance.

2. The use of entropy as information metric leads to a superior performance
compared to a random and a meander trajectory. However, more complex
metrics that yield a better performance have been proposed in the litera-
ture, like e.g. MI. In Chapter 7 we argue about the use of MI in exploration
algorithms.

3. We employed a holonomic robot to carry out the exploration task. In
Chapter 7 we expand the algorithm to handle a larger class of robots.

4. In this chapter, we assumed that the communication graph that defines
the robots network is fully connected. This assumption allowed us to an-
alyze the cooperation capabilities of the proposed algorithm, regardless
the communication aspect. However it is an unrealistic assumption, as all
communication devices have a limited communication range. In Chapter 7
we propose an algorithm that does not require a fully connected network,
and relies uniquely in local communication to coordinate robots during the
information gathering task.

In next chapter (Chapter 7) we consider the four aforementioned points, and
propose a more efficient exploration algorithm. This algorithm can handle a
larger class of robots, and is able to deal with more complex constraints, such as
collision avoidance and inter-robot communication constraints.

Chapter 7

Sampling-Based Multi-Robot Constrained
Exploration

We proposed in Chapter 6 Alg. 6.1, which allows multiple robots to au-
tonomously gather information of an unknown physical process. Algorithm 6.1
has two major constraints: (i) it requires a discrete graph-based representation
of the environment, and (ii) it requires the communication network, which robots
conform, to be fully connected. On the one hand, the former limits the generality
of the algorithm, as we pointed out in Chapter 5, where we first introduced the
concept of sampling-based exploration. On the other hand, the latter constraint
is unrealistic in a real-world scenario, as robots have a limited communication
range. This implies that, in practice, robots cannot conform a fully connected
network if they are far apart.

In this chapter we introduce an algorithm that overcomes the two aforemen-
tioned issues. To this end, we build on previous concepts and employ (i) GPs
to model the process we aim to explore, (ii) sampling-based algorithms (RRT)
to plan robots actions, and (iii) a Distributed Constraint Optimization (DCOP)
algorithm – max-sum (Farinelli et al., 2008) – to achieve multi-robot cooperation
and meet problem-specific constraints. In particular, in this chapter we consider
the following constraints: collision avoidance constraints to avoid inter-robot
collisions, and network connectivity constraints to derive an algorithm based on
local communication between robots. Let us remark that network connectivity
allows communication between robots and, therefore, permits multi-robot coop-
eration. Moreover, it is a requirement in a large class of information gathering
applications as indicated in (Hollinger and Singh, 2010; Gan et al., 2014).

This chapter extends concepts presented in previous chapters in order to fulfill
this thesis objectives, as stated in Section 1.3. To the best of our knowledge,
we introduce here the first non-myopic sampling-based multi-robot algorithm for
information gathering.

97

98 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

We organize this chapter as follows: first, we state the problem formally
in Section 7.1. Then we present an overview of our algorithm in Section 7.2.
Next we introduce in Section 7.3 max-sum. Our algorithm relies on an infor-
mation metric to decide robots’ action. Therefore, we include in Section 7.4 a
discussion about the suitability of several information metrics for our specific
problem, and introduce a definition of MI that meets our problem requirements.
This is followed in Sections 7.5 and 7.6 by a detailed explanation of the different
subsystems that compose our system, and an assessment of the algorithm’s com-
putational complexity, respectively. Then we test the algorithm in simulations in
Section 7.7, and verify in Section 7.8 its performance with a field experiment in
which three quadcopters explore an unknown simulated wind field. We finalize
with a summary and outlook of the chapter in Section 7.9.

7.1 Problem Statement

We wish to explore a physical process with N cooperative robots. Let us assume
that the physical process and robots are subject to the assumptions introduced
in Sec. 1.3. In addition, we consider the following constraints:

1. Inter-robot collision avoidance: two robots collide if they are separated less
than a distance rs.

2. Network connectivity : the network of robots requires a periodic connec-
tivity, with a maximum disconnection time of kcdt seconds.

The problem described in Sec. 1.3 corresponds to an infinite horizon informa-
tion gathering task. A common approach in information gathering is to divide
an infinite horizon problem into multiple finite horizon problems that can be
solved individually and sequentially. That is, first, robots solve an information
gathering problem for the next kc iterations. Note that we assume here that the
horizon has a length kc equal to the maximum number of iterations we allow the
network to be disconnected. The solution to the information gathering problem
is a combination of robots’ paths P = {P1, ...,PN}, with Pi ∈ Xfree, which max-
imizes a global utility function UI(P,X), which depends on P and the gathered
measurements X. Once robots find a solution, they follow Pi, and repeat the
procedure again.

More formally, this chapter proposes a solution to the following finite horizon

7.2. Algorithm Overview 99

Calculate Candidate Paths

& Generate Clusters

Search Neighbors

& Send Domain

Follow Path

& Collect Measurements

Calculate Max-Sum Utilitites

& Execute Max-Sum

Exchange Measurements

(Data Fusion)

Update

GPs Model

Figure 7.1: Algorithm block diagram. Shadowed blocks represent modules that
require communication between robots.

problem:
maximize

P
UI(P,X)

subject to Pi = {xi(t),xi(t+ dt), ...,xi(t+ kcdt)} ,
xi(t+ (kt + 1)dt) = fm(xi(t+ ktdt),u),

||xi(t+ ktdt)− xj(t+ ktdt)||2 ≥ rs
∀kt = 1, 2, ..., kc; i 6= j,

Gc(Vt+kcdt, Et+kcdt) is connected,

(7.1)

where fm(·, ·) describes the robot’s motion model (Section 4.1); and graph
Gc(Vt+kcdt, Et+kcdt) is the communication graph, according to definition 6.2, that
results at iteration t+ kcdt given the robots positions.

7.2 Algorithm Overview

We present in this section the algorithm that we propose to solve (7.1). In
Fig. 7.1 we depict a block diagram of the proposed algorithm. In particular, the
diagram corresponds to the modules that each single robot executes. Modules
are executed in a loop, where each loop iteration solves (7.1).

Our proposed algorithm works as follows: first, robots plan a set of potential
actions – paths – that they could follow (Sec. 7.5.1). Specifically, each robot
generates an RRT, whose root is the robot’s current position. Next, robots
cooperate in order to select a path that maximizes UI(·) subject to constraints
from (7.1). Here we define UI(·) as an information theoretic function. To solve
this multi-robot cooperation problem we propose the use of a DCOP algorithm:
max-sum.

Max-sum requires that each robot knows its own set of potential actions, as
well as its neighbors’ set of potential actions. Here we term this: robot’s domain.
To this end, we include a module that allows robots to find its neighbours, and
to send its domain (Sec. 7.5.2).

Once a robot receives its neighbors’ domain, it executes max-sum (Sec. 7.5.3).
Max-sum is a combinatorial optimization algorithm. That is, in order to solve

100 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

the optimization problem, each robot must evaluate all combinations of potential
paths from the received domains (including its own domain). As we previously
mentioned, here we consider a robot’s domain as the set of all paths that are
contained in the generated RRT. Since RRTs could grow large, the number
of total paths could increase as well. This would result in an increase of the
complexity of the combinatorial optimization, which could make the optimization
computationally intractable. To solve this issue, we propose a procedure in which
each robot groups the RRT paths into clusters, which reduces the robots’ domain
size (Section 7.5.2).

Max-sum outputs a cluster for each individual robot that solves (7.1). Then,
each robot selects a path within its cluster. This is realized by evaluating an
information-theoretic function (Section 7.5.4).

Next robots follow the selected paths while taking measurements along them.
Measurements encode the knowledge robots have about the process of interest.
Therefore, they exchange the gathered measurements through the network; i.e.
they perform data fusion (Section 7.5.5). Finally, robots update their GPs model
(its hyperparameters) with the new measurements in order to improvement the
process model (Section 7.5.6).

7.3 Distributed Constraint Optimization: Max-Sum

The core of the system that we present in this chapter is “Calculate Max-Sum
Utilities and Execute Max-Sum” (see Fig. 7.1). This module allows robots to
cooperate; i.e. to determine the actions the team should take in order to maxi-
mize a given utility function UI(·) subject to constraints from (7.1). To achieve
cooperation between multiple robots we propose in this chapter the use of DCOP
techniques.

A number of DCOP techniques have been proposed in past years (Leite et al.,
2014). We can dichotomize such techniques between complete algorithms, which
generate an optimal solution, and approximate algorithms, which generate an
approximate solution.

Complete DCOPs. Complete algorithms are well exemplified by
ADOPT (Modi et al., 2005) and DPOP (Petcu and Faltings, 2005). Now, while
these algorithms represent significant contributions in their own domain, they
do not address many of challenges that are present in autonomous robotic
systems. In particular, optimality implies that some aspect of these algorithms
scales exponentially, which compromises a real time implementation of the
system.

In fact, first, before considering max-sum, we employed ADOPT within a

7.3. Distributed Constraint Optimization: Max-Sum 101

multi-robot path planning algorithm. This was motivated by ADOPT optimality
guarantees. The proposed algorithm, together with an analysis of ADOPT per-
formance can be found in Appendix B. In Appendix B we conclude that ADOPT
is not suited for real time applications that involve a large number of cooperative
robots. Therefore, we investigated further DCOP algorithms. Specifically, we
focused on an approximate DCOP: max-sum.

Max-sum. Max-sum, in contrast to another approximate algorithms like
e.g. (Zhang et al., 2003), makes efficient use of the computational and commu-
nication resources. In addition, it offers approximate solutions that are close to
optimal for many applications of interest like e.g. exploration, or tracking (Stran-
ders et al., 2010). Next we explain max-sum in detail.

Let us consider a team of N robots, where each robot can control a decision

variable di that can take values from domain Ci = {C[1]
i , C[2]

i , ..., C[ki]
i } that denotes

ki sets of potential measurement locations that robot i could visit. We denote
the set of variables for which we aim to solve the optimization problem as D =
{d1, d2, ..., dN}. The goal of the robots is to minimize a global utility function
U(A), where A denotes a possible assignment for the variables. For example, for
a team of three robots with identical domain size ki = 4, a possible assignment

for the variables could be A : {d1 : C[1]
1 ; d2 : C[4]

2 ; d3 : C[1]
3 }.

In max-sum, each robot interacts locally with its neighboring robots such
that the utility of an individual robot, Ui(d̄i), is dependent on d̄i, which denotes
di and the decision variables of neighboring robots. We remark that max-sum
does not assume any structure of Ui(·), and does not require Ui(·) to be known
by other robots. Within this setting, we wish to find the optimal assignment of
paths A∗ such that social welfare of the whole system (i.e. maximising the sum
of the utilities of each individual robot) is maximised:

A∗ = argmax
A

N∑
i=1

Ui(d̄i). (7.2)

Max-sum formulates this assignment problem as a factor graph (Kschischang
et al., 2001). A factor graph is a bi-partite graph where there are two sets of
nodes: variables and utilities. Edges in this graph represent the dependencies
of utilities on variables. For instance, the factor graph in Fig. 7.2 represents
U(d1, d2, d3) if it can be expressed as:

U(D) = U1(d1, d3) + U2(d2, d3) + U3(d1, d2, d3), (7.3)

where d̄1 = {d1, d3}, d̄2 = {d2, d3} and d̄3 = {d1, d2, d3}.

102 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

Robot 1 Robot 3 Robot 2

Figure 7.2: A factor graph representing a utility function that can be decomposed
as in (7.3).

Message passing on factor graphs. Max-sum is a message passing algo-
rithm on factor graphs. Messages are passed along the edges of the factor graph
in order to determine the variable values that maximise U(·). We distinguish
between two types of messages:

• Function to variable message. It encodes the maximum value of utility
function Ui for each possible value of dj .

• Variable to function message. It encodes the maximum utility of the neigh-
boring utility nodes for each possible value of dj .

In particular, the message passed from Ui to dj , ri→j , is defined as:

ri→j(dj) = max
d̄i\di

Ui

(
d̄i
)

+
∑

j′∈adj(i)\j

qj′→i(dj′)

 , (7.4)

where the adj operation is the set of adjacent nodes, and qj′→i is the message
going from variable j′ to function i, defined as follows:

qj→i(dj) = αji +
∑

i′∈adj(j)\i

ri′→j(dj), (7.5)

where αji is a normalisation constant to ensure that the sum of outgoing messages
is zero.

Provided the definitions of ri→j and qj→i messages we can now summarize
the execution of max-sum algorithm.

Max-sum execution. First, each of the robots arbitrarily initializes message
qj→i and sends it to its adjacent function nodes. This triggers an exchange of
messages between variable and utility function nodes. The messages exchange

7.4. Information Metric 103

will continue until message values converge, or after an user-defined number of
iterations. Next, each of the robots evaluates the marginal function of variable
dj :

zj(dj) =
∑

i∈adj(j)

ri→j(dj). (7.6)

Then, by simply finding argmaxdjzj(dj), each individual robot i is able to deter-

mine which C[i′]
i it should visit such that U(·) is maximized.

The max-sum algorithm exploits the fact that the factor graph is often not
fully connected; i.e. the influence of a robot only exists within a local area.
In cases where the factor graph is acyclic, the max-sum algorithm delivers an
exact solution. Otherwise, if the factor graph is cyclic (as in e.g. Fig. 7.2), max-
sum has been empirically shown to converge to an approximation of the exact
solution (Farinelli et al., 2008).

In this chapter the utility function U(·), which we aim to maximize with
max-sum, corresponds to an information metric subject to constraints. Next we
discuss and motivate our specific choice of the information metric.

7.4 Information Metric

A key aspect in active sensing, and information gathering in particular, consists
of deciding where to move next in order to obtain a better representation of a
process of interest (see Figure 7.3). Several information metrics have been pro-
posed in the literature for active sensing (see Sec. 3.2). Specifically, in previous
chapters we employed entropy and mean entropy as information metric. In this
chapter we extend the range of information metrics considered, and analyze the
use of MI for information gathering. For a more thorough analysis of the prop-
erties of the individual metrics analyzed in this section we refer the reader to
Section 2.3 and (Cover and Thomas, 2012).

Here we compare information metrics in the context of GPs based on two
properties that are fundamental for information gathering. These two properties
are:

• monotonicity with the number p of potential measurement locations X∗.
That is, we are interested in information metrics that yield a higher value
as we consider a higher p. This is the so-called “information never hurts”
principle; and

• submodularity respect to p. In short, a submodular information metric
offers diminishing returns as we increase p. This justifies the use of finite
horizon approaches (as we do in this thesis), as the amount of information

104 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

X* X*

X

Figure 7.3: Graphical representation of the notation employed in this chapter.
We depict an scenario in which a robot i (colored red) aims to explore a process
(in the background) in an environment populated with obstacles (colored black).
Orange stars correspond to measurements that were previously gathered by the
robot at positions X. White stars are potential measurements locations X∗. As
in this chapter we consider a path planning mechanism, X∗ belong to potential

paths P [1]
i , P [2]

i that could be traversed by the robot. Information metrics are
utilized here to quantify the informativeness of potential paths. In addition, we
also represent VXfree , together with associated grid cells, which are needed to
compute some metrics.

obtained by increasing p becomes irrelevant from a certain value of p. For
a detailed overview of submodularity applications in the context of GPs,
we refer the reader to (Krause and Guestrin, 2011).

We analyze three information metrics that we employ in this thesis, as
well as they have been employed in recent works such as (Stranders et al.,
2009; Krause et al., 2008). These metrics are: (i) Differential Entropy, (ii)
Mutual Information Non− Measured, and (iii) Mutual Information All. In
the following we describe each of them in detail.

7.4.1 Differential Entropy

We denote differential entropy of a process given by random variable YX∗ , defined
at X∗, as H(YX∗ |X), with X the location of measurements gathered by the robot
up to now. H(YX∗ |X) can be calculated with (2.21). A property of differential
entropy that is highly relevant for information gathering is its non-monotonicity
with p. That is, considering longer paths, which implies a higher p, could result

7.4. Information Metric 105

in a lower differential entropy. Note also that entropy is not submodular (Cover
and Thomas, 2012).

7.4.2 Mutual Information Non-Measured

We define Mutual Information Non-Measured as the mutual information be-
tween:

• a random variable YX∗ ; and

• a random variable YVXfree\X,X∗ that represents the physical process at

VXfree that would remain unmeasured after visiting X∗.

We would like to clarify that we employ here VXfree instead of Xfree because
MI for GPs must be evaluated at a set of discrete locations (see Section 2.3).
Therefore, to calculate MI we discretize Xfree by overlaying a lattice graph with
vertices VXfree (see Section 2.2.1). Also note that, for x ∈ X,X∗ and x′ ∈ VXfree ,
we assume that x = x′ if x lies within the cell associated to x′ (see Figure 7.3).

For example, to calculate VXfree \X,X∗ for P [1]
i we would discard all x′ ∈ VXfree

where there is an orange star or a white star that belongs to P [1]
i .

Mutual Information Non-Measured is given by: I(YVXfree\X,X∗ ;YX∗ |X) =

H(YX∗ |X)−H(YX∗ |X, YVXfree\X,X∗), which can be calculated with (2.21). This

expression has a clear interpretation for information gathering: we aim to
sample at locations X∗ that yield a maximum inter-dependence with process
YVXfree\X,X∗ , defined at all positions in the environment that will remain un-

measured.

Mutual Information Non-Measured was first proposed by Krause et al.
(2008). It is submodular, which permits deriving theoretical guarantees for in-
formation gathering with GPs for robots that perform a greedy exploration, as
it was shown in (Krause et al., 2008). However, the aforementioned definition of
mutual information is not monotonic as we increase p, as pointed out in (Krause
et al., 2008). Thus longer paths may result in a lower value of the information
metric.

7.4.3 Mutual Information All

In this chapter we propose an alternative use of mutual informa-
tion – Mutual Information All – that is monotonic and submodular.
Mutual Information All calculates the MI between:

• a random variable YX∗ ; and

106 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

• a random variable YVXfree .

Mutual Information All is given by the following expression:

I(YVXfree ;YX∗ |X) = H(YX∗ |X)−H(YX∗ |X,VXfree), (7.7)

which can be calculated with (2.21). This definition is submodular, as well as
monotonic with p.

7.4.4 Choice of Information Metric

We have discussed about monotonicity and submodularity of three information
metrics. In order to illustrate these two properties we carried out a simple sim-
ulation. Specifically, we considered a one-dimensional space VXfree that consists
of 90 equally separated positions. Then we assumed that a robot already took
ten measurements, drawn from a GP at positions X randomly selected from
VXfree . For this setup, we evaluated the afore-described information metrics as
we increase p (illustrating longer planing horizons). That is, we randomly se-
lected from VXfree a number of potential measurements positions, which is given
by X∗. Results from this experiment are depicted in Figure 7.4, where each dot
corresponds to a realization of the experiment. From Figure 7.4 we can draw the
following conclusions:

Differential entropy. Differential Entropy is non-monotonic, which goes
against the principle of “information never hurts”. Non-monotonocity is a
property that is particularly undesirable for algorithms that aim to plan over
an horizon longer than one step, as it is the case in (7.1). Nevertheless,
Differential Entropy is the metric, from the three considered, that offers the
lowest computational complexity (see Table 2.1). According to the two charac-
teristics – non-monotonicity and low computational complexity compared to MI
– we can argue about the use of entropy as information metric.

For example, in Chapter 5 we employed entropy as information metric al-
though our goal was to plan over a long horizon. This was essentially motivated
by the need of an intensive computation of the information metric. That is, in
Chapter 5 the algorithm requires computing the informativeness of a complete
path from xr for each RRT* node addition. As the number of RRT* nodes is
typically large for complex problems, this led us to use entropy instead of MI
due to entropy’s lower computational complexity. In contrast, in this chapter we
aim to plan over long horizons but we do not need to compute the information
metric that often as in Chapter 5. This led us to use MI here.

7.4. Information Metric 107

10 20 30 40 50 60 70 80 90
Number of potential measurements

−40

−30

−20

−10

0

10

20

In
fo

rm
at

io
n

m
et

ric
va

lu
e

(a) Differential Entropy.

10 20 30 40 50 60 70 80 90
Number of potential measurements

0

5

10

15

20

25

30

35

In
fo

rm
at

io
n

m
et

ric
va

lu
e

(b) Mutual Information Non-
Measured.

10 20 30 40 50 60 70 80 90
Number of potential measurements

0

5

10

15

20

25

30

35

40

45

In
fo

rm
at

io
n

m
et

ric
va

lu
e

(c) Mutual Information All.

Figure 7.4: Evaluation of several information metrics as we increase the
number of potential measurements. (a) Differential Entropy; (b) Mutual

Information Non-Measured; (c) Mutual Information All. Figure 7.4c cor-
responds to our proposed metric.

Mutual information. In addition to entropy, we analyzed two uses of MI:
Mutual Information Non-Measured and Mutual Information All. Mutual

Information Non-Measured is monotonic in the first part of the curve, which is
an important property. However, it does not allow us to plan over a long horizon,
which could be a requirement of some applications. In this chapter we proposed
the use of Mutual Information All as information metric to tackle this prob-
lem. In contrast to Mutual Information Non-Measured, Mutual Information

All is monotonic, which is an ideal choice for information gathering purposes.
Also, we would like to point out that MI is a computationally expensive metric,
even if it does not require an intensive computation. However, we alleviate this
issue by proposing some approximations in Section 7.6.

108 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

Robot 1

Robot 2

Robot 3

𝑟𝑟𝑐𝑐
𝑟𝑟𝑐𝑐 − 𝑟𝑟𝑠𝑠

2

Figure 7.5: Illustration of a constraint that we introduce in the RRT to guaran-
tee collision-free paths between robots that cannot directly communicate with
each other. Specifically, we show an example for robots 1,3; where empty cir-
cles correspond to the robots communication range, shaded circles delimit the
robots’s planning area, and black lines represent communication links between
two robots.

7.5 Algorithm Subsystems

7.5.1 Calculate Candidate Paths and Generate Clusters

The first step of the algorithm is the computation of a set of feasible paths
given xri and fm(·). This is realized with the RRT algorithm (Alg. 2.1). In
particular, we introduce a constraint in the RRT that guarantees collision-free
paths between robots that cannot directly communicate with each other. We
realize this by limiting the RRT planning horizon to a maximum distance of
(rc − rs)/2 (see Figure 7.5).

Let us denote the set of paths generated by robot i with RRT as Pi,rrt. Ideally,
we would like robots to exchange Pi,rrt, and calculate Pi ∈ Pi,rrt that solves (7.1).
However, as we pointed out in Sec. 7.2, this would translate in evaluating multiple
combinations of paths, which is computationally intractable. Therefore, inspired
by (Stranders et al., 2010), we introduce the concept of spatio-temporal clusters.

Spatio-temporal clusters. Spatio-temporal clusters give us flexibility to
adapt our algorithm to the robot’s computational capabilities: as we increase
the number of spatial and temporal divisions, we get closer to the actual RRT.
However, clusters may lead to a lose of performance when optimizing U(·), since
robots mask several paths into a cluster during the cooperation procedure. Nev-
ertheless, we demonstrate in Section 7.7.4 that performance decrease is negligible

7.5. Algorithm Subsystems 109

150 200 250 300 350 400
x [m]

100

150

200

250

300

350
y

[m
]

(a) Tree. 150 200 250 300 350 400
x [m]

100

150

200

250

300

350

y
[m

]

(b) Clusters.

Figure 7.6: Spatio-temporal clustering. On the left hand side we depict an RRT.
On the right hand side we depict the clusters calculated with our proposed clus-
tering procedure for the RRT. Specifically, we considered one temporal horizon
and three spatial clusters; i.e. kt = 1, ks = 3, respectively. Each of the colors
represent a spatio-temporal cluster.

for a sufficiently large number of clusters (approx. 20 clusters for our setup).

Next we explain the clustering procedure in detail. First, we define kt tem-
poral horizons. Temporal horizons represent time spans of a path. For example,
a path that needs 5s to be traversed by a robot has a temporal horizon of 5s.
For each of the temporal horizons, we extract the corresponding paths from the
RRT. Then, we group paths of equal temporal horizon into ks spatial clusters.
This last step is realized running the k-means technique (MacQueen et al., 1967)
over the complete paths. K-means requires a definition of state. In this work, we
define a k-means state as a state that represents a complete path. This implies
that a k-means state has a number of dimensions equal to the length of the path
– number of waypoints the path contains – times ds. It is important to remark
that an RRT node could be part of different clusters, as we depict in Figure 7.6.

The clustering procedure is executed by each of the robots individually,
yielding kt × ks clusters. Let us denote the clusters of robot i by Ci ={
C

[1]
i , C

[2]
i , ..., C

[ktks]
i

}
, with C

[j]
i ⊂ Pi,rrt.

7.5.2 Search Neighbors and Exchange Domains

Robots move as they explore the process of interest, which results in a variation
of the network topology. Therefore, we introduce a neighbors search mechanism.
Robots realize this by sending an identification message with its ID. Robots that
receive the identification message add the corresponding robot’s ID to its set
of neighbors. Then robots send Ci to their neighbors. The set of Cj received
by a robot, including its own one, is denoted as a robot’s domain d̄i, which

110 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

is the element with which robots cooperate. Next, we explain the multi-robot
cooperation procedure in detail.

7.5.3 Calculate Robot Utilities and Execute Max-Sum

Once robots exchange domains, they execute a cooperation algorithm – max-
sum – to perform an assignment of clusters that solves (7.1). Specifically, robots

cooperate to find the individual assignment di : C
[i′]
i ∈ Ci that each robot should

select in order to maximize a global utility function U(·). Here we define U(·) so
that it consists of two terms:

• an information gathering term, denoted as UI(·), which measures the in-
formativeness of a particular assignment of clusters; and

• a constraint satisfaction term, denoted as UC(·), which takes a positive
high value if problems constraints are not met.

The combination of these terms yields our proposed utility function:

U(D,X) = UI(D,X)− UC(D), (7.8)

with D = {d1, d2, ..., dN}.
Let us next describe UI(·), UC(·) in more detail.

Information gathering utility. We define UI(·) as the MI between YVXfree ,

and a joint assignment of clusters D, conditioned on X. This corresponds to
Mutual Information All, described in Section 7.4.3, and is given by the fol-
lowing expression: UI(·) = I(YVXfree , Yd1 , Yd2 , ..., YdN |X), with Ydi a GPs that

represents y(x) for all x ∈ di.
Our goal is to solve UI(·) in a decentralized fashion with max-sum. To

this end we map our problem to (7.2), and express UI(·) as a sum of functions
that are associated to each individual robot. By applying the chain rule for
MI, and decomposing I(YVXfree , Yd1 , Yd2 , ..., YdN |X) as a difference of conditional

entropies, we can express UI(·) as:

UI(D,X) = I(YVXfree , Yd1 , Yd2 , ..., YdN |X)

=
N∑
i=1

I(YVXfree , Ydi |Ydi+1
, ..., YdN ,X)

=

N∑
i=1

H(Ydi |Ydi+1, ..., YdN ,X)−

−H(Ydi |Ydi+1
, ..., YdN ,X, YVXfree), (7.9)

7.5. Algorithm Subsystems 111

where conditional entropies of random variables that are GPs can be easily cal-
culated with (2.21).

Locality assumption. We decomposed in (7.9) a global MI as a sum of MI
of individual robots. However, this formulation, as robots only have information
about their neighbors, cannot be directly applied for a system that relies on local
communication between robots. We solve this issue by applying the principle of
locality (Stranders et al., 2009; Ouyang et al., 2014). This allows us to assume
that two random variables Ydi , Ydl are uncorrelated if they correspond to two
robots i, l that are not in direct communication. Let us clarify that the locality
assumption holds for a large class of applications; e.g. in this chapter’s motivat-
ing problem of mapping a wind field. In this case, the structures (thermals) are
only a few hundred meters in size, and the characteristic length-scales tend to
be shorter. In contrast, the robots communications distances tend to be in the
order of kilometers due to practical considerations.

By considering the locality assumption we can now formulate (7.8) as:

U(D,X) =

N∑
i=1

H(Ydi |YN (di;i+1:N),X)−

−H(Ydi |YN (di;i+1:N),X, YVXfree)− UC(di,N (di)), (7.10)

where N (di;i+1:N) denotes assignment variables associated to neighbors of robot
i with a higher ID, and N (di) denotes assignment variables that are associated
to neighbors of the i-th robot.

Constraint satisfaction utility. The role of UC(·) is to satisfy that problem
specific constraints are not violated. To this end, we set UC(·) = 0 if robots are
in a configuration that is far from violating the constraints. Otherwise, we set
UC(·) to a value that increases within a “scape” distance re as robots get closer
to a configuration where constraints could be violated (see Figure 7.7).

This definition of re allows robots to avoid states that may result in a future
violation of constraints. For example, two robots could plan paths that lead
them to a configuration where, due to robots’ kinematic constraints, robots can
not move without colliding. Such situation is alleviated with re, as robots would
try to avoid such blockades.

We described the general approach that we propose to account for prob-
lem specific constraints. Next let us particularize UC(·) to satisfy constraints
from (7.1). Specifically, in this chapter we account for the following constraints:

1. Inter-robot collision avoidance: it penalizes robots that are separated a
distance smaller than rs + re.

112 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

Collision
avoidance

Communication
constraint No constraint

𝑟𝑟𝑠𝑠 𝑟𝑟𝑐𝑐

“Scape”
distance

“Scape”
distance

0 Inter-robot
distance

UC

∞

Figure 7.7: Graphical illustration of UC(·).

2. Periodic network connectivity : it penalizes robots configurations that could
lead to a disconnected network at t+ kcdt; i.e. at the end of robots’ paths.

The last constraint can be incorporated into our scheme by separating it in
two sub-constraints. First, we add a constraint that penalizes robots whenever
the complete team does not choose a path of equal length kc; i.e. a common tem-
poral horizon. Second, we add a constraint that penalizes network configurations
at t+kcdt that result in a disconnection. As robots rely on local communication,
it is not trivial to check network connectivity (Michael et al., 2009). Therefore,
as in (Gan et al., 2014), we guarantee connectivity by forcing robots to form
a minimal topology – chain topology. That is, we encourage robots to be at
least connected to their peers that have an immediate lower and higher ID. This
way, we can solve the communication constraint only with local communication.
We would like to remark that more complex mechanisms like eg. (Yang et al.,
2010; Michael et al., 2009) could be introduced in the cooperation procedure to
guarantee network connectivity, but it is left for future work.

Path selection. We explained how we optimize U(·) in a decentralized fash-
ion with max-sum. For our specific formulation max-sum outputs, for each
robot, an optimal cluster d∗i ∈ Ci, which englobes multiple paths. Therefore,
robots must select a path to follow from d∗i . This is done by calculating the
MI between YVXfree , and a random variable YPi that represents all possible path

assignations within the selected cluster, with Pi ∈ d∗i . We condition MI on

the knowledge about the selection of clusters
{
d∗j

}
j∈Ni

of neighboring robots

Ni, and previously gathered measurements X. This yields the following MI:

I(YVXfree , YPi |
{
d∗j

}
j∈Ni

,X). Let us remark that this procedure is done by each

of the robots independently.

7.6. Computational Complexity 113

7.5.4 Follow Path and Collect Measurements

The output of the cooperation stage is a path Pi. Then robots follow Pi, and
collect measurements along it. Robots add measurements values to z, and mea-
surements positions to X.

7.5.5 Exchange Measurements (Data Fusion)

Data fusion allows robots to have a common understanding about the process of
interest. In this thesis we focus on multi-robot cooperation/coordination strate-
gies, and consider decentralized data fusion out of the scope of this work. There-
fore, we implement a simple flooding algorithm to carry out the data fusion. It
works as follows. First, robots broadcast z,X to their neighbors. Second, once
a robot receives measurements it will broadcast those new measurements again,
but only if this is the first time that they were received. This will continue till
all robots have received measurements of the complete team.

We would like to remark at this point that the data fusion subsystem is the
only subsystem that employs a broadcast to distribute information. Except the
data fusion subsystem, the rest of the algorithm runs in a fully decentralized
fashion with local inter-robot communication. Nevertheless, decentralized data
fusion approaches like e.g. (Chen et al., 2012) could be considered to obtain a
fully decentralized system.

7.5.6 Update GPs Model

The last step of the algorithm is an update of the GPs model with the new mea-
surements. This is done by each of the robots individually by optimizing (2.5).
Notice that the larger the number of measurements, the better the model, and
the better our utility function will guide robots to perform an efficient explo-
ration. For a detailed analysis of the GPs model update, we refer the reader to
the GPs hyperparameters analysis performed in Figures 5.8 and 6.8.

7.6 Computational Complexity

In this section, we carry out an study of the computational complexity of the
proposed algorithm. For this study, we build on some of the computational com-
plexity results introduced in Chapter 2. We divide this study in three variants
of the algorithm in order to highlight different aspects of the approach:

• NoCluster. This corresponds to the algorithm described in Section 7.5,
but without considering the clustering method. That is, we consider there
are as many clusters as paths resulting from the RRT for all time horizons

114 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

(that is, as nodes in the RRT), where each cluster has a single path. This
allows us to highlight the complexity in terms of the number of collected
measurements, and total number of robots.

• Cluster. This is the algorithm described in Section 7.5. Here we highlight
complexity reduction that results by introducing a clustering method.

• ClusterSimplified. This corresponds to algorithm described in Sec-
tion 7.5 plus additional techniques that reduce the computational com-
plexity. These techniques: are kd-trees, sparse GPs (Quiñonero-Candela
and Rasmussen, 2005), and the principle of locality (Guestrin et al., 2005).
Let us remark that the last two techniques discussed in this point (sparse
GPs, and principle of locality) are approximations that do not yield exact
solutions. Nevertheless, these techniques have been shown to work well in
practice in a large domain of problems as discussed in (Quiñonero-Candela
and Rasmussen, 2005; Guestrin et al., 2005).

Next we analyze the worst-case computational complexity for the three afore-
mentioned algorithm variants.

7.6.1 NoCluster

The NoCluster variant has three main components that define the algorithm’s
computational complexity: (i) RRT planner, (ii) calculation of max-sum utilities,
and (iii) update of the GPs model.

• The complexity of RRT is given by O(Np logNp), with Np the number of
RRT planner iterations (LaValle and Kuffner, 2001).

• The complexity of max-sum is determined first by the calculation of
H(Ydi |YN (di;i+1:N),X, YVXfree) in (7.10). The complexity of this calcula-

tion is determined by that of the GPs regression, which is cubic on the
total number of elements m contained in N (di;i+1:N), X and Xfree (Ta-
ble 2.1). Since a robot calculates the utility of each combination of clusters
(in this case, equal to the number of samples in the RRT), the overall com-

plexity of max-sum is O(m3N
|NC |
p), with |NC | the number of elements of

NC , N (di;i+1:N) (proportional to the number of neighboring robots).

• The last component is the update of the GPs model in (2.5). This is given
by O(n3iG), where n is the total number of gathered measurements, and
iG is a user-defined parameter that sets the number of iterations we allow
the optimizer to calculate the GPs hyperparameters.

7.6. Computational Complexity 115

The complexity of the NoCluster variant is thus determined by the calcula-
tion of max-sum utilities, as Np is typically larger than n. The benefit of using
a decentralized approach such as max-sum is illustrated by noticing that the
complexity scales with the number of neighbors, and not with N . However, it
is clearly influenced by Np, which is typically large for robots with complex dy-
namics, or environments with multiple obstacles. Therefore, in order to reduce
the algorithm’s computational complexity we proposed in this chapter a concept
of clustering.

7.6.2 Cluster

In the Cluster variant, the RRT structure is exploited to group Np nodes in
ks × kt clusters. This yields a max-sum complexity of O(m3(kskt)

|NC |). The
complexity is thus now dependent on the total number of clusters, which is typ-
ically much smaller than Np due to the tree structure (as shown in Figure 7.6).
Of course, the clustering method adds additional complexity to the algorithm.
However, this is residual compared to the reduction obtained in max-sum. Specif-
ically, the clustering method corresponds to k-means Lloyd’s algorithm (Lloyd,
1982), which, for our specific problem, has a running time of O(Npksktdcic), with
dc the maximum number of dimensions of a k-means state, and ic the number
of iterations of Lloyd’s algorithm. Let us remark that dc is the largest temporal
horizon of the clustering method times ds.

The complexity reduction of the Cluster variant is vital for an online algo-
rithm. However, it could not be sufficient for an exploration algorithm that must
run in real time and cover large areas. Specifically, the Cluster variant faces
two main problems: (i) the complexity increase of GPs regression in max-sum
that results as m grows, and (ii) the complexity increase in the update of GPs
that results as n grows.

7.6.3 ClusterSimplified

In order to alleviate the two aforementioned problems we propose a solution
that we term ClusterSimplified. On the one hand, we exploit the principle
of locality to reduce the complexity, assuming that x,x′ that are far apart are
uncorrelated, and therefore do not need to be considered to carry out regression.
In particular, in this work we assume that x,x′ are far if the evaluation of the
covariance function results in a value that is ten times smaller than the noise
level. Let us point out that this is a reasonable assumption as in this thesis we
consider sensors with a negligible noise level. In order to efficiently search for
locations that are correlated, we structure the data in a kd-tree.

The complexity of GPs regression is further alleviated by employing sparse

116 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

NoCluster Cluster ClusterSimplified

Path planner O(Np logNp) O(Np logNp) O(Np logNp)
Clustering method - O(Npksktdcic) O(Npksktdcic)

Max-sum O(m3N
|NC |
p) O(m3(kskt)

|NC |) O(m3
s(kskt)

|NC |)
Updating GPs O(n3iG) O(n3iG) O(n3

siG)

Table 7.1: Evaluation of algorithm’s complexity. For clarification, let us add
that typically ms << m, kskt << Np, and ns << n.

GPs (Quiñonero-Candela and Rasmussen, 2005). Specifically, we use the FITC
method, with inducing points selected randomly from the set of potential mea-
surements. For more detail on the FITC method we refer the reader to the
original paper (Quiñonero-Candela and Rasmussen, 2005). Since the number of
inducing points is typically set to be much smaller than the number of poten-
tial measurements, sparse GPs incur into an enormous reduction of complex-
ity (Quiñonero-Candela and Rasmussen, 2005).

7.6.4 Summary

To finalize, we summarize in Table 7.1 the complexity of the three algorithm vari-
ants that we proposed in this section. Let us point out that ms, ns in Table 7.1
are the number of potential measurements, and actual measurements, respec-
tively, which result after applying sparse GPs and locality approximations.

Motivated by a lower computational complexity and a similar performance,
compared to other alternatives, we decided to employ ClusterSimplified in
our simulations and experiments.

7.7 Simulations and Discussion of Results

7.7.1 Simulations Setup

7.7.1.1 Process to Explore: Two-Dimensional Wind Field

We first validate our algorithm in simulations for the following application: multi-
robot exploration of the vertical component of a wind field (see Figure 7.8a1).
This is a first step towards performing autonomous soaring of multiple gliders
in a distributed fashion. Since gliders use the wind energy to fly, estimating the
position of thermals can be used to exploit them to gain energy (Chung et al.,

1By Dake (Self-made illustration) [CC BY 2.5 (http://creativecommons.org/licenses/by/2.5)],
via Wikimedia Commons.

7.7. Simulations and Discussion of Results 117

(a) Thermal.

0 100 200 300 400 500
x [m]

0

100

200

300

400

500

y
[m

]

−0.72

−0.36

0.00

0.36

0.72

1.08

1.44

1.80

2.16

2.52

w
in

d
s
p

e
e

d
[m

/s
]

(b) Wind field.

Figure 7.8: Illustration of a thermal (7.8a) and the two dimensional wind field
to be explored (7.8b).

2014) and, therefore, would allow us to explore larger environments than, for
example, with quadcopters.

The wind field is simulated using the model proposed by (Allen, 2006).
(Allen, 2006) is an statistical model that characterizes updrafts, and was de-
veloped from data gathered by balloon and surface measurements. In addition,
like in (Lawrance and Sukkarieh, 2011), we added a sinusoidal component in
both x and y directions to increase the complexity of the information gathering
task. Figure 7.8b shows the wind field to be explored. This corresponds to a
500× 500 m2 two dimensional slice at 300 m of a three dimensional wind field.

7.7.1.2 Robot Model: Simplified Aircraft

We employ a simplified aircraft model similar to the ones used by Renzaglia
et al. (2016); Owen et al. (2015). We made further simplifications to adapt it
to a two-dimensional environment, and assumed that the wind field does not
affect the aircraft’s motion. These simplifications are still far from a realistic
model. However, they allow us to demonstrate the effectiveness of the proposed
exploration approach. In the future, we aim to consider more realistic models of
the aircraft’s dynamics, as for instance in (Doo-Hyun et al., 2016).

Given these assumptions, our model is defined by the following equations:

x(t+ dt) = x(t) + Vin(t)dt (7.11)

ψ(t+ dt) = ψ(t) + ψ̇(t)dt, (7.12)

with x(t) the aircraft’s position, Vin(t) the aircraft’s inertial velocity, and ψ the
heading angle. For airspeed V , commanded flight path angle θ, and commanded

118 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

bank angle φ the components of the velocity Vin(t) and ψ̇(t) are given by:

vx = V cos θ cosψ (7.13)

vy = V cos θ sinψ (7.14)

ψ̇ =
g

V
tan(φ). (7.15)

Let us point out that the aircraft is fully controlled by the commanded bank angle
φ, and flight path angle θ. For the simulations we assumed an aircraft defined
by the following parameters: dt = 0.5 s, V = 15 ms−1, g = 9.8 ms−2, θ = 0
(constant height), φ ∈ [−π/5, π/5] rad.

7.7.1.3 Algorithm Parameters

We consider a fleet of four robots – aircrafts – to explore the wind field. The
aircrafts’ motion can be approximated by the model described in Section 7.7.1.2.
We define a communication range rc = 200 m, a safety distance rs = 10 m, and
a scape distance re = 20 m. For the simulations we run RRT for Np = 1000
iterations, and max-sum for 5 seconds. The stopping criteria for both RRT and
max-sum were set according to prior experience to guarantee that a solution
is found. We consider four temporal horizons at 2, 5, 7, 10 s, and three spatial
divisions. This makes 12 clusters in total for each robot.

We run Monte Carlo simulations to test our approach for systems of one, two,
three and four robots. The initial position of the robots is fixed, and it is 250 m
at the y direction, and 100, 200, 300, 400 m at the x direction for robot 1, 2, 3, 4,
respectively. For each of the algorithms we average over 100 simulations runs.
The algorithm is implemented in Python, and we use ROS (Quigley et al., 2009)
to simulate the algorithm in a decentralized fashion.

7.7.2 Analysis of the Exploration Strategy

First we evaluate the performance of our proposed algorithm for an information
gathering task that is subject to any constraints from (7.1). This implies that
robots run our algorithm with UC(·) = 0. This algorithm variant we term it
“SBMRE Alg. No Constraints”. With this study we aim to proof the following
two hypothesis:

1. The proposed cooperation procedure, which builds on MI as information
metric and max-sum as decentralized cooperation technique, outperforms
a benchmark algorithm.

2. Our proposed algorithm scales super-linearly as we increase the number
of robots in the system. That is, as the number of robots increases the
performance gap between a benchmark and our algorithm grows.

7.7. Simulations and Discussion of Results 119

1 2 3 4
Number of Robots

0

10

20

30

40

50

60

70

80

90

100

R
M

S
E
 R

e
d
u
ct

io
n
 [

%
]

Random Walk

SBMRE Alg. - No Constraints

Figure 7.9: RMSE reduction during an exploration task as we increase the num-
ber of robots in the system. We benchmark our proposed algorithm (without
constraints) against a random walk.

To the best of our knowledge there are no algorithms in the literature that
solve (7.1); also without constraints (see Chapter 3). Therefore we selected a
random walk as benchmark. A random walk implies that robots move inde-
pendently following a random path, constrained by the robot motion, generated
with RRT. The random walk neither aims to meet constraints nor to exchange
measurements with the rest of the team. Let us remark that the random walk
does not perform any data fusion, which implies that each of the robots only has
the measurements taken by themselves. So, in order to obtain a fair comparison
with our algorithm, which fuses data online, we perform a data fusion during
post processing for the random walk benchmark.

Here we study our exploration strategy by evaluating the reduction of the
RMSE, calculated with (4.2), after a 300s exploration run. We compute the
RMSE with respect to a set of points VXfree that correspond to nodes of an
overlaid lattice graph with a spatial resolution of 10 m. We use these points
to compare the difference between our estimate µ∗, which is the result of GPs
regression given z,X, and ground truth yG(XG), with XG := VXfree .

We depict in Figure 7.9 the RMSE reduction for one, two, three and four
robots. First fact that we observe is that our algorithm offers an increase of
performance with respect to a random walk of a 6% with one robot, and increases
up to a 20% with four robots. Next fact is that the gap between our algorithm’s
performance and a random walk increases as we add more robots to the team.
According to results from Figure 7.9 we can confirm our two hypothesis.

120 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

7.7.3 Analysis of the Multi-Robot Coordination Strategy

We demonstrated our algorithm’s cooperation capabilities to gather information.
Next we analyze our algorithm’s coordination capabilities to meet problem spe-
cific constraints from (7.1). Therefore, here we aim to proof two hypothesis,
which correspond to the inter-robot constraints considered in this work. These
are the following:

1. Our algorithm meets the collision avoidance constraint, and outputs collision-
free trajectories.

2. The network connectivity constraint is fulfilled, and our algorithm guaran-
tees a higher connectivity than a random walk benchmark.

7.7.3.1 Collision Avoidance

This section evaluates the collision avoidance capabilities of our algorithm. In
particular, we calculate the percentage of time that the constraint is not met
during all simulation runs. This number ranges between 0.1% and 0.2%. We
obtained this number by calculating the distance between each pair of robots
for each iteration of the algorithm. Let us remark here that a low percentage
is still possible as the scape distance could be violated. In this sense, local
safety measures and obstacle avoidance mechanisms (Alejo et al., 2014) could be
employed to solve such conflicts.

A fundamental feature of our algorithm is that the violation of the collision
avoidance constraint can be detected in advance by evaluating the robot indi-
vidual utility function. In contrast, a random walk has no means to anticipate
a future possible collision without an external collision avoidance system.

7.7.3.2 Network Connectivity

Next we evaluate the fulfillment of the network connectivity constraint. To
this end, we calculate the percentage of iterations in which the network is not
connected at the end of robots’ paths (during max-sum execution) for all simu-
lation runs. This means that there are robots or subsets of robots that cannot
communicate with the rest of the team, and therefore they violate the periodic
connectivity constraint. As pointed out before, non-connectivity is an undesir-
able characteristic for most applications (Hollinger and Singh, 2010; Gan et al.,
2014).

Figure 7.10 shows the network connectivity for our algorithm and a random
walk. Our proposed algorithm achieves a network connectivity that ranges be-
tween 91% and 98%. In contrast, the random walk achieves a connectivity that
ranges between 42% and 60%.

7.7. Simulations and Discussion of Results 121

1 2 3 4
Number of Robots

0

10

20

30

40

50

60

70

80

90

100

N
e
tw

o
rk

 C
o
n
n
e
ct

iv
it

y
 [

%
]

Random Walk

SBMRE Alg.

Figure 7.10: Network connectivity. We depict the percentage of iterations in
which the network fulfills a periodic connectivity constraint.

7.7.4 Analysis of the Clustering Procedure

The evaluation of the exploration and coordination strategies illustrate the ef-
fectiveness of our approach to solve problem (7.1): performing an information
gathering task while fulfilling problem specific constraints. However, we analyzed
the algorithm’s performance for a fixed configuration of parameters. In this sec-
tion we evaluate the algorithm’s sensitivity to changes in parameters values. In
particular, we focus the study on the two most relevant parameters: number of
spatial-temporal clusters, and communication radius. For these two parameters
we analyze: (i) the resulting RMSE between estimation and ground truth after
three iterations of the algorithm, and (ii) the solution feasibility; i.e. how often
the algorithm is able to find a solution that meets the constraints imposed in
problem (7.1).

We carry out the analysis for an environment that measures 1000 × 1000
square meters, with a wind field that is similar to the one shown in Figure 7.8b
but it contains two thermals. For that scenario, we run 5000 Monte Carlo sim-
ulations with randomly chosen parameters. Specifically, the number of clusters
ranges from 1 to 36, and we consider a communication radius of 200, 300, 400,
500 and 2000 meters. Let us also add that we let the max-sum algorithm run
for 180 seconds each algorithm iteration in order to being able to calculate all
utilities for up to 25 clusters.

Figure 7.11 depicts the results of the parameters analysis. The depicted
curves are the result of a quadratic curve fitting done on the original data. This
was done to improve the clarity of the figure. We also include the original data
with the individual curve fittings in Appendix 7.A.

From Figure 7.11 we can extract four main conclusions:

122 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

1. The softer the constraints, i.e. a larger communication radius, the better
the algorithm’s performance both in terms of the RMSE and the solution
feasibility.

2. Our algorithm’s performance increases, i.e. lower RMSE and higher solu-
tion feasibility, as we increase the number of clusters up to approximately
20 clusters. This demonstrates that the larger the number of clusters, the
better we represent the original RRT, which translates into a more efficient
multi-robot cooperation.

3. Our algorithm is scalable with the number of clusters; which implies that
there is no need of employing a very large number of clusters since it will
not lead to a better solution. This property leads to an enormous reduction
of the algorithm’s computational complexity as indicated in Section 7.6.
This is exemplified by the fact that performance of the algorithm remains
approximately constant for a number larger than approximately 20 clus-
ters. This lies on the fact that adding new clusters does not improve the
representability of the original RRT, since clusters start containing paths
that are very similar.

4. Performance of the algorithm decreases if we do not let max-sum algorithm
converge due to insufficient running time. Then, the solution that it out-
puts is suboptimal. This happens as we use more than 25 clusters in this
setup, approximately. This emphasizes the importance of point 3, since
according to Figure 7.11 with a number of clusters equal to approximately
20 we obtain the best performance both in terms of RMSE and solution
feasibility.

This section concludes the analysis of the algorithm in simulations. Next we
present experimental results.

7.8 Experiments and Discussion of Results

In addition to simulations, we carried out a field experiment 2 with flying robots.
Specifically, we performed a simulation with robots in the loop, where we ex-
plored a simulated two-dimensional wind field with quadcopters emulating a
fixed-wing aircraft’s dynamics.

In particular, we aim to proof the following statements:

2A video that shows the experiment execution can be found in: https://vimeo.com/

253607385; https://rebrand.ly/sampl7137.

https://vimeo.com/253607385
https://vimeo.com/253607385
https://rebrand.ly/sampl7137

7.8. Experiments and Discussion of Results 123

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

R
M

S
E

[m
/s

]

rc = 200 m

rc = 300 m

rc = 400 m

rc = 500 m

rc = 2000 m

(a) RMSE.

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100

S
ol

ut
io

n
Fe

as
ib

ili
ty

[%
]

rc = 200 m

rc = 300 m

rc = 400 m

rc = 500 m

rc = 2000 m

(b) Solution Feasibility.

Figure 7.11: Algorithm’s performance as we vary the two most relevant parame-
ters: number of spatial-temporal clusters, and communication radius. For these
two parameters we analyze: (i) in Figure 7.11a the resulting RMSE between
estimation and ground truth after three iterations of the algorithm, and (ii) in
Figure 7.11b the solution feasibility; i.e. how often the algorithm is able to find
a solution that meets the constraints imposed in problem (7.1).

1. the system is able to perform an active sensing, online, according to the
measured values.

2. the algorithm is robust against inaccuracies in robots’ position.

Next we describe in detail the experimental setup and results.

7.8.1 Experimental Setup

We describe in this section the experimental setup employed for this experiment.
First, we describe the wind field model and algorithm parameters. Then, we give
details about the robots we used to perform the exploration. We finalize with a
description of the required hardware components, and system’s infrastructure.

7.8.1.1 Wind field model

We simulated a wind field, instead of measuring an actual field, in order to
simplify the overall experiment. This allows us to abstract ourselves from the
particular sensor characteristics, and evaluate the algorithm’s performance in a
real scenario. As part of the future work, we aim to extend the work proposed
in this thesis to account for a real sensor that measures a wind field.

124 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

(a) Exploration area. (b) Quadcopters during the experiment.

Figure 7.12: Experiment’s environment.

In this paper, the wind field corresponds to a scaled down version of the one
described in Section 7.7.1 (see Figure 7.8). Specifically, we reduced the size of
the environment by a factor 10. This results in a wind field over an area of
50× 50 square meters. For the exploration, we employ the same parameters as
in Section 7.7.1; except dt that we set it to dt = 0.2 to account for a smaller
environment.

7.8.1.2 System architecture

To explore the afore-described wind field, we propose a system architecture that
is composed of the following main elements (see Fig. 7.12): (i) quadcopters
to perform an active sensing of the wind field, (ii) a central computer to run
the core of the algorithm and monitor the system, (iii) a Real-Time Kinematic
navigation for global positioning systems (GPS-RTK) to provide robots position,
and (iv) a communication infrastructure. Next we provide details of each of the
components.

Quadcopters. We use three quadcopters that emulate the dynamics of a sim-
ple fixed-wing aircraft. In particular, we employ (7.12) to plan the quadcopters
trajectories. A trajectory can be represented as a set of waypoints that the quad-
copters can follow using their onboard controllers. This way, quadcopters will
perform a flight path that is close to the one performed by a fixed-wing aircraft.
For the experiments, we let the quadcopters fly at different heights of 8, 12 and
15 meters. Although we included a collision avoidance mechanism into the plan-
ner, inaccuracies in the positioning system could result in unexpected collisions.
Therefore, for safety reasons, we flew at different heights. Let us remark that
quadcopters are not aware of the height at which they fly.

7.8. Experiments and Discussion of Results 125

Figure 7.12b shows one of the quadcopters used for the experiment. Quad-
copters are a modified version of an AscTec Hummingbird from Ascending Tech-
nologies. We equipped them with a Raspberry Pi 2 Model B to perform calcu-
lations onboard. However, the core of the algorithm runs in a central computer
due to the insufficient computational capabilities of a Raspberry Pi.

Central computer. A laptop situated outside the exploration area monitors
the complete system, and runs the core of the algorithm. Specifically, it executes
the algorithm that coordinates robots, and then sends waypoints to quacopters.
Quadcopters will then fly to the commanded waypoints, using the onboard con-
troller that runs in the Raspberry Pi. It is important to remark that the algo-
rithm runs in a distributed fashion where each quadcopter runs in a separate
software module – ROS node.

GPS-RTK. Quadcopters are also equipped with a GPS-RTK (Misra and Enge,
2006). Specifically, we mounted the Piksi 1 modules from Swift Navigation. It
allows us to achieve a sub-meter-level accuracy in the position.

A GPS-RTK system requires a base station to transmit correction data (Misra
and Enge, 2006). The base station receives positioning information from both
the quadcopters and a GPS receiver that is mounted on it. Then it uses that
information to compute correction data that is broadcasted back to the quad-
copters. However, due to hardware issues, the GPS-RTK receiver mounted on
the quad is sometimes not able to calculate the position solution with the highest
precision. This is so-called float solution, which offers an accuracy in the order
of meters. In Section 7.8.2 we discuss these issues, and show that the proposed
algorithm is able to handle uncertainty in quadcopter’s position.

Communication. We need a communication channel to send waypoints that
must be flown by quadcopters, and to transmit correction data from the GPS-
RTK station to quadcopters. To this end, we built two communication channels.
On the one hand, we use a Wifi router to transmit information to quadcopters,
since quadcopters are not equipped with peer-to-peer communication modules.
Based on previous experience, we noticed that range of the Wifi signal extends
only up to 50 meters, which requires a careful placement of the router, given
the size of our exploration area and the quadcopters flying height. We chose
to locate the router in the center of the exploration area to guarantee a correct
communication. On the other hand, Ethernet cables connect peer-to-peer the
laptop, Wifi router, and GPS-RTK base station.

126 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

7.8.2 Experimental Results

Here we show results for the experiment we described in Sec. 7.8.1. Specifically,
we evaluate: (i) the robots’ trajectories, (ii) the process reconstruction and the
remaining uncertainty after the exploration task, and (iii) the RMSE between
the process reconstruction and ground truth. For the last one we compare runs
with one and three quadcopters to highlight the benefits of a multi-robot system.

7.8.2.1 Robots Trajectories

First, we depict in Figure 7.13 the trajectories that quadcopters flew during the
exploration run. Figure 7.13a corresponds to robots’ nominal position. That
is, waypoints that the algorithm commands to quadcopters. We can observe
that the shape of the trajectories resembles those of a simple fixed-wing aircraft.
Moreover, the robots achieve a good coverage of the exploration area. However,
we notice that the bottom right corner of the area was not explored. This was due
to battery life constraints, which caused that robots did not have time to cover
the complete area. We would like to point out that the effective flight battery
life of quadcopters for a system composed of three of them lasts approximately 5
minutes with our current setup. The remaining battery life is employed for take
off, landing, and safety procedures.

On the other hand, Figure 7.13b depicts quadcopters positions as output
from the GPS-RTK system. The trajectories are similar to the nominal ones.
However, we observe inaccuracies in the position solution. For example, we
could concentrate in Figure 7.13b on a large concentration of dots at coordinates
x = 15, y = 45 meters. These dots correspond to a single commanded waypoint
where a quadcopter tries to stay at. This happens during the coordination
step of algorithm when robots negotiate about their next move while staying at
their current position. Ideally, we would like quadcopters to hold their position.
However, this is not possible due to the combined effect of the robot’s controller,
which relies on external sensors to calculate its position, and the GPS-RTK
solution. Both systems have inaccuracies that result in quadcopters flying in
small circles around commanded waypoints. However, let us emphasize that
these inaccuracies in position do not result in a low performance as we will show
next.

7.8.2.2 Wind Field Estimation

Figure 7.14 shows the wind field reconstruction and entropy resulting from mea-
surements gathered during an exploration run. Measurements are obtained at
positions associated to commanded waypoints. Specifically, each quadcopter
measures a wind field component with its simulated sensor once it reaches the

7.8. Experiments and Discussion of Results 127

0 10 20 30 40 50
x[m]

0

10

20

30

40

50
y[

m
]

(a) Nominal position.

0 10 20 30 40 50
x[m]

0

10

20

30

40

50

y[
m

]

(b) Actual position.

Figure 7.13: Nominal position and actual position of the quadcopters during the
exploration task. Each of the three quadcopters is represented with a different
color.

commanded waypoint. We set the accuracy – difference between commanded
waypoint and GPS-RTK positions – to reach a waypoint as 2 meters. Then the
quadcopter stores the measurement together with its current GPS-RTK position.

We illustrate in Figure 7.14a the estimated wind field. It corresponds to the
mean prediction of the GPs at each of the positions of the environment given
the collected measurements. The estimated wind field can be compared to the
ground truth (depicted in Figure 7.8b). First, we observe that estimation and
ground truth are almost identical, and we can easily identify the thermal. This
exemplifies the algorithm robustness to uncertainty in robot’s position. Second,
we notice that the estimation is worse at those areas that were not covered dur-
ing the exploration run; i.e. bottom right corner (also noticeable in Fig. 7.14b).
However, even on that area the algorithm achieves a good reconstruction accu-
racy.

7.8.2.3 Error between Estimate and Ground Truth

We show in Figure 7.15 an evaluation of the RMSE between estimate and ground
truth resulting from the field experiment. We show curves for one and three
robots running the algorithm proposed in this work. As we showed in simula-
tions, the system with three robots achieves a much lower RMSE compared to
one robot. Specifically, three robots achieve a three-fold improvement compared
to one robot. This confirms the benefits, in terms of efficiency, of a multi-robot
system.

128 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

0 10 20 30 40 50
x[m]

0

10

20

30

40

50

y[
m

]

−0.64

−0.32

0.00

0.32

0.64

0.96

1.28

1.60

1.92

2.24

w
in

d
sp

ee
d

[m
/s

]
(a) Process reconstruction.

0 10 20 30 40 50
x[m]

0

10

20

30

40

50

y[
m

]

−4.20

−3.75

−3.30

−2.85

−2.40

−1.95

−1.50

−1.05

−0.60

−0.15

en
tro

py
[b

its
]

(b) Process entropy.

Figure 7.14: Process reconstruction and entropy after performing an exploration
run. Process reconstruction corresponds to mean prediction at each of the posi-
tions, resulting from GPs regression. Process entropy is calculated from variance
output from GPs.

7.9 Summary and Outlook

In this chapter we presented an approach for multi-robot information gather-
ing. It considers GPs as underlying model of the process to explore, information
utilities for active perception, and the max-sum algorithm for multi-robot co-
operation. The approach extends the state of the art by allowing to take into
account the motion constraints of the robots. This is realized through the use
of motion planners able to handle such constraints, such as RRT. Furthermore,
the method is able to handle mission team constraints as well, such as network
connectivity and collision avoidance restrictions. We achieved this by including
additional terms into the utility functions in max-sum. The whole approach is
distributed, not requiring a central entity for processing. All the decision-making
is decentralized, and, in our current implementation, only the data fusion com-
ponent requires a broadcast mechanism at the network level (even though the
system can work if the network connectivity is not fulfilled). As future work, we
will consider decentralized data fusion approaches for GPs, as in (Ouyang et al.,
2014; Chen et al., 2015), for a fully decentralized system.

We validated our approach in simulations for the exploration of a wind field.
We also tested the methods in experiments with real robots in the loop for
the same application. The results show how inter-robot cooperation permits
a more efficient exploration, more evident when the number of robots grow.
Furthermore, the results show how the approach can handle constraints that are
relevant for real scenarios, in particular maintaining the network connectivity in
the fleet.

7.9. Summary and Outlook 129

0 5 10 15 20 25

Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R
M

S
E

[m
/s

]

3 Robots
1 Robot

Figure 7.15: RMSE between estimate and ground truth resulting from a field
experiment that we carried out with one and three quadcopters. Quadcopters
run the algorithm proposed in this work.

There are still a few aspects that should be considered to improve the algo-
rithm’s performance, which constitute venues for future work. We remark that
we do not implement them in this thesis. These are the following:

1. One of the limitations of the presented application is the use of a fixed chain
network topology, which constraints the ability of the fleet to explore. More
dynamic and flexible network topologies would definitely allow for better
information gathering efficiency. Please notice that a fixed chain network
topology is not a restriction of the decision making method itself, but
degrades the overall algorithm’s performance.

2. The vehicle models employed in this work are a simplified version of a
fixed-wing aircraft. We plan to extend those models to full 3D models that
consider also aerodynamic effects, as a next step to apply the approach
for the autonomous soaring of gliders. We will consider exploration in 3D,
and combining the exploration techniques presented with the exploitation
of the wind information for longer endurance of the flight. Exploitation
terms can be easily included into our utility functions.

3. In this chapter, we did not considered the impact of the wind field on the
robots’ paths. That is, we assumed that the robot’s controller is able to
perfectly follow the paths planned by the robots independently of the actual
wind field. As part of the future work, we aim to consider the wind field
into the path planner. Specifically, our goal is to incorporate the prediction
delivered by the GPs to plan paths in areas where the wind field has not
been measured yet.

130 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

4. We proposed the use of RRT to plan the robot’s motion. However, RRT is a
path planning algorithm that outputs a feasible but suboptimal solution. In
contrast, we proposed in Chapter 5 a sampling-based exploration algorithm
that uses RRT* to approach an optimal solution. Therefore, a natural
next step is to fuse algorithms from this chapter and Chapter 5 to obtain
a solution to the multi-robot information gathering problem that is closer
to optimality.

5. We performed an experiment with real robots to demonstrate the capabil-
ities of our proposed algorithm. However we simulated the sensor. Next
step would be for us using a real wind field sensor in order to get closer to
a real-world scenario.

7.A. Appendix - Analysis of Algorithm Parameters 131

7.A Appendix - Analysis of Algorithm Parameters

Original data used to carry out the quadratic curve fitting required for Fig-
ure 7.11. Data is depicted in Figures 7.16 and 7.17. Specifically, we carry out
the curve fitting over the mean for each of the individual number of clusters.
This is possible, since for this data the mean is an statistically relevant parame-
ter as indicated by the small error bars. In blue we show the original data, and
the black line corresponds to the quadratic curve fitted to the data.

132 Chapter 7. Sampling-Based Multi-Robot Constrained Exploration

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

R
M

S
E

[m
/s

]

(a) rc = 200 m.

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

R
M

S
E

[m
/s

]

(b) rc = 300 m.

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

R
M

S
E

[m
/s

]

(c) rc = 400 m.

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580
R

M
S

E
[m

/s
]

(d) rc = 500 m.

0 5 10 15 20 25 30 35 40
Number of clusters

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

R
M

S
E

[m
/s

]

(e) rc = 2000 m.

Figure 7.16: Original data employed to carry out the curve fitting needed for
Figure 7.11a. The dotted lines correspond to the actual curve fitting.

7.A. Appendix - Analysis of Algorithm Parameters 133

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100

S
ol

ut
io

n
Fe

as
ib

ili
ty

[%
]

(a) rc = 200 m.

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100

S
ol

ut
io

n
Fe

as
ib

ili
ty

[%
]

(b) rc = 300 m.

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100

S
ol

ut
io

n
Fe

as
ib

ili
ty

[%
]

(c) rc = 400 m.

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100
S

ol
ut

io
n

Fe
as

ib
ili

ty
[%

]

(d) rc = 500 m.

0 5 10 15 20 25 30 35 40
Number of clusters

86

88

90

92

94

96

98

100

S
ol

ut
io

n
Fe

as
ib

ili
ty

[%
]

(e) rc = 2000 m.

Figure 7.17: Original data employed to carry out the curve fitting needed for
Figure 7.11b. The dotted lines correspond to the actual curve fitting.

Part IV

Conclusion and Future Work

135

137

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Autonomy is one of the major driving forces behind modern robotic exploration.
Especially in situations when the interaction of a human operator with a robot
is difficult or impossible, e.g. in space exploration or search and rescue missions,
it is crucial that a robot is able to make intelligent decisions. Moreover, the use
of multiple cooperative robots enhances autonomy by increasing the system’s
efficiency and robustness.

Motivated by the idea of full robotic autonomy, we developed an autonomous
multi-robot information gathering algorithm. Specifically, we advanced the state-
of-the-art by introducing, to the best of our knowledge, the first multi-robot
exploration algorithm that

1. performs a decentralized multi-robot coordination,

2. plans non-myopically in a continuous space, and

3. handles complex inter-robot constraints, such as collision avoidance and
network connectivity constraints.

Clearly, there existed a gap in the current literature of an algorithm with the
aforementioned features. To our understanding, this gap was due to the absence
of methods that could solve the problem efficiently in real time. We tackled
this issue by introducing approximations and intelligent mechanisms that reduce
the overall computational complexity, without sacrificing performance. This
enables a real time implementation of our system, which we demonstrated in
field experiments with multiple flying robots.

The aforementioned features are crucial for most multi-robot applications, as
they allow us to design systems that are efficient, robust, and can be generalized
to multiple classes of robots. We strongly believe that the algorithm proposed in

139

140 Chapter 8. Conclusion and Future Work

this thesis will enable future robotic applications that require multiple complex
robots. Specifically, we proposed an algorithm that relies on three main elements
that we intertwine and adapt to comply to our thesis objective. These are the
following:

• GPs to model the underlying process of interest,

• action planners to calculate potential robots’ actions, and

• information metrics, which act as decision makers, to select the next robots’
action/s.

These elements were the basis to formulate in Chapter 7 our multi-robot in-
formation gathering algorithm that fulfills this thesis objectives. This algorithm
is the result of multiple previous studies and algorithms, which solved smaller
subproblems of increasing complexity. In particular, we presented a first algo-
rithm in Chapter 4 that was discrete, myopic, and single-robot. Then we evolved
the concept from Chapter 4 in subsequent chapters to formulate an algorithm in
Chapter 7 that is continuous, non-myopic, and multi-robot.

We tested and evaluated the algorithms proposed in this thesis in simulations,
and field experiments with ground based and aerial robots. Results of these
evaluations demonstrated a significant improvement respect to state-of-the-art.

As one can conclude from previous paragraphs, this thesis was a journey,
which tackled a large variety of aspects that are inherent to multi-robot explo-
ration. In particular, we would like to drive the final discussion of our work
around the pros and cons of the following aspects: (i) discrete vs. continuous
planning, (ii) myopic vs. non-myopic planning, (iii) single-robot vs. multi-robot
systems, (iv) centralized vs. decentralized architectures, (v) constrained vs- non-
constrained multi-robot algorithms, and (vi) simulations-based vs. experimental-
based evaluation. Next we discuss each of the aforementioned aspects in detail.

Discrete vs. continuous planning. We extensively discussed in this thesis
the advantages and disadvantages of discrete and continuous action planners.
In short: on the one hand, discrete planners are computationally lighter than
continuous planners in low-dimensional spaces. On the other hand, discrete
planners are not suited to robots with large state spaces, in contrast to continuous
planners.

The latter aspect compromises the generality of discrete planners systems,
as their use is restricted to a small class of robots. Generality of the system is
one of our major objectives, as our vision is that developed algorithms could be
employed for a large variety of information gathering tasks with little algorith-
mic changes. This is particularly relevant for applications like the exploration

8.1. Conclusion 141

of a wind field that we performed in Chapter 7. In Chapter 7 we employed
an aircraft with a four-dimensional state space (more complex systems could be
considered with the developed algorithms). Such a robot motion cannot be in
general planned with a discrete planner due to the high computational complex-
ity. This is only a small example, but a major motivation to extend the discrete
planner algorithms proposed in Chapters 4, 6 in order to incorporate continuous
planners in Chapters 5, 7.

Attending to the previous arguments, it seems obvious to employ continuous
planners to calculate robots actions. However, most algorithms in the multi-
robot literature employ a discrete representation of the action space (see Sec-
tions 3.3, 3.4). From our point of view, this is mainly motivated by the following
fact: the derivation of theoretical bounds is much easier for discrete planners as
the planning graph is fixed during the exploration task. In contrast, continuous
planners generate a new graph each planning step. Sacrificing algorithm’s gen-
erality in favor of theoretical bounds is a dilemma that, from our point of view,
should be addressed for each specific exploration task.

There is another aspect inherent to discrete planners, which is the discretiza-
tion factor. The discretization factor plays a crucial role in the algorithms per-
formance. For example, let us imagine a process that has an, unknown, spatial
correlation of 5 cm. Here, selecting a discretization factor that is larger, e.g. 10
cm, would not allow robots to exploit the process spatial correlation. This would
result in a suboptimal exploration strategy. Most algorithms in the literature
take a hand-tuned discretization factor as input. From our perspective, this fac-
tor should not be an algorithm input, but derived by the algorithm itself. We
strongly believe that this issue should be appropriately addressed by the robotic
information gathering community.

Myopic vs. non-myopic planning. The selection of a myopic or a non-
myopic strategy is a trade-off between performance and computational resources.
On the one hand, myopic approaches are typically light. On the other hand,
non-myopic approaches are typically more complex, but they offer a higher per-
formance compared to myopic ones.

One aspect that is particularly relevant in non-myopic planning is the def-
inition of the planning horizon. In the literature, most approaches employ a
predefined planning horizon that is hand-tuned for an specific problem. In con-
trast, in our work we only specify a range of possible planning horizons, and let
robots select the one that better fits their information gathering objectives.

Another remarkable point that is inherent to the planning horizon is the
increase of the planning computational complexity as the horizon grows. We
identified in the thesis that this is an issue that is not properly addressed in the

142 Chapter 8. Conclusion and Future Work

literature, as most algorithms do not pursue a real time implementation. As one
of our main objectives was to develop algorithms that can run online, we had to
come up with novel ideas to solve this problem. One example of such idea is the
concept of clusters introduced in Chapter 7. This works as follows: we take paths
generated from an RRT planner, and group similar paths into clusters. Then we
perform the multi-robot cooperation by treating those clusters as an unique path.
This way we reduce the number of variables required for multi-robot cooperation,
and, therefore, reduce the algorithm’s computational complexity.

Single-robot vs. multi-robot system. We developed in this thesis both
single-robot and multi-robot systems. Multi-robot systems offer clear advan-
tages in terms of efficiency and robustness, respect to single-robot systems. This
statement was validated in our work with extensive simulations and experiments.

A multi-robot system is by nature more complex than a single robot-system,
as it is composed of a higher number of modules (see Chapter 7). Typically, a
multi-robot system requires the following additional modules respect to its single-
robot counterpart: (i) a communication module for inter-robot communication,
(ii) a module for inter-robot collision avoidance, (iii) a data fusion module to
distribute the data gathered by robots, and (iv) a cooperation module to achieve
multi-robot cooperation.

Each of the aforementioned modules represent a research problem by itself.
Therefore, the design of an information gathering system should take into consid-
eration the trade-off between the benefits of employing multiple robots respect
to the additional effort required to design the system. This issue could be al-
leviated if there were more publicly available software. This way, researchers
could focus on specific modules of a multi-robot system, without the need of
coding each single module from scratch. We strongly believe that the release of
the software under an open source license could advance dramatically the state-
of-the-art in multi-robot exploration. In this respect, we expect to make the
software developed in this thesis publicly available.

Centralized vs. decentralized architecture. We argued in this work that
a decentralized architecture has countless advantages respect to a centralized
architecture, being the robustness against the single-point-of-failure the most
relevant one. Here, we do not focus on the advantages, as they were addressed
in previous chapters, but rather on the open challenges that are associated to a
decentralized architecture.

First, let us comment on the difficulties to deploy a decentralized system.
Decentralized systems typically rely on communication as a mean for cooperation
and coordination. In the market there are few communication systems that are

8.1. Conclusion 143

lightweight to be mounted on a robot, have a sufficient data rate to transmit a
high amount of data, and transmit up to a long range to cover large areas. These
aspects clearly limit the applicability of the algorithms developed and tested in
simulations to real world applications. For example, for the experiment that we
carried out in Chapter 7, we employed WiFi as communication system. WiFi
offers high data rates and antennas are lightweight. However, it has a short
communication range, approximately in the order of 200 m, which limits the size
of the exploration area.

Communication is the pillar of most decentralized exploration algorithms.
However, by examining the literature we noticed that most works do not take
into account the communication cost for the algorithm design. Essentially, state-
of-the-art works focus on the reduction of the algorithm computational complex-
ity. From our point of view, we, as a community, should start considering the
communication aspect more seriously by defining a trade-off between algorithm
complexity and communication cost. This will enable the development of future
decentralized exploration algorithms.

To finalize, we would like to comment about the necessity of a decentralized
ROS system. Although there exist decentralized multi-robot simulators (Nikolai
and Madey, 2009), most roboticists employ ROS in their everyday work. Al-
though ROS nodes are decentralized, ROS is by nature centralized as the roscore
runs in a central machine. This implies that a ROS-based multi-robot system is
technically centralized. From our point of view, we should put additional efforts
to develop a decentralized ROS.

Constrained vs. non-constrained multi-robot algorithms. In Chapter 6
we introduced a first algorithm to handle inter-robot collision avoidance. Then
we extended the algorithm in Chapter 7 to also incorporate network connectivity
constraints.

The analysis of the proposed algorithms helped us to confirm that constraints
typically degrade the algorithm’s exploration performance. This can be ex-
plained by the fact that constraints reduce the exploration problem solution
space. Therefore, as we increase the number of constraints, finding a feasible
solution becomes more difficult.

There are two alternatives to handle inter-robot constraints. First, we can
incorporate constraints into our problem formulation, and solve an exploration
problem that is subject to constraints. This is the alternative that we chose in
Chapters 6, 7. Second, we can separate exploration and constraints handling in
two separate modules, where the last one would act reactively.

The second alternative is typically easier to implement, but it could lead to
more deadlocks, compared to the first alternative, as constraints are not handled

144 Chapter 8. Conclusion and Future Work

in advance. Nevertheless, it would allow robots to explore in situations where
finding a solution to the full problem is costly. Therefore, we strongly believe
that a robotic exploration system should consist on two steps. First, we should
execute an algorithm that solves the full problem. Second, in case no solution
could be found after an user-defined time, we should execute an algorithm to solve
the single exploration problem, and solve constraints reactively. This will allow
us to develop systems that can handle a higher number of complex constraints.

Simulation-based vs. experimental-based evaluation. The majority of
the works in the multi-robot information gathering literature are solely evalu-
ated in simulations. Moreover, most decentralized algorithms are simulated in a
sequential manner in a single thread. That is, robots take actions sequentially,
instead of having a single thread per robot with multiple robots threads running
in parallel. We believe that such a simulation strategy is valid to illustrate the
algorithm’s performance. However, it is not valid to illustrate aspects such as
inter-robot communication or robots asynchrony.

Those aspects could appear as irrelevant, but we noticed during the develop-
ment of our algorithm in Chapter 7 that those aspects play a crucial role. They
play a crucial role not only from an engineering perspective, but also for the
algorithm design. Therefore, we decided to simulate our system in a decentral-
ized fashion with robots running in separate threads. Such simulation approach
caused us some difficulties to e.g. simulate a large fleet of robots. Nevertheless,
we strongly believe that this is the only alternative to transfer our algorithms
from paper to field experiments.

Field experiments were a great tool to identify practical difficulties that arise
when deploying a multi-robot system in the real world. Specifically, we identified
communication as the main challenge to transfer simulation results to real world
applications. As we previously mentioned, there are few and expensive commu-
nication systems1 in the market that could fulfill the demands of a large-scale
real-world application. Therefore, we believe that the development of future com-
munication systems will be key to advance multi-robot exploration technologies.

Final remarks. To finalize this section, we would like to add a final remark.
During the development of this thesis it was difficult for us to find benchmark
algorithms in the literature. Most of the algorithms are designed to solve a very
specific problem. This implies that, in order to compare our algorithm with
the state-of-the-art, we should solve tons of problems that are different from

1Examples of commercial systems are SC4200 from Silvus Technologies (http://
silvustechnologies.com/products/streamcaster-4200), or MCU-30 from Mobilicom (http:
//www.mobilicom.com/mcu-30-ruggedized).

http://silvustechnologies.com/products/streamcaster-4200
http://silvustechnologies.com/products/streamcaster-4200
http://www.mobilicom.com/mcu-30-ruggedized
http://www.mobilicom.com/mcu-30-ruggedized

8.2. Future Work 145

our objective, only to compare the algorithm’s performance. Moreover, most
algorithms are not publicly available, which represents an additional difficulty.

We firmly believe that the development of a library, like e.g. OMPL for path
planning (Şucan et al., 2012), with multiple information gathering problems and
algorithms, will help the community to benchmark algorithms and, subsequently,
to advance our research.

8.2 Future Work

The development of this thesis helped us to identify possible research directions,
which could advance the state-of-the-art in multi-robot exploration. Some of
them are straightforward extensions of the work done in the thesis, while others
rather focus on the multi-robot exploration problem from a general perspective.
Next we would like to discuss these directions in more detail.

Process of interest. In this thesis we focused on spatially distributed pro-
cesses that are time-invariant. Specifically, we focused on processes that can be
described by a set of coordinates and a scalar value, like e.g. the magnetic field
intensity. However, we could extend our framework to processes whose magni-
tude is a vector, like e.g. the magnetic field, which can be represented as a set
of coordinates and a three dimensional vector. A common technique to model
such processes is to describe each of the vector dimensions by an independent
GP (Lawrance and Sukkarieh, 2011).

In addition, we would like to investigate spatially distributed processes that
are time-variant. Such processes could be easily incorporated into our GPs frame-
work by defining a suitable covariance function that models both the spatial and
temporal correlation of the process. This would allow us to consider further
processes like e.g. gas diffusion processes.

Process model. We employed in this work GPs to model a process of interest.
GPs offer a high performance for a great number of applications. However, GPs
fail to represent complex processes that cannot be easily modeled by a covariance
function. An example of such a complex process could be an image. Here,
alternative models should be considered, with deep neural networks being state-
of-the-art. Nevertheless, for a deep neural network model, we should address the
following question: how to compute an information metric, e.g. entropy or MI,
from a deep neural network? To the best of our knowledge, this question is still
to be answered.

In addition, we would like to investigate the use of Gaussian Markov Ran-
dom Fields (Rue and Held, 2005), as they could offer interesting properties for

146 Chapter 8. Conclusion and Future Work

decentralized estimation of a process.

Sensors. For our experiments, we employed three different sensors: a mag-
netic field sensor, an ultrasound sensor, and an anemometer (simulated). These
sensors share the following properties: (i) they output a scalar value as sensor
reading, (ii) their impulse response is essentially the actual measurement plus ad-
ditive gaussian noise, and (iii) the noise level of the sensor is negligible compared
to the process values.

We would like to further investigate how the algorithms proposed in this
thesis could be adapted to account for more complex sensors, like e.g. a camera.
If we could extract a feature from each camera picture, we could still employ
the algorithm proposed here simply by assuming the feature as a measurement.
However, if we wanted to describe pictures with multiple features we should
think about different alternatives. An example could be to define a GP for
each feature, and then combine all GPs into an exploration objective function.
Alternative models to GPs could be used to model information from complex
sensors. Examples of such models could be Markov random fields, or deep neural
networks.

Constraints. We developed a system that can incorporate multiple complex
constraints into the information gathering task. There is one constraint that we
could not consider in Chapter 7. This is related to the extension of the work
proposed in Chapter 7 to perform autonomous soaring. For autonomous soaring,
we should be able to incorporate additional constraints such as aircraft energy,
wind velocity, and minimum flying height. This is a venue for future work that
we strongly believe could lead to the first system that performs autonomous
soaring with multiple cooperative flying aircraft.

Experiments. In this work, we performed multiple experiments to validate our
algorithms. Nevertheless, there are still experiments and applications that we
believe could be tackled with the algorithms proposed in this work. Autonomous
soaring is a possible application, as we previously mentioned. In addition, we
have a particular interest in 3D map building (Suveg and Vosselman, 2004), and
wildfires monitoring (Merino et al., 2006; Casbeer et al., 2005).

Data fusion. The algorithm proposed in Chapter 7 is decentralized, with the
exception of the data fusion component that employs a broadcast mechanism.
There exist methods to perform a decentralized data fusion for GPs, as pointed
out in Chapter 7. However, those methods employ approximations to build a
global GP covariance matrix. From our perspective, the study of data fusion

8.2. Future Work 147

algorithms to build an exact GP covariance matrix from measurements taken by
individual robots is an extremely interesting venue for future developments.

Beyond spatially distributed processes. A natural extension of this work
is tackling problems that go beyond spatially distributed processes. Examples of
such problems are tracking (Stranders et al., 2010), coverage (Miller and Mur-
phey, 2015), surveillance (Spaan et al., 2015), etc. These would require alterna-
tive models, and objective functions. Nevertheless, we could think about how
to adapt our system for such applications. For example, for coverage we could
define a covariance function that models the sensor footprint, and entropy to as
objective function. This way, by reducing the entropy we would cover the area of
interest. Also, for surveillance we could formulate the problem as a time-variant
coverage problem. Nevertheless, we believe tracking could not be achieved with
a straight-forward adaptation of our algorithm.

Beyond model-based exploration. Traditional exploration methods are
based on the knowledge we have about the world. This is the strategy that
we followed in this thesis. For example, although we learned the process spa-
tial correlation online, we assumed a certain covariance function – a squared
exponential function. Such a choice implies that we assume that our process of
interest is smooth.

However, it is true that the world is too complex to be properly modeled.
Moreover, there are applications, like e.g. extraterrestrial exploration, where we
cannot model the world as we have no prior information about it. This opens the
door towards machine learning model-free approaches. Specifically, we believe
that Reinforcement Learning (RL) will be key in next years, and will allow us
to solve novel and classic problems more efficiently.

RL is a machine learning paradigm that is model-free. In particular, it takes
a world’s state and a reward function that represents an specific goal. Then, by
trial and error it learns how robots should behave in order to achieve the goal.
RL could change how we understand exploration because it changes the question
we should ask ourselves before developing an exploration algorithm. That is, we
would go from the “how can I model the world? (and then hope that my model
is correct to achieve the goal)” to the “what do I want to achieve? (and then let
the robot figure out how to do it)”.

Appendices

149

Appendix A

Single-Robot Path Planning

In this thesis we proposed several algorithms to solve information gathering tasks
that are subject to constraints, like e.g. collision avoidance or communication
constraints. The proposed algorithms rely on two main components: (i) a path
planning method that calculates a range of trajectories that the robot could fol-
low according to its motion model, and (ii) an information function, e.g. entropy
or mutual information, that weights a trajectory according to its informative-
ness, measured by the information function. In Chapter 7 we treated the path
planning and weighting of the trajectory with an information function as two
separate components. That is, first robots generate a large amount of different
feasible trajectories, and in a later step they select the ones that maximize mu-
tual information for the team of robots. In contrast, Chapter 5 combines the
two aforementioned components into one planning method that trades-off the
path cost, defined by the robot’s dynamics, and the path informativeness, as
measured by an information function.

As we pointed out in the previous paragraph, path planning plays a crucial
role in information gathering algorithms. As such, the work in the thesis led us to
novel ideas that are purely related to path planning, which we strongly believe
could enhance the state-of-the-art path planning methods. Therefore, in this
appendix we slightly deviate from the original goal of this thesis – information
gathering – and describe a contribution that is related to path planning. In
particular, we propose a sampling-based path planning algorithm (ACO-RRT*)
for a single robot.

We organize this appendix as follows: first, we introduce the problem we
aim to solve and present a literature overview in Section A.1. Then we give in
Section A.2 a short summary of one of the main tools that we employ to derive
our path planning algorithm: Ant Colony Optimization (ACO). This is followed
in Sections A.3 and A.4 by a detailed description of the proposed algorithm. In
Section A.5 we evaluate the algorithm performance in simulations. We finalize
with a summary and outlook of the chapter in Section A.6. Specifically, in

151

152 Appendix A. Single-Robot Path Planning

this last section we give some insights about how the path planning algorithm
proposed in this chapter could be extended for exploration tasks.

A.1 Introduction

Sampling-based path planning algorithms are widely used because of their ef-
ficiency to provide path planning solutions in high dimensional spaces, which
permits the algorithms generalization to a large class of robots; as we pointed
out in Chapters 5 and 7. Sampling-based path planning methods are well exem-
plified by probabilistic roadmaps (PRMs) (Kavraki et al., 1996) and RRT/RRT*
algorithms (Section 2.2.2).

In recent years a great amount of sampling-based path planning algorithms
have been proposed, such as (Arslan and Tsiotras, 2013, 2015; Gammell et al.,
2014b,a; Karaman et al., 2011; Salzman and Halperin, 2014, 2015). These works
have in common that they outperform the RRT* algorithm by modifying and
optimizing some of the subroutines that compose the original RRT* algorithm.
However, the cited algorithms are specifically designed to solve the optimal short-
est path planning problem under certain restrictions. Here, we aim to go one step
further and propose a framework that allows us to introduce some heuristics into
the original RRT and RRT* algorithms. Specifically, we propose to incorporate
heuristics into the algorithm by modifying the sampling distribution, which is
learned online, according to the heuristics, as we sample the state space. The
advantage of defining such heuristics is twofold: (i) it allows us to introduce some
additional knowledge to solve the path planning problem more efficiently; (ii) it
could be used in conjunction with any of the aforementioned works to improve
their performance. Specifically, in this work we will show that our approach
combined with shortest path heuristics outperforms RRT and RRT* algorithms.

Sampling-based path planners consist of several subroutines that can be op-
timized individually to improve the algorithm’s performance, which also make
the methods very attractive. Denny et al. proposed a “lazy planning” to im-
prove the collision checking by the assumption that only 10% of the collisions
checks are positive (Denny et al., 2013b). Furthermore, algorithms like RRT
connect (Kuffner and LaValle, 2000) and the one proposed in (Urmson and Sim-
mons, 2003) increase the algorithm performance by heuristically biasing the tree
growth. The tree growth is also adapted by the authors of (Denny et al., 2013a),
where they adapt the branch size according to the space in heterogeneous en-
vironments. In contrast to the previous works, here we focus on a modification
of the sampling strategy. Essentially, if we can identify regions of higher impor-
tance, i.e. regions in the state space that could help us to improve our current
path, then we should sample these regions more often.

A.1. Introduction 153

Figure A.1: Example of one path generated with the proposed ACO-RRT* al-
gorithm. We build an RRT* based on a modified sampling strategy that learns
from previous experience.

It is possible to dichotomize sampling strategies for path planning into im-
portance sampling and adaptive sampling. Importance sampling methods ex-
ploit some pre-defined a priori sampling strategy. Examples include goal-biased
sampling (Amato and Song, 2002), medial-axis sampling (Guibas et al., 1999),
and the bridge test (Hsu et al., 2003) that is designed to solve narrow passages
problems. These methods are specifically designed to solve concrete problems.
Alternatively, in adaptive sampling methods, samples are drawn from a distribu-
tion that is adapted based on the information obtained from previous samples,
which makes them more flexible. Siméon et al. propose the visibility PRM al-
gorithm (Siméon et al., 2000) that just takes samples from the unexplored area
within the planner visibility region. Although the constructed roadmaps are
significantly smaller, the computation of the visibility region is expensive.

Adaptive dynamic domain RRT adapts the previous concept to the RRT
algorithm (Jaillet et al., 2005). In this work, we additionally consider the impor-
tance of the previous samples that are not necessarily within the visibility region.
This is exploited for PRMs through an utility-guided sampling in (Burns and
Brock, 2005). There, the authors do not aim to learn the sampling distribution,
but to perform a Monte-Carlo sampling and select the samples with a higher
utility. However, our focus lies on RRT-based planners due to their efficiency, as
they do not require any pre-computation time like in PRMs. Adaptive sampling
within the RRTs framework has been also exploited in recent works (Jaillet et al.,
2010; Janson et al., 2015; Kim et al., 2014; Nasir et al., 2013). In contrast to
our proposed algorithm, these are not able neither to incorporate nor to learn
arbitrary heuristics. Notice that the possibility of learning arbitrary heuristics
is crucial to e.g. employ the proposed methods for information gathering tasks,

154 Appendix A. Single-Robot Path Planning

where heuristics could drive a robot to highly informative locations.

Heuristics are incorporated into our algorithm via an utility function that
weights the importance of samples. The definition of our utility function is in-
spired by the work from Rickert et al. (2014). In (Rickert et al., 2014), the authors
propose the Exploring-Exploiting Tree (EET) algorithm that balances exploita-
tion and exploration to construct the tree more effectively. Yet this method
requires some environment dependent pre-computing time for growing the tree,
which does not make it suitable for online planning. The exploration-exploitation
trade-off has been also considered in several works, such as (Akgun and Stilman,
2011; Alterovitz et al., 2011; Persson and Sharf, 2014). In (Alterovitz et al.,
2011), the authors propose the rapidly exploring roadmaps (RRMs). The algo-
rithm finds first a solution like in RRTs and then refines this solution. Balanc-
ing exploration and exploitation is also employed in (Persson and Sharf, 2014).
In (Persson and Sharf, 2014) the authors extend the A* algorithm to a sampling-
based planner. Also in (Akgun and Stilman, 2011), the algorithm trades off
exploration and exploitation to improve the RRT* in high dimensional spaces.
This is done by introducing sampling heuristics. Our algorithm is also based on
sampling heuristics that are learned using machine learning. In contrast to the
aforementioned works (Akgun and Stilman, 2011; Alterovitz et al., 2011; Persson
and Sharf, 2014), our framework allows us to introduce sampling heuristics that
are not just specifically designed for the optimal shortest path planning but also
for different applications, like e.g. information gathering.

Our goal in this appendix is not only to propose a framework that can in-
corporate user-defined heuristics. In addition, we aim to learn the sampling
distribution of the planning algorithm that better fits to those heuristics. We re-
alize that by introducing machine learning techniques. Machine learning was also
employed in the path planners proposed in (Morales et al., 2004; Diankov and
Kuffner, 2007), which require a discrete predefined set. In contrast, we aim to
apply machine learning not to learn a discrete set but a continuous distribution.

The method presented here is strongly influenced by the idea of cross-entropy
motion planning (Kobilarov, 2012). In (Kobilarov, 2012), the author learns the
sampling distribution from previous samples by evaluating its entropy. Its limi-
tation comes from the high computational requirement to calculate the sampling
distribution for the environment, which does not make it feasible for real time
applications. We improve this concept by using an ACO algorithm (Socha and
Dorigo, 2008) to learn the sampling distribution. ACO has been previously used
in the context of PRMs (Mohamad et al., 2006). In (Mohamad et al., 2006) their
goal was to reduce the number of intermediate configurations from an initial to
a goal position. Although with a different objective, that work serves us as in-
spiration to incorporate ACO into a sampling based path planner. Learning the

A.2. Ant Colony Optimization for Continuous Domains 155

s1

s2

sl

sna

s
[1]
1 s

[2]
1

s
[1]
2

s
[1]
l s

[2]
l

s[2]na
s[1]na

s
[2]
2

s
[j]
l

s
[j]
1

s
[j]
2

s[j]na
s[ds]na

s
[ds]
1

s
[ds]
2

s
[ds]
l

wna

w2

wl

w1

g[ds]g[j]g[2]g[1]

u1

u2

ul

una

u w

Figure A.2: T-table of the ACOR algorithm.

sampling distribution, together with the definition of a novel utility function, let
us derive an scalable algorithm suitable for real time path planning applications.
To finalize, in Figure A.1 we present a motivating example that represents a path
calculated with the proposed ACO-RRT* algorithm.

A.2 Ant Colony Optimization for Continuous Domains

Ant colony optimization is a nature-inspired algorithm to solve hard combina-
torial optimization problems (Dorigo et al., 1996). Its driving principle comes
from the behavior of ants when searching for food. That is, ants leave the nest
walking in random directions. Once they find a food source they come back to
the nest leaving a pheromone trail on the ground. The pheromone deposited
depends on the quality and quantity of the food and guide the other ants to the
food source. Based on the same principle, ant colony optimization for continuous
domains (ACOR) is proposed to solve continuous optimization problems (Socha
and Dorigo, 2008). This work inspires our sampling strategy, in which ants,
according to their utility, will decide where to sample next.

In (Socha and Dorigo, 2008) ants are represented by a table T as depicted in

Figure A.2. Each row contains one of the na ants, where sl = [s
[j]
l]j=1,...,ds is the

vector of coordinates describing the lth ant’s location. The ant’s utility is given
by ul, which determines the importance of the lth ant. The utility is defined
according to the algorithm’s optimization objective.

The algorithm proposed in (Socha and Dorigo, 2008) works as follows. First,

156 Appendix A. Single-Robot Path Planning

Initialize Sample Construct Update
Ants ACO Tree Ants
(line 2)

Line 2

(line 4) (line 5)

Calculate
Utility
(lines 6-19) (lines 20-22)

Iterate Np times

Figure A.3: ACO-RRT/RRT* algorithm block diagram. Each of the five blocks
points to its respective lines from Algorithm A.1.

it takes a sample xrand = [x
[j]
rand]j=1,...,ds , with x

[j]
rand drawn from a Gaussian

mixture model probability distribution:

G[j](x) =

na∑
l=1

wlg
[j]
l (x) =

na∑
l=1

wl
1

σ
[j]
l

√
2π
e
−

(x−s[j]
l

)2

2σ
[j]
l

2

, (A.1)

with wl the lth ant’s weight, and σ
[j]
l the lth ant’s standard deviation in dimension

j. σ
[j]
l is calculated as the average distance from the lth ant to the rest of the

ants stored in T:

σ
[j]
l = ξ

na∑
e=1

|s[j]
e − s[j]

l |
na − 1

, (A.2)

where ξ > 0 is the pheromone evaporation rate, which avoids that the algorithm
converges too fast before approaching the optimal solution. The weight wl from
vector of weights w is set as:

wl =
1

qna
√

2π
e
− (l−1)2

2q2na2 , (A.3)

where q is a user-defined parameter. When q is small, the best ranked solutions
are strongly preferred. w is normalized so that the integral of G[j](x) over the
entire space is equal to one. The value of wl is initialized and is not modified
during the execution of the algorithm.

Next, ACO sorts T in descending order according to u, and inserts xrand.
xrand will become now an ant. In this way, samples with a higher utility will
go up in the table and will be selected with a higher probability. In case the
sample’s utility is higher than the last ranked solution sna , sna will be removed
from T to keep na ants in T.

A.3 ACO-RRT/RRT* Algorithm

We introduce here the ACO-RRT/RRT* algorithm. This consists of five steps
that are depicted in a block diagram in Figure A.3. ACO-RRT/RRT* works

A.3. ACO-RRT/RRT* Algorithm 157

Algorithm A.1. ACO-RRT/RRT*(xA,xB, Np, na, α̌, α̂,G(V, E),Xfree)

1: V ← {xA}; E ← ∅; T← ∅; PxA,xB ← ∅; cpath ←∞;
2: T← InitializeAnts(na,T,Xfree); . according to Sec. A.3.1
3: for i = 1, . . . , Np do

4: xrand, l← SampleACO(T); . according to Sec. A.3.2

5: xnew,G(V, E)← ConstructTree(xrand,G,Xfree); . according to Sec. A.3.3

6: . Calculate utility according to Sec. A.3.4

7: Uexplore ← Uexplore(xnew,G); . with (A.6)

8: if cpath 6=∞ then . path found

9: if c(PxA,xnew (G)) + c(Pxnew,xB) < cpath then . if improves the current solution

10: α← α̌;

11: if c(PxA,xB (G)) < cpath then . path improvement

12: Uexploit ← ˙̌Uexploit(xnew,G); . with (A.8)

13: else . no path improvement

14: Uexploit ← ¯̌Uexploit(xnew,G); . with (A.9)

15: else

16: α← NULL,Uexploit ← NULL,Uexplore ← NULL;

17: else . no path found

18: α← α̂;

19: Uexploit ← Ûexploit(xnew,G); . with (A.7)

20: PxA,xB ← FindBestPath(xA,xB ,G);

21: I ← {Uexploit, Uexplore,xnew,xB , α, l,PxA,xB , cpath};
22: T← UpdateAnts(T,G, I); . according to Sec. A.3.5

23: if PxA,xB 6= ∅ then . if we found a path

24: cpath ← c(PxA,xB (G));

25: return PxA,xB ;

as follows: first, we initialize T with an initial set of ants (Section A.3.1). The
initialization is only carried out once at the beginning of the algorithm’s execu-
tion. Then we obtain a sample xrand from the distribution defined by T (Section
A.3.2), and incorporate xrand into a tree built with an RRT/RRT* algorithm
(Section A.3.3). Next we calculate the utility of xrand. We consider two factors to
calculate the utility: (i) exploitation of the current solution, and (ii) exploration
of the state space to find a new, better solution (Section A.3.4). According to
the calculated utility, we update T (Section A.3.5). This loops continues during
Np iterations. We formulate the ACO-RRT/RRT* in Alg. A.1. In the following
sections we describe each of the algorithm steps in more detail.

158 Appendix A. Single-Robot Path Planning

A.3.1 Initialize Ants

First we fill T with na ants, as described in Alg. A.2. Alg. A.2 works as fol-
lows: we take a sample xrand from an uniform distribution defined over Xfree

(line 2, Alg. A.2). Then we insert xrand in row l that represents the lth ant
(lines 3-4, Alg. A.2). We initialize utility ul to zero. For the calculation of the
utility we require the exploitation and exploration utility as well as a parame-
ter α that trades off the two factors (see Section A.3.4). These three elements
(Fl.Uexploit,Fl.Uexplore,Fl.α)1 are stored in set Fl, and initialized to zero. Pa-
rameter wl is computed according to (A.3) (lines 5-6, Alg. A.2).

Algorithm A.2. InitializeAnts(na,T,Xfree)

1: for l = 1, . . . , na do . for each ant
2: xrand ← SampleFree(Xfree);
3: for j = 1, . . . , ds do . for each dimension

4: T.s
[j]
l ← x

[j]
rand;

5: T.Fl.α← NULL; T.ul ← NULL; T.wl ← wl;

6: T.Fl.Uexploit ← NULL; T.Fl.Uexplore ← NULL;

7: return T;

A.3.2 Sample ACO

Once we have initialized T, we draw a new sample xrand (line 4, Alg. A.1). To
this end, we employ the following procedure, which is equivalent to sampling
directly from (A.1). First, we select an ant l with a probability:

pl =
wl∑na
e=1we

. (A.4)

The selected ant determines xrand, with x
[j]
rand ∼ N (s

[j]
l , σ

[j]
l

2
). To generate

a x
[j]
rand ∈ Xfree, we employ rejection sampling. In addition to xrand, SampleACO

outputs the selected ant index l.
Let us note that the modification of the RRT* sampling strategy does not

sacrifice the asymptotic optimality guarantee of RRT* (Karaman and Frazzoli,
2011). Asymptotic optimality of ACO-RRT* lies on the fact that ants are asso-
ciated to a Gaussian probability density function. Samples extracted from such
a function can take values from an infinite domain, which results in sampling
over the complete state space. Even in the worst case, with all ants converging

to a single point, σ
[j]
l will be slightly greater than zero. This fact guarantees that

the state space will be fully sampled and, therefore, ACO-RRT* will approach
the optimal solution.

1A.b denotes element b that is part of set A.

A.3. ACO-RRT/RRT* Algorithm 159

A.3.3 Construct Tree

Next we construct a tree according to the RRT/RRT* path planner. This step
corresponds to lines 4-7 in Algorithm 2.1 (RRT) and lines 4-21 in Algorithm 2.2
(RRT*). ConstructTree takes as input xrand and current tree G, and outputs
the vertex xnew that was added to the tree, as well as the new constructed tree.

A.3.4 Calculate Utility

The key part of Alg. A.1 is the calculation of the xnew utility, which corresponds
to lines 6-19 in Alg. A.1. Here we define the utility of a sample according to
an exploitation-exploration trade-off. On the one hand, exploitation aims: (i) to
reach xB by following the shortest possible path, in case any path was found, and
(ii) to improve the path to xB, once a path to xB was found. On the other hand,
exploration aims to sample at locations that have not been previously sampled.
Exploration is necessary to: (i) find a first path to xB by exploring the state
space, and (ii) search for new better paths, once a path was found.

We calculate the utility U(x,G) of sample x given a tree G as follows:

U(x,G) = α · Uexploit(x,G) + (1− α) · Uexplore(x,G), (A.5)

where α denotes the exploitation-exploration trade-off, Uexploit(x,G) is the ex-
ploitation utility, and Uexplore(x,G) is the exploration utility. Next we describe
each of the elements of (A.5) in detail.

A.3.4.1 Exploration Utility

We define Uexplore(x,G) as a measure of the density of samples in G in the vicinity
of sample x. Formally, we calculate Uexplore(·) as follows:

Uexplore(x,G) =
1

|Xnear|

(
R

η

)ds

, (A.6)

with Xnear ← Near(x,V) the set of neighbors of x given by (2.9), η a parameter
of the RRT/RRT* path planner (Section 2.2.2), and R the connection radius.
We define R = r(|V|) for RRT* with r (·) given by (2.10), and R = η for RRT.

The first term of the product models a proportional decay of Uexplore(·) with
respect to |Xnear|. This implies that a sample that has a low number of neighbors
in G will have a high exploration utility, which will bias the exploration towards
the not-yet-sampled state space. However, |Xnear| is strongly related to R. The
bigger is R, the higher the probability to have a large |Xnear|. In RRT*, as the
tree growths, R decreases. To make Uexplore(·) independent of the tree’s current

state, we introduce a second term (R/η)ds to act as a normalization factor.

160 Appendix A. Single-Robot Path Planning

A.3.4.2 Exploitation Utility

The exploitation utility aims to benefit from the knowledge acquired about the
state space. Here, we distinguish two situations: utility before a first path was
found, and utility after a first path was found. In order to add more flexibility to
the algorithm, we assign to α, that was defined in (A.5), one of the two possible
values: (a) α = α̂ if no path was found ; (b) α = α̌ otherwise.

No path found. Before a first path is found, we bias the sampling to connect
x with xB as fast as possible regardless the obstacles (Amato and Song, 2002).
We realize this by defining the utility as:

Ûexploit(x,G) = 1− c(Px,xB)

cmax
, (A.7)

where c(Px,xB) is normalized by the maximum cost cmax to reach xB from any
x′ ∈ Xfree. We point out that sampling at xB has maximum utility since it
directs the tree growth towards the goal position.

Path found. Once a first path is found, we exploit that information to derive
a richer exploitation utility. We consider two possible situations: path improve-
ment (see Figure A.4a), and no path improvement (see Figure A.4b).

Consider a sample x that leads to an improvement on PxA,xB (G). In such
situation, we could expect that the region of the state space around x could
help us to improve the solution again in a future. Therefore, we formulate an
exploitation utility that quantifies this improvement:

˙̌Uexploit(x,G) =
cpath − c(PxA,xB (G))

cpath − c(PxA,xB)
, (A.8)

with c(PxA,xB (G)) the cost of the best path after sampling x, and cpath the cost
of the previous best path. The denominator normalizes the function so that it
ranges between 0 (no path improvement) and 1 (best possible path).

In contrast, if sample x does not contribute to improve PxA,xB (G), we define
an exploitation utility that shapes the path as a straight line connecting xA,xB.
This represents the best possible path regardless of the obstacles. In this case,
the utility is given by:

¯̌Uexploit(x,G) =
c(PxA,xB (G))

c(PxA,x(G)) + c(Px,xB)
. (A.9)

It is important to remark that, once we find a first path, we only introduce
the ant in T if it could improve the current solution (line 9, Alg. A.1). Otherwise

A.3. ACO-RRT/RRT* Algorithm 161

xA xB

cpath

xc(PxA,xB
(G))

c(PxA,xB
)

(a) Path improvement.

xA xB

cpath

x
c(PxA,x(G))

c(PxA,xB
)

c(Px,xB
)

(b) No path improvement.

Figure A.4: Graphical representation of the exploitation utility in the path found
mode. A black square represents an obstacle. A red dot corresponds to x. Black
lines and green dots represent G. The superposed thick blue line is the best
found path before sampling x. The dashed yellow line is the new best path after
sampling x. We represent with arrows the direct path between a state and xB.

we set the exploration and exploitation utilities to zero (line 16, Alg. A.1), which
implies that the ant will be discarded once we update the table of ants. By doing
that, we allow the algorithm to sample in the future again in a promising region,
which could incur in a path improvement.

A.3.5 Update Ants

The last step of Alg. A.1 is the update of the ants, stored in T, according to the
updated utilities. The update is realized with Alg. A.3. This works as follows.
The first time we find a path we reset the utility values T.u and parameters T.F
to incorporate the utilities that are associated to that path (lines 2-3, Alg. A.3).

Next we update the lth ant that drew sample xnew. This update allows
us to incorporate the current information provided by G (lines 5-13, Alg. A.3).
For example, let us imagine an ant that had a great exploration utility when it
was stored, but several iterations later the area associated to that ant is fully
explored. In such a situation an update of the ants is crucial. Specifically, we
realize this by introducing a soft pruning condition that allows the algorithm to
shape the sampling distribution according to the most promising areas given the
current knowledge about the state space (line 8, Alg. A.3). Then we insert the
lth ant in T according to the updated utility ul, calculated with (A.5) from the
elements of Fl.

Once we update the lth ant, we generate a new ant to incorporate the infor-
mation provided by xnew. We insert this ant in T at position i given by the ants
utility ui, calculated from Fi (lines 14-17, Alg. A.3). To incorporate the ith ant
we make a simplification that consists of two heuristics: (i) the utility of the ith

162 Appendix A. Single-Robot Path Planning

Algorithm A.3. UpdateAnts(T,G(V, E), I)

1: {Uexploit, Uexplore,xnew,xB , α, l,PxA,xB , cpath} ← I;
2: if (PxA,xB 6= ∅) and (cpath =∞) then . first path found

3: T.u← NULL; T.F ← NULL;
4: else
5: Fl.Uexplore ← Uexplore;

6: sl ← T.sl;Fl.α← T.Fl.α;Fl.Uexploit ← T.Fl.Uexploit;
7: if PxA,xB 6= ∅ then . soft pruning condition

8: if c(PxA,sl(G)) + c(Psl,xB) > c(PxA,xB (G)) then . soft pruning condition

9: Fl.Uexploit ← NULL;Fl.Uexplore ← NULL;

10: ul ← CalculateUtility(Fl); . with (A.5)

11: . Update the lth ant

12: T← Extract(l,T);

13: T← Insert(sl, ul,Fl,T);

14: . Introduce xnew in the table

15: Fi.α← α;Fi.Uexploit ← Uexploit;Fi.Uexplore ← Uexplore;

16: ui ← CalculateUtility(Fi); . with (A.5)

17: T← Insert(xnew, ui,Fi,T);

18: T← Extract(”last”,T); . extract last ant of the table

19: return T;

ant is the same as the utility from the lth ant; and (ii) the introduction of the
ith ant into the table does not incur in a modification of the exploration utility
of the rest of the ants contained in T. These two heuristics allow us to reduce
the algorithm’s computational complexity as we do not have to recalculate all
utilities each time a new ant is introduced in T. Despite this simplification, these
heuristics have been shown to work well in practice since, next time an ant is
selected, its utility will be recalculated. The last step of Alg. A.3 is the removal
of the last row of T after a new ant is added (line 18, Alg. A.3). This is needed
to keep na ants in T.

A.4 Anytime ACO-RRT*

The main drawback of the ACO-RRT/RRT* algorithm is that it needs more time
to find a first path compared to RRT/RRT*. This is due to the convergence time
of the ants. However, the solution obtained by ACO-RRT/RRT* has a better
quality; i.e. a smaller cost (as we will see in Sec. A.5).

There are situations, e.g. in exploration tasks or search and rescue missions,
where finding a first solution rapidly is crucial. Then, if we had more time,
we could improve it to reach our goal faster. Inspired by Ferguson and Stentz
(2006), we exploit this concept in our Anytime ACO-RRT* algorithm. Anytime

A.5. Simulations and Discussion of Results 163

xA xB

(a) Scenario 1.

xA xB

(b) Scenario 2.

xB

xA

xA xA

xA

xA

xA

(c) Scenario 3.

Figure A.5: Simulation scenarios. We aim to find the optimal path PxA,xB .
In A.5c we consider different xA for each of the simulation runs.

ACO-RRT* works as follows. First, we run the fastest algorithm (RRT) to find
a first solution PxA,xB (G). Second, we initialize G as G(V, E) = PxA,xB (G). Then
we improve PxA,xB (G) using ACO-RRT* taking G as input. This mechanism
allows us to combine the best of both algorithms to increase the algorithm’s
performance.

A.5 Simulations and Discussion of Results

We evaluate in simulations the ACO-RRT/RRT* algorithm performance to find
the optimal PxA,xB . We employ an holonomic robot, since it allows us to abstract
the algorithm capabilities from the robot’s kinodynamic constraints. We assume
the robot corresponds to a single point. However, more complex robot shapes
could be easily introduced within this framework.

We consider three scenarios that correspond to realistic scenarios that could
be encountered while navigating in an indoor facility (see Figure A.5). Similar
scenarios have been considered to evaluate some of the most recent state-of-the-
art methods, such as (Gammell et al., 2014b; Kim et al., 2014). Scenario 1 is
composed of 10 rectangles of different size and the optimal path measures 88
meters. Scenario 2 contains a narrow passage that is a often considered as one of
the most challenging path planning problems. The optimal path in this scenario
is 63 meters. Scenario 3 corresponds to a maze-like environment. This last one
allows us to test the algorithm performance in a more structured scenario. Since
scenario 3 is more structured, the placement of the initial position plays a crucial
role. Therefore, in scenario 3 we consider several xA that are randomly selected
in each simulation run. For the evaluation in the three scenarios we consider
a goal region centered around xB, not just a single state. The three scenarios
measure 100× 100 meters.

164 Appendix A. Single-Robot Path Planning

Np [s] η [m] na [ants] q ξ α̌ α̂

220 5 100 50 0.4 0.3 0.1

Table A.1: Simulation parameters.

RRT*-ACO RRT* RRT-ACO RRT
0

200

400

600

800

1000

Ite
ra

tio
ns

(a) Iterations to find first
path.

RRT*-ACO RRT* RRT-ACO RRT
0

2

4

6

8

10

T
im

e
[S

ec
on

ds
]

(b) Time to find first path.

RRT*-ACO RRT* RRT-ACO RRT
0

2

4

6

8

10

T
im

e
 [

S
e
co

n
d
s]

(c) Time to find first
path.

RRT*-ACO RRT* RRT-ACO RRT
100

120

140

160

180

200

220

C
os

t [
M

et
er

s]

(d) Cost of first path.

RRT*-ACO RRT* RRT-ACO RRT
80

100

120

140

160

180

200

220

C
os

t [
M

et
er

s]

(e) Cost of first path.

RRT*-ACO RRT* RRT-ACO RRT
0

50

100

150

200

250

C
o
st

 [
M

e
te

rs
]

(f) Cost of first path.

Figure A.6: Box plot representation of the number of iterations and time to find
a first path, and its associated cost. (a,d) Scenario 1. (b,e) Scenario 2. (c,f)
Scenario 3.

We carry out the simulations using a Intel Xenon E31225 processor at 3.10GHz
with 8GB of RAM. We run each of the simulations 100 times according to the
parameters shown in Table A.1.

We evaluate the following parameters: (i) time to find a first path and its
associated cost; (ii) evolution of the cost of the best path found over time; (iii)
performance of the anytime implementation; (iv) influence of the different pa-
rameters in the algorithm’s performance.

A.5.1 Time to Find a First Path and Associated Cost

One of the key figures to evaluate the performance of Alg. A.1 is the number of
iterations needed to find a first path. This is strongly correlated with the cost
associated to that path. We evaluate both indicators for scenarios 1, 2 and 3.
For scenarios 2 and 3, we represent the time instead of the number of iterations

A.5. Simulations and Discussion of Results 165

in order to proof the algorithm’s performance in an actual system. We compare
the ACO-RRT/RRT* algorithm with RRT and RRT* algorithms. We remark
that we do not perform a comparison against the state-of-the-art works cited in
Sec. A.1 because they follow a different goal. Their goal consists of approaching
the optimal solution to the path planning problem as quickly as possible. On
the contrary, our objective is to demonstrate that Alg. A.1 is able to learn user
pre-defined heuristics, and used them to improve the solution of RRT/RRT*
algorithms.

In Figure A.6, we employ a box plot representation of the obtained results,
where the dashed red line is the median of the data, the bottom and top of
each box represent the 25th and 75th percentile, and the two strokes encompass
the minimum and maximum values. We observe that the ACO-RRT* algorithm
finds a better solution when compared to the rest of alternatives. On the other
hand, the ACO-RRT* algorithm is slower because ACO requires an additional
time to place ants in the best positions to guide the tree’s growth. During the
first iterations of the algorithm, the ants are not correctly placed and therefore
the planner cannot find a path between the initial and goal position.

We can also conclude that RRT is the fastest algorithm to find a first solu-
tion to the path planning problem, although this solution has the highest cost
compared to the other alternatives. We exploit this capability in our anytime
implementation to find rapidly a first solution.

A.5.2 Algorithm Performance with Time

Once we find a first path, we aim to improve it to reach the optimal solution.
Figure A.7 shows the evolution of the best path found over the number of itera-
tions and time. We accompany these figures with a simulation of the algorithm’s
complexity for the three scenarios. Results of the proposed ACO-RRT/RRT*
algorithm are compared with RRT* and RRT algorithms.

The curves correspond to the mean value calculated over 100 runs. For each
of the curves in Figures A.7a, A.7b, A.7c, we considered the worst case; i.e. each
of the curves starts when a path was found in all the 100 runs. We observe that
the ACO-RRT* algorithm offers a superior performance over time. However, for
scenario 3 the performance is similar to the one offered by RRT*. This is because
scenario 3 is more structured and therefore, once the algorithm finds a first
solution, it has little room for improvement. We remark that the introduction
of the ACO increases the algorithm’s computational complexity. This is mainly
because of the time needed to compute the ant’s utility and update T. However,
this additional complexity is beneficial since the ACO-RRT/RRT* offers a better
performance.

These results naturally lead us to formulate the anytime ACO-RRT* algo-

166 Appendix A. Single-Robot Path Planning

0 1000 2000 3000 4000 5000
80

90

100

110

120

130

140

150

Iterations

C
o

s
t
[M

e
te

rs
]

RRT RRT-ACO RRT* RRT*-ACO

(a) Path Cost vs. Itera-
tions.

0 20 40 60 80 100
70

80

90

100

110

120

130

140

150

160

170

Time [Seconds]

C
o

s
t
[M

e
te

rs
]

RRT RRT-ACO RRT* RRT*-ACO

(b) Path Cost vs. Time.

0 20 40 60 80 100
Time [Seconds]

90

100

110

120

130

140

150

C
o
s
t

[M
e
te

rs
]

RRT RRT-ACO RRT* RRT*-ACO

(c) Path Cost vs. Time.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

Iterations

T
im

e
 [
S

e
c
o

n
d

s
]

RRT RRT-ACO RRT* RRT*-ACO

(d) Time vs. Iterations.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

Iterations

T
im

e
 [
S

e
c
o

n
d

s
]

RRT RRT-ACO RRT* RRT*-ACO

(e) Time vs. Iterations.

0 1000 3000 5000 7000 9000
Iterations

0

20

40

60

80

100

T
im

e
 [

S
e
c
o
n
d
s
]

RRT

RRT-ACO

RRT*

RRT*-ACO

(f) Time vs. Iterations.

Figure A.7: Top: evolution of the best path cost over time and iterations once
we found a first solution. Down: evaluation of the algorithm time complexity.
(a,d) Scenario 1. (b,e) Scenario 2. (c,f) Scenario 3.

rithm. Although the solution offered by the RRT algorithm in a first place is
of worse quality, we expect to improve it using ACO-RRT*. We expect this
combination incurs in an increase of performance over time.

A.5.3 Anytime ACO-RRT* Performance

We show in Figure A.8 the performance of the anytime implementation of the
algorithm. We would assume that the RRT and anytime curves should start
at the same position, since both of them start running the RRT algorithm.
However, here we represent the first moment in which we found a path for all
the 100 algorithm runs. They would then start at the same point if the number
of runs approaches infinity.

Anytime ACO-RRT* is the fastest algorithm to find a first path (equal to
RRT) and has the same evolution of the performance over time (equal as ACO-

A.5. Simulations and Discussion of Results 167

RRT*−ACO RRT* RRT−ACO RRT Anytime0

1

2

3

4

T
im

e
[S

ec
on

ds
]

(a) Time to find first path.

0 20 40 60 80 100
80

90

100

110

120

130

140

150

Time [Seconds]

C
os

t [
M

et
er

s]

Anytime RRT RRT−ACO RRT* RRT*−ACO

(b) Path Cost vs. Time.

Figure A.8: Anytime ACO-RRT* performance for scenario 1. (a) Box plot
representation of the time to find a first path. (b) Evolution of the best path
cost over time once we found a first solution.

RRT*).

A.5.4 Performance with respect to the Algorithm Parameters

For scenario 1, we evaluate the evolution of the path cost over time with respect
to the number of ants, the exploitation-exploration trade-off parameter, and the
evaporation rate; while keeping the not-analyzed parameters constant according
to Table A.1. Let us also remark that we do not simulate the influence of varying
q since this is strongly correlated with the number of ants na. This allows us to
keep it fixed and just modify na.

Figure A.9a shows the performance with respect to na. We performed as
well simulations with a smaller na and the algorithm was not able to converge
to any solution given the planning time. We observe that 50 ants corresponds
to the best solution. Increasing na incurs however in a decrease of performance.
The explanation of such behaviour comes from the trade-off that exists between
including more ants to better learn the sampling distribution, and the complexity
added at the sampling procedure when increasing na.

In order to analyze the impact of the α factor in the algorithm performance
over time, we keep constant α̂ and vary α̌ between 0 and 1 (see Figure A.9b). As
we could expect, for extreme values of α̌ the algorithm does not find a solution.
For the rest of the values the performance varies only slightly.

In Figure A.9c, we observe as well that the algorithm does not converge
only for the extreme values of the convergence rate ξ. As in the previous case,
it is important that performance does not drastically change as we vary this
parameter.

168 Appendix A. Single-Robot Path Planning

0 10 20 30 40 50
88

90

92

94

96

98

100

102

104

106

108

110

Time [Seconds]

C
o

s
t

[M
e

te
rs

]

na=500

na=200
na=100
na=80
na=50

(a) Evolution with na.

0 20 40 60 80 100
85

90

95

100

105

110

 Time [Seconds]

C
o
s
t
[M

e
te

rs
]

α=0.8
α=0.7
α=0.6
α=0.5
α=0.4
α=0.3
α=0.2
α=0.1

(b) Evolution with α̌.

0 20 40 60 80 100
85

90

95

100

105

110

115

Time [Seconds]

C
o
s
t
[M

e
te

rs
]

ξ=0.9
ξ=0.7
ξ=0.5
ξ=0.3
ξ=0.05

(c) Evolution with ξ.

Figure A.9: Analysis of the algorithm performance for scenario 1 respect to:
(a) number of ants, na; (b) exploitation-exploration trade-off parameter once we
have found a first path, α̌; (c) evaporation rate, ξ.

A.5.5 Examples of Paths Planned with the ACO-RRT* Algo-
rithm

We analyzed the different parameters that influence the algorithm’s performance.
In addition we include in Figure A.10 three snapshots of the paths planned after
running our proposed ACO-RRT* algorithm 2. The figures show the resulting
trajectory, the samples that conform the tree, and the ants at the end of the
algorithm’s execution. We can observe that most of the ants are placed in the
region of the state space that contains the optimal trajectory. This results in
the presence of more samples in this region, which is the goal of our algorithm.
In the case of scenario 3 it can be seen how the first path found is already close
to the optimal path.

A.6 Summary and Outlook

In this appendix we proposed and analyzed a novel path planning algorithm –
ACO-RRT* – based on RRT. We modified the RRT algorithm sampling strategy
so that the current tree influences the sampling strategy. This is done by the
definition of an utility function in combination with an ant colony optimization
algorithm. We define the utility function so that it trades off between: (i)
exploitation of the best current solution; (ii) exploration of the states’ space. We
compared the ACO-RRT* performance with the RRT and RRT* algorithms in
three challenging scenarios. ACO-RRT* is able to find a first path of a quality

2A video that shows a simulation execution in two different scenarios (Scenarios 1, 2) can
be found in: https://vimeo.com/253576604; https://rebrand.ly/plann385a.

https://vimeo.com/253576604
https://rebrand.ly/plann385a

A.6. Summary and Outlook 169

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Figure A.10: Example of one path planned with the ACO-RRT* algorithm for
each of the analyzed scenarios. The big pink dot is the starting position. The
red square is the goal region. The final path is coloured in red. The black dots
are the samples generated by the algorithm. The yellow and pink dots represent
the ants positions at the end of the algorithm’s execution. Let us remark that
the ants represented with the pink dots are the ones that were place on top of
an obstacle during the algorithm’s execution.

higher than the other alternatives (improvement factor between a 1.08 and 1.5).
In addition, results suggest that our algorithm approaches the optimal solution
3.6 faster than RRT* algorithm. However ACO-RRT* requires more time to
find a first path. In order to reduce this time, we extended the algorithm to
an anytime version. Here, the algorithm searches a first path as fast as possible
regardless of the path’s cost, and then improves it using ACO-RRT*. Simulations
results demonstrate that Anytime ACO-RRT* outperforms the state-of-the-art
RRT/RRT* algorithms.

In the following we list future steps that we consider could enhance our
proposed algorithm. We remark that we do not implement them in this thesis.
These are the following:

1. Validating the algorithm in an experiment with a robot-in-the-loop.

2. Learning the optimal algorithm’s parameters for an specific scenario. This
could be done by means of RL, where a robot could automatically tune
these parameters by analyzing the current solutions as it moves and inter-
acts with the environment.

3. Incorporating some of the state-of-the-art path planning methods in this
framework. In this appendix we proposed a framework that deals with the
RRT algorithm. However, the proposed method is not restricted to RRT
and further path planning methods could be easily incorporated, which we

170 Appendix A. Single-Robot Path Planning

strongly believe it could lead to a superior performance compared to RRT.
To realize the proposed framework with a planning algorithm different from
RRT, it is crucial to define a proper utility function that meets the planning
algorithm’s characteristics.

4. Extending the algorithm to a cooperative multi-robot case, as a multi-
robot system would strongly benefit from exchanging ants between robots.
This way, robots would exchange information about most promising areas
in the environment which will lead to a more efficient path planning.

5. Handling more complex objective functions within our framework. In this
appendix, our objective function corresponds to the cost of traversing a
path, which we measure as path length. However, we could consider al-
ternative objective functions. For example, given a robot subject to lo-
calization uncertainty, an objective function could steer the robot so that
its uncertainty in the position its minimal while moving from an initial to
a goal position. Another promising application, which is in line with this
thesis, is the definition of an objective function to drive a robot to gather
information efficiently.

This last application – the definition of an objective function to gather in-
formation – seems like the next natural step within the scope of this thesis. In
fact, we implemented some ideas in this respect. Specifically, we employed ants
in order to identify regions that are the most informative, by defining the ants’
utility as the entropy at the ant’s location. We also made the assumption that
an informative point most likely belongs to a highly informative area. This way,
sampling at a high informative location will involve placing an ant with a high
utility in that area to sample there again in the future.

We performed some initial tests to validate the previous hypothesis. How-
ever, results yielded a performance slightly inferior than the algorithm proposed
in Chapter 5. We believed that the inferior performance lies on the assumption
we made: an informative point most likely belongs to a highly informative area.
According to the simulation results, we concluded that this is only true for struc-
tured environments. For example, an office-like environment that is composed
of several rooms would benefit of utilizing ACO. Here, a highly informative lo-
cation will most likely correspond to an unexplored room. Then, by placing
ants in that room we will explore it before moving to next one. In contrast, in
an unstructured environment or in an environment with obstacles, a robot will
move and leave small patches of unexplored locations. In case an ant identifies
such a patch, placing more ants will not improve the algorithm’s performance
due to the small size of the patch relative to the number of ants.

A.6. Summary and Outlook 171

To conclude: initial results suggest that we could benefit from ACO to gather
information in structured environments. However, further investigations should
be made in order to properly define suitable structured environments.

Appendix B

Multi-Robot Path Planning

In this appendix we present a preliminary study that we performed to better
understand DCOP for multi-robot coordination, a technique that we latter ex-
ploited in Chapter 7 for information gathering. As in Appendix A, the applica-
tion chosen to study DCOP is multi-robot path planning.

We would like to remark that this chapter does not only represent a prelimi-
nary study, but it is a major contribution by itself. Specifically, here we present,
to the best of our knowledge, the first RRT-based multi-robot path planning al-
gorithm that only requires local inter-robot communication. Next, we introduce
the problem we aim to solve in detail.

B.1 Introduction

Multiple approaches have been proposed in the literature to deal with the
multi-robot path planning problem. Approaches such as geometry-based al-
gorithms (Siméon et al., 2002), dynamic programming (Swigart and Lall, 2010),
linear programming (Ayanian and Kumar, 2010), mixed integer linear program-
ming (MILP) (Habib et al., 2013), or decentralized model predictive control
(DMPC) (Kuwata and How, 2011) have been shown to work well, but they
suffer from a high computational complexity. This makes such approaches in-
tractable for large teams of robots, and for missions that are subject to complex
inter-robot constraints (Desaraju et al., 2012).

Efficient algorithms that offer a lower computational complexity, compared
to the aforementioned ones, have been recently proposed in the literature (Zhang
et al., 2016; Kim et al., 2015; Wei et al., 2014; Wagner and Choset, 2015). In
particular, (Wagner and Choset, 2015) served us as inspiration for our approach.
In (Wagner and Choset, 2015), the authors employ the concept of subdimen-
sional expansion. That is: initially each of the robots plans a path individually,
and then each robot coordinates its motion with the rest of the team as needed.

173

174 Appendix B. Multi-Robot Path Planning

Despite the fact that the work of Wagner and Choset (2015) is a major con-
tribution for multiple applications, it is not applicable to our problem. This is
because it requires a discretization of the environment and robot’s state space,
which does not allow us to generalize the algorithm to a large class of robots
(Section 2.2.1).

To solve this issue, we propose an algorithm that builds on RRTs (Sec-
tion 2.2.2). Several works for multi-robot cooperation employed RRT to plan
robots’ paths (Ziyang et al., 2014; Saribatur et al., 2014; Levine et al., 2013).
However, none of them focus on the specific problem of path planning for mul-
tiple robots.

The work by Desaraju et al. (2012) is the one that is closest to our proposed
approach. They employ the closed-loop RRT algorithm (Kuwata et al., 2008) in
combination with a token based approach to solve the multi-robot path planning
problem in a decentralized manner. However, the authors assume full connec-
tivity between robots. Such assumption is unrealistic, as communication links
have a limited range. In contrast, in this work, we propose an algorithm that
only requires local communication between robots. Like in (Wagner and Choset,
2015), our algorithm is based on a two steps approach: (i) first, robots plan sev-
eral paths individually using the RRT algorithm, (ii) second, robots cooperate
with their neighbors as needed to find the set of paths that minimizes the total
distance travelled by robots. The second step is realized using DCOP (Leite
et al., 2014).

The remainder of this paper is organized as follows. Section B.2 states for-
mally the problem. Section B.3 summarizes the DCOP approach that we employ
to achieve multi-robot coordination. Then we describe in Sections B.4 and B.5
our distributed multi-robot path planning algorithm. Sections B.6 and B.7
present the simulations and experiments performed, and is then followed by
a summary and outlook in Section B.8.

B.2 Problem Statement

Let us consider a network of N robots. Each robot i = 1, 2, ..., N aims to visit,
in a predefined order, the set of stations Si = {si,1, si,2, ..., si,ni} (for instance,
a set of places where to take measurements), with ni the number of stations
that robot i aims to visit. We denote the path that links stations Si as PSi =
[Psi,1,si,2 ,Psi,2,si,3 , ...,Psi,ni−1,si,ni

].

The goal of agent i is to find PSi that minimizes function U(PS1 ,PS2 , ...,PSN).
U(·) is a global function that encodes the inter-dependencies of all robots that
conform the network. In this work, we define U(·) as the total distance traveled
by robots while avoiding collisions. Let us remark that a large class of functions

B.3. Asynchronous Distributed Constraint Optimization 175

can be considered within the framework proposed in this appendix, as we will
describe in Section B.3. An example of such function is the information gathering
utility (7.10), introduced in Chapter 7.

In this work, we consider the following constraints:

1. Robots move according to the model introduced in Section 4.1.

2. Inter-robot communication is given by a disc communication model of ra-
dius rc (definition (6.1)).

3. Two robots collide if they are separated less than a distance rs.

In addition, we assume the following:

1. The robot’s position is known exactly and noise-free.

2. The borders and obstacles that define the environment are a priori known.

3. Robots initially know neither about the presence nor about the location of
other robots.

4. Stations si,j , si,j+1 are separated a maximum distance rc−rs
2 . This simpli-

fying assumption allows us to easily cast our problem within the DCOP
algorithm described in Section B.3. We discuss possible solutions to relax
this assumption in Section B.5.

B.3 Asynchronous Distributed Constraint Optimiza-
tion

In this appendix we propose the use of a DCOP algorithm – Adopt – (Modi et al.,
2005) to tackle the multi-robot path planning problem described in Section B.2.
In contrast to other DCOPs, Adopt provides theoretical guarantees on the global
solution optimality while keeping communication between agents asynchronous
and localized. This is our motivation to incorporate Adopt into our algorithm.

Adopt. In Adopt, each robot can control a decision variable di that can take

values from domain Pi = {P [1]
i ,P [2]

i , ...,P [ki]
i }, with ki the number of elements in

the domain. The goal of the robots is to minimize a global utility function U(A),
where A denotes a possible assignment for the variables. Adopt only allows us
to solve problems that involve binary constraints between robots. We denote a
constraint between robots i and j as gi,j(di, dj). The goal is to find the optimal
assignment A∗ that minimizes the following function:

176 Appendix B. Multi-Robot Path Planning

U(A) =
∑

di,dj∈D
gi,j(di, dj), (B.1)

in a distributed fashion, where each agent i is only in control of its own variable
di. The robots participating in Adopt must conform a connected subnetwork.
Let us empathize that this framework allows us to formulate a large class of
objective functions. For more details about the properties that (B.1) must meet,
please refer to (Modi et al., 2005).

DFS tree. Adopt takes as input a Depth-First Search (DFS) tree that encodes
the inter-robot constraints. Vertices of the tree represent robots, and edges define
inter-robot constraints. In this work, we implemented the algorithm proposed
in (Awerbuch, 1985) to create a DFS tree.

(Awerbuch, 1985) is fully distributed. However, one robot – the leader – must
trigger the DFS tree creation. The leader will become then the root of the DFS
tree. Here, for leader election we implemented the YO-YO algorithm (Santoro,
2006), since it is well suited to connected subnetworks of arbitrary topology, as
it is the case in this work.

B.4 Algorithm Overview

Here we propose an algorithm that allows multiple robots to jointly plan their
paths in a distributed fashion. Instead of optimizing U(·) in one step, we do it
sequentially. That is, robots cooperate to plan their paths between their current
station and the next one. Once they reach an station, they cooperate again.
This problem relaxation allows us to keep the algorithm complexity bounded and
independent of the number of stations. Moreover, solving U(·) in one step is not
necessarily optimal. Imagine, for example, that a mission requires incorporating
a new robot to the system. In this case, robots should replan their complete paths
to consider the new constraints imposed by this new robot, which would make
the optimization for the full set of stations useless. This strategy is identical
to the one proposed in Chapter 7 since it is well suited to dynamic network
topologies, which result as robots move to explore.

State machine. Figure B.1 shows the state machine that controls the algo-
rithm’s execution. First, when a robot reaches a station, it searches for neighbors
by sending an identification message. Then neighboring robots will create con-
nected subnetworks. Notice that, within a large environment, several isolated
subnetworks may be created (see Fig. B.2). Next, each subnetwork will execute
the algorithm proposed in Section B.5. This is realized in two steps. First,

B.4. Algorithm Overview 177

Neighbors
 found

Generation of
1 path

Generation of
 ki paths

ON_STATION

YES NO

LEADER_ELECTION

DFS_TREE_CREATION

ADOPT_ALGORITHM

Collision free path

NO

Path replanning

Synchronization

PATH_FOLLOWING

Last station

NO YES

ALERT CONDITION

Approached too close
to other agent

New neighbor on safe
 distance or

 non-cooperative
neighbor or alert from

neighbour

END_MISSIONNeighbors search

YES

Figure B.1: State machine that describes the algorithm’s execution.

robots plan several paths individually towards the next station. To this end, as
in Chapter 7, we employ RRT (Section 2.2.2). Let us remark that this choice is
motivated by the fact that, due to the random nature of RRT, it delivers different
solutions each time we run it, which is a requirement for our algorithm. Sec-
ond, robots cooperate to find A∗ that minimizes U(·) while avoiding inter-robot
collisions.

Path replanning. Each of the robots plans ki paths to the next station. How-
ever, this does not guarantee the existence of a collision-free solution. This lies
on the following: (i) RRT generates a finite number of paths ki, which does not
guarantee that there exists a collision-free combination of paths, or (ii) Adopt
cannot converge to a solution before an user-defined time threshold. Therefore,
we introduce a replanning strategy to deal with this problem (Section B.5.1).

178 Appendix B. Multi-Robot Path Planning

communication
range

FOLLOWING PATH

CONNECTED
SUBNETWORK

CONNECTED
SUBNETWORK

SAFE DISTANCE

Figure B.2: Example of an scenario where multiple robots aim to visit a set of
stations. On the one hand, robots that are close form a connected subnetwork to
find a joint solution to move towards the next station. On the other hand, robots
that are far plan their paths individually. This is realized with our proposed
algorithm.

Robots synchronization. The last step of the algorithm for a connected
subnetwork consists of a synchronization step that forces robots to start at the
same time. This is required to avoid collisions. The robots will continue the
algorithm’s execution until they reach the last station. The aforementioned
procedures are explained in further detail in Section B.5.

Single-robot subnetwork. Let us also emphasize that in the first step of the
algorithm a robot could find no neighbors; for instance, in large environments or
for robots that have a small communication range. Then, the robot will plan its
path individually and follow it till the next station. This is a natural approach
since robots that are not in communication range can not cooperate to find a
joint solution. However, it could happen that while robots are moving they find
another robots. Then, an alert condition will be triggered and robots involved
will stop following their paths and will execute the second step of the algorithm;
i.e. creation of a connected subnetwork.

B.5 Multi-Robot Path Planning for a Connected Sub-
network

This section explains the procedures that robots execute once they created a
connected subnetwork. First, each of the robots generates ki paths between xri

B.5. Multi-Robot Path Planning for a Connected Subnetwork 179

and their next station using RRT.
Second, robots elect a leader, create the DFS tree required by Adopt, and

start the execution of Adopt (Section B.3). We employ Adopt to find A∗ that
minimizes the total distance travelled by robots while avoiding collision between

robots. We denote the distance associated to path P [l]
i as Dist(P [l]

i). Following
the notation introduced in Section B.3, we first define gi,j(·) for the collision-free
case. This is as follows:

gi,j(P [l]
i ,P

[m]
j) =

Dist(P [l]
i)

|Ni|
+

Dist(P [m]
j)

|Nj |
, (B.2)

with l ∈ [1, 2, ..., ki],m ∈ [1, 2, ..., kj], and |Ni|, |Nj | the number of neighbors of
robots i, j.

It is also possible that P [l]
i and P [m]

j incur in a collision; i.e. they are separated
a distance smaller than rs, at the same time instant. In case of a collision,

gi,j(P [l]
i ,P

[m]
j) takes a value equal to infinite as described in Section 7.5.3.

Let us remark that this definition of the utility function allows the robot
to find a collision-free solution that minimizes the total traveled distance for
subnetworks of arbitrary topology. For example, let us consider a subnetwork of
3 robots where robot 1 is connected to 2, robot 2 is connected to 1 and 3, and
robot 3 is connected to 2. This results in |N1| = 1, |N2| = 2, |N3| = 1. We can
then easily check by substituting those values in (B.2) that (B.1) is equal to the
total distance traveled by all robots.

B.5.1 Path Replanning

We introduce a path replanning mechanism to guarantee the existence of a so-
lution to the path planning problem. Since robots are ordered in a DFS tree,
we exploit this hierarchy for the replanning mechanism. This is triggered by
the tree root, which sends its shortest path to all its descendants. Once a node
receives the path proposed by its father, it calculates a path that does not collide
with the ones proposed by its ancestors; i.e. all nodes that link it to the root.
Specifically, we calculate the path with RRT, and assume the ancestors’ paths
as spatio-temporal obstacles.

Replanning continues till robots at the leaves of the DFS tree are reached.
Once robots finish replanning, they send through the DFS tree a message back
to the root informing about the completion of replanning.

B.5.2 Robots Synchronization

The last step of the algorithm is a synchronization procedure. As we previously
mentioned, collisions between paths are checked both in the spatial and tempo-

180 Appendix B. Multi-Robot Path Planning

ral dimension. On the one hand, the consideration of the temporal dimension
reduces the number of potential collisions, as we are adding an additional di-
mension. On the other hand, this requires that robots are synchronized; i.e.
they must start following their paths at the same time instant. We would like to
point out that the consideration of the time dimension is possible because this
information is stored in the RRT, which is generated by considering the robots
motion model.

The root of the DFS tree is the one that will trigger the path following
procedure. This message will be sent through the tree. Once a node receives this
message it will start following its path. Since the message must travel through
the network, we assume there will be a small delay between different nodes that
will increase with the tree’s depth. Let us remark that this can be taken into
account by increasing the safety distance proportionally to the expected delay,
which can be calculated given the communication protocol and the DFS tree
topology.

B.5.3 Stations Separation

In Section B.2, we introduced a simplifying assumption that limits the maxi-
mum distance between two stations; this corresponds to assumption 4. This is
motivated by the fact that Adopt can only accept binary constraints. Then, by
limiting the planning horizon to rc−rs

2 we can guarantee that robots that are not
in communication range will never collide. This assumption could be easily re-
moved by defining an intermediate station between the two considered stations.
The robot would plan first to this intermediate station and then to the final one.

B.6 Simulations and Discussion of Results

We validate our proposed algorithm in two steps. First, we validate the al-
gorithm for a connected subnetwork (Section B.5) by performing Monte Carlo
simulations. Specifically, we evaluate the performance of the leader election, the
DFS tree creation, and the distributed assignment of paths. Second, we illus-
trate with an example the algorithm’s behaviour for a system composed of several
subnetworks, as described in Section B.4. Here, and without loss of generality,
we consider a holonomic robot in order to abstract the robot’s motion from the
algorithm’s behavior. We carry out all simulations in a central computer in a
decentralized fashion using ROS (Quigley et al., 2009).

B.6. Simulations and Discussion of Results 181

1 2 3 4 5 6 7 8 9 10 11
Number of agents

0

2

4

6

8

10

T
im

e
[s

]
Leader election

Fully connected

Sparsely connected

(a) Leader election.

1 2 3 4 5 6 7 8 9 10 11
Number of agents

0

2

4

6

8

10

T
im

e
[s

]

DFS Tree

Fully connected

Sparsely connected

(b) DFS tree creation.

Figure B.3: Leader election and DFS tree creation. Fully and sparsely connected
subnetworks.

B.6.1 Leader Election and Depth-First Search Tree Creation

First we evaluate the convergence time of both the leader election and DFS tree
creation algorithms as we increase the number of robots in the subnetwork. This
is crucial to understand the scalability of the proposed algorithm.

We perform simulations for two types of subnetworks: (i) a fully connected
subnetwork where all robots can communicate with each other; (ii) a sparsely
connected subnetwork where each robot has a maximum number of 5 neighbors.
This last one corresponds to a more realistic scenario that we could encounter
in a mission that takes place within a large environment. For each of the sim-
ulated number of agents, we repeat the simulation 100 times. Let us add that
for the sparsely connected case a new random network is generated each time.
Figure B.3 shows the resulting average and variance for the different scenarios.

We can conclude that the complexity of both algorithms grow exponentially
for a fully connected subnetwork. However, the complexity is linear for a sparsely
connected subnetwork, which makes both algorithms suitable for real world mis-
sions.

B.6.2 Distributed Assignment of Paths

Here we analyze the performance of Adopt as we vary the number of robots in
the subnetwork, and the number of paths in a robot’s domain. In both cases,
we consider a sparse subnetwork with the same properties as in Sec, B.6.1. We
repeat each of the simulations 100 times.

Figures B.4a,B.4c and B.5a,B.5c show the time and the total number of
exchanged messages, respectively, that Adopt required to converge to the optimal
solution as we increased the domain’s size. We present the average and a box

182 Appendix B. Multi-Robot Path Planning

1 2 3 4 5 6 7 8 9 10 11
Domain size

0

2

4

6

8

10

T
im

e
[s

]

Adopt termination

Mean value for 3 agents

Mean value for 5 agents

Mean value for 10 agents

(a) Average performance with the
number of paths in the domain.

1 2 3 4 5 6 7 8 9 10 11
Number of agents

0

2

4

6

8

10

T
im

e
[s

]

Adopt termination

Mean value for domain size 4

(b) Average performance with the
number of agents.

2 3 4 5 6 7 8 9 1O
Domain size

0

5

10

15

20

T
im

e
[s

]

Adopt termination

3 Agents

5 Agents

10 Agents

(c) Performance with the number
of paths in the domain.

2 3 4 5 6 7 8 9 1O
Number of agents

0

5

10

15

20
T

im
e

[s
]

Adopt termination

Domain size 4

(d) Performance with the number
of agents.

Figure B.4: Distributed Assignment of Paths. (a,c) Performance with the num-
ber of paths in the domain for a network with 3, 5 and 10 agents. (b,d) Perfor-
mance with the number of agents given a fixed domain composed of 4 paths.

plot representation of the data. These simulations were carried out for a domain
size – number of paths – ranging between 2 and 10, and we considered 3, 5 and
10 robots.

We can observe in Figures B.4a,B.4c that for a small number of robots the
algorithm’s complexity remains quasi constant respect to the domain size. How-
ever, for a large number of robots (10) the performance increases linearly. The
explanation for such behavior can be understood by analyzing Figures B.4b,B.4d
and B.5b,B.5d. Here we show the algorithm’s complexity as we vary the num-
ber of robots given a fixed domain composed of 4 paths. We can confirm that
the algorithm’s complexity grows exponentially as Modi et al. (2005) point out.
Moreover, the box plot representation confirms that the algorithm’s complexity

B.6. Simulations and Discussion of Results 183

1 2 3 4 5 6 7 8 9 10 11
Domain size

0

50

100

150

200

250

300

350

N
u

m
b

er
of

se
nt

m
es

sa
ge

s
p

er
ag

en
t

Number of exchanged messages in Adopt

Mean value for 3 agents

Mean value for 5 agents

Mean value for 10 agents

(a) Average number of exchanged
messages with the number of paths
in the domain.

1 2 3 4 5 6 7 8 9 10 11
Number of agents

0

50

100

150

200

250

300

350

N
u

m
b

er
of

se
nt

m
es

sa
ge

s
p

er
ag

en
t

Number of exchanged messages in Adopt

Mean value for domain size 4

(b) Average number of exchanged
messages with the number of
agents.

2 3 4 5 6 7 8 9 1O
Domain size

0

50

100

150

200

250

300

350

400

450

N
u

m
b

er
of

se
nt

m
es

sa
ge

s
p

er
ag

en
t

Number of exchanged messages in Adopt

3 Agents

5 Agents

10 Agents

(c) Exchanged messages with the
number of paths in the domain.

2 3 4 5 6 7 8 9 1O
Number of agents

0

50

100

150

200

250

300

350

400

450
N

u
m

b
er

of
se

nt
m

es
sa

ge
s

p
er

ag
en

t

Number of exchanged messages in Adopt

Domain size 4

(d) Exchanged messages with the
number of agents.

Figure B.5: Distributed Assignment of Paths. (a,c) Number of exchanged mes-
sages with the number of paths in the domain for a network with 3, 5 and 10
agents. (b,d) Number of exchanged messages with the number of agents given a
fixed domain composed of 4 paths.

is highly dependent of the network topology. This is one of the main reasons why
we introduced the replanning process in our algorithm; if Adopt takes too long
to converge, the replanning method will be triggered to find a feasible solution.

Attending to results we can conclude that: (i) the use of Adopt within a
small subnetwork results in a low computational complexity, and (ii) for a large
subnetwork we should either consider alternative algorithms (like e.g. max-
sum (Farinelli et al., 2008)), or introduce additional constraints into the algo-
rithm’s design to avoid the creation of large subnetworks. As our goal in this
thesis is to develop an algorithm that is scalable with the number of robots, we
decided to use max-sum in Chapter 7 for our informative path planning algo-

184 Appendix B. Multi-Robot Path Planning

0 10 20 30 40 50 60 70
Time [s]

0

2

4

6

8

10

N
u

m
b

er
of

su
b

n
et

w
or

ks

(a) Number of subnetworks.

0 10 20 30 40 50 60 70
Time [s]

0

2

4

6

8

10

M
ax

nu
m

b
er

of
ag

en
ts

p
er

su
b

n
et

w
or

k

(b) Maximum number of agents per
subnetwork.

Figure B.6: Number of subnetworks and maximum number of robots per sub-
network for a typical scenario with 10 robots.

rithm.

B.6.3 Multi-Robot Path Planning for a System with Multiple
Subnetworks

Finally, we show one example of the whole system’s behavior for a typical scenario
with 10 robots. In a typical scenario, given a limited communication radius, Gc(·)
is divided into several subgraphs (subnetworks), and robots cannot communicate
with the rest of robots that compose the system. In this case, robots will execute
the algorithm described in Section B.4.

We show in Figure B.6 the evolution with time of the number of subnetworks,
and maximum number of robots per subnetwork, which results as robots move.
We observe that the maximum number of robots per subnetwork is 4, although
we have a system of 10 robots. This property implies that, even for a large system
composed of multiple robots, the number of robots per subnetwork remains low.
Therefore, the computational load of each of the robots remains also much lower,
as we indicated in Fig. B.4.

B.7 Experiments and Discussion of Results

We validated the proposed algorithm in an experiment 1 with three holonomic
robots (see Figure B.7). For a more detailed description of the robots, we refer
the reader to Section 4.3. Like we did for the simulations, here we also run the

1A video that shows a simulation and an experiment execution can be found in: https:

//vimeo.com/253576649; https://rebrand.ly/anasyaba6.

https://vimeo.com/253576649
https://vimeo.com/253576649
https://rebrand.ly/anasyaba6

B.8. Summary and Outlook 185

Figure B.7: The three holonomic robots employed to carry out the experimental
validation of the proposed algorithm.

algorithm in a central computer in a decentralized fashion. Then we send the
corresponding waypoints to the robot using ROS with a WiFi connection. Each
robot is equipped with a Raspberry Pi that runs the robots controller to guide
the robot to the desired wapoint.

For the experiment, we assume that robots initially conform a connected
network. In particular, two robots are assigned to three stations, while the
remaining one is assigned to two. We set a domain size of two for each of the
robots; i.e. each robot proposes to its neighbors two possible paths to travel
between stations.

Experiments demonstrated that robots were able to visit the assigned sta-
tions, using our proposed algorithm. We would also like to remark that the
cooperation between robots took, in the worst case, less than 2 seconds.

B.8 Summary and Outlook

In this chapter, we proposed an approach for multi-robot path planning. Specif-
ically, our approach builds on RRTs and a DCOP technique (Adopt). On the
one hand, RRTs allow us to generalize our algorithm to a large class of robots.
On the other hand, Adopt provides a mechanism to achieve multi-robot cooper-
ation in an asynchronous and distributed fashion, and with local communication
between robots.

Beyond this thesis, we foresee possible improvements that could enhance our
proposed algorithm’s performance. These are the following:

1. Adopt performance scales linearly with the number of robots, for a small
subnetwork. However, Adopt scales exponentially for large subnetworks.
Moreover, Adopt requires a DFS tree and a leader election algorithm, and
both algorithms scale exponentially with the number of robots. This led

186 Appendix B. Multi-Robot Path Planning

us to the conclusion that Adopt is not suited for systems composed by a
large number of robots, and alternatives should be considered. In our case,
we decided to use max-sum for multi-robot coordination (Farinelli et al.,
2008), as it scales exponentially only with the number of neighbors, and
it does not require any preprocessing steps. For a detailed description of
max-sum, we refer the reader to Section 7.3.

2. Our algorithm can handle large robotic systems composed of several sub-
networks. As robots moves, the network topology changes and robots
leave/join subnetworks. To handle these changes in the network topology
we introduced an alert condition that stops the subnetwork coordination
procedure in case a new robot is discovered. This works in practice for a
small number of robots. However, we can expect multiple interruptions for
a large number of robots. Therefore, alternative mechanisms should be in-
corporated into the system. One alternative is to add additional constraints
to force the system to be connected, as we propose in Chapter 7. Another
alternative is to trigger the alarm condition only sporadically. This way
we will have cooperative robots, and robots that act by themselves.

3. The experiment performed in this chapter was a toy example to better
understand how our proposed algorithm performs with actual robots. In
the future we would like to extend the experiments to a larger scale, as
well as to consider a larger number of non-holonomic robots.

Bibliography

Baris Akgun and Mike Stilman. Sampling heuristics for optimal motion plan-
ning in high dimensions. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 2640–2645. IEEE, 2011.

D Alejo, JA Cobano, G Heredia, and A Ollero. Optimal reciprocal collision
avoidance with mobile and static obstacles for multi-UAV systems. In Un-
manned Aircraft Systems (ICUAS), 2014 International Conference on, pages
1259–1266. IEEE, 2014.

Michael J Allen. Updraft model for development of autonomous soaring unin-
habited air vehicles. In Forty Fourth AIAA Aerospace Sciences Meeting and
Exhibit, pages 1–19, 2006.

Ron Alterovitz, Sachin Patil, and Anna Derbakova. Rapidly-exploring roadmaps:
Weighing exploration vs. refinement in optimal motion planning. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages
3706–3712. IEEE, 2011.

Nancy M Amato and Guang Song. Using motion planning to study protein
folding pathways. Journal of Computational Biology, 9(2):149–168, 2002.

Michael Angermann, Martin Frassl, Marek Doniec, Brian J Julian, and Patrick
Robertson. Characterization of the indoor magnetic field for applications in lo-
calization and mapping. In Indoor Positioning and Indoor Navigation (IPIN),
2012 International Conference on, pages 1–9. IEEE, 2012.

Oktay Arslan and Panagiotis Tsiotras. Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 2421–2428. IEEE,
2013.

187

188 BIBLIOGRAPHY

Oktay Arslan and Panagiotis Tsiotras. Dynamic programming guided explo-
ration for sampling-based motion planning algorithms. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on, pages 4819–4826.
IEEE, 2015.

Baruch Awerbuch. A new distributed depth-first-search algorithm. Information
Processing Letters, 20(3):147–150, 1985.

Nora Ayanian and Vijay Kumar. Decentralized feedback controllers for multia-
gent teams in environments with obstacles. IEEE Transactions on Robotics,
26(5):878–887, 2010. ISSN 15523098.

Tucker Balch and Lynne E Parker. Robot teams: from diversity to polymorphism.
AK Peters, Ltd., 2002.

Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebastian
Thrun. Collaborative multi-robot exploration. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, volume 1,
pages 476–481. IEEE, 2000.

Brendan Burns and Oliver Brock. Toward optimal configuration space sampling.
In Robotics: Science and Systems, pages 105–112. Citeseer, 2005.

J Capitan, L Merino, F Caballero, and A Ollero. Decentralized delayed-
state information filter (DDSIF): A new approach for cooperative decentral-
ized tracking. Robotics and Autonomous Systems, 59:376–388, 2011. doi:
10.1016/j.robot.2011.02.001.

Henry Carrillo, Ian Reid, and José A Castellanos. On the comparison of uncer-
tainty criteria for active SLAM. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2080–2087. IEEE, 2012.

David W Casbeer, Randal W Beard, Timothy W McLain, Sai-Ming Li, and Ra-
man K Mehra. Forest fire monitoring with multiple small UAVs. In American
Control Conference, 2005. Proceedings of the 2005, pages 3530–3535. IEEE,
2005.

Benjamin Charrow, Sikang Liu, Vijay Kumar, and Nathan Michael. Information-
theoretic mapping using cauchy-schwarz quadratic mutual information. In
IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

Jie Chen, Kian H Low, Colin Tan, Ali Oran, Patrick Jaillet, John M Dolan, and
Gaurav S Sukhatme. Decentralized data fusion and active sensing with mobile
sensors for modeling and predicting spatiotemporal traffic phenomena. arXiv
preprint arXiv:1206.6230, 2012.

BIBLIOGRAPHY 189

Jie Chen, Kian H Low, Yujian Yao, and Patrick Jaillet. Gaussian process decen-
tralized data fusion and active sensing for spatiotemporal traffic modeling and
prediction in mobility-on-demand systems. IEEE Transactions on Automation
Science and Engineering, 12(3):901–921, 2015.

H L Choi and S J Lee. A potential-game approach for information-maximizing
cooperative planning of sensor networks. IEEE Transactions on Control Sys-
tems Technology, 23(6):2326–2335, Nov 2015. ISSN 1063-6536.

Han L Choi and Jonathan P How. Continuous trajectory planning of mobile
sensors for informative forecasting. Automatica, 46(8):1266–1275, 2010. ISSN
00051098. URL http://dx.doi.org/10.1016/j.automatica.2010.05.004.

Jen Jen Chung, Nicholas R J Lawrance, and Salah Sukkarieh. Learning to soar:
Resource-constrained exploration in reinforcement learning. The International
Journal of Robotics Research, 34(2):158–172, 2014. ISSN 0278-3649.

Oliver M Cliff, Robert Fitch, Salah Sukkarieh, Debra L Saunders, and Robert
Heinsohn. Online localization of radio-tagged wildlife with an autonomous
aerial robot system. Proceedings of Robotics Science and Systems XI, pages
13–17, 2015.

Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

Noel Cressie. Statistics for spatial data. Terra Nova, 4(5):613–617, 1992.

Philip Dames, Mac Schwager, Daniela Rus, and Vijay Kumar. Active magnetic
anomaly detection using multiple micro aerial vehicles. Robotics and Automa-
tion Letters, IEEE, 2015.

Jory Denny, Miguel Morales, Saul Rodriguez, and Nancy M Amato. Adapting
RRT growth for heterogeneous environments. In Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Conference on, pages 1772–1778.
IEEE, 2013a.

Jory Denny, Kensen Shi, and Nancy M Amato. Lazy toggle PRM: a single-
query approach to motion planning. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 2407–2414. IEEE, 2013b.

Vishnu R Desaraju, Jonathan P How, V R Desaraju, and J P How. Decentralized
path planning for multi-agent teams with complex constraints. Auton Robot,
32:385–403, 2012. ISSN 0929-5593.

http://dx.doi.org/10.1016/j.automatica.2010.05.004

190 BIBLIOGRAPHY

Rosen Diankov and James Kuffner. Randomized statistical path planning. In
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, pages 1–6. IEEE, 2007.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

Cory Dixon and Eric W Frew. Maintaining optimal communication chains in
robotic sensor networks using mobility control. Mobile Networks and Applica-
tions, 14(3):281–291, 2009.

Cho Doo-Hyun, Ha Jung-Su, Lee Su-Jin, Moon Sunghyun, and Choi Han-Lim.
Informative path planning and mapping with multiple UAVs in wind fields. In
Proceedings of the 13th International Symposium on Distributed Autonomous
Robotic Systems, DARS, 2016. URL http://arxiv.org/abs/1610.01303.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: Optimiza-
tion by a colony of cooperating agents. Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, 26(1):29–41, 1996.

Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. De-
centralised coordination of low-power embedded devices using the max-sum
algorithm. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 2, pages 639–646. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2008.

Dave Ferguson and Anthony Stentz. Anytime RRTs. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 5369–5375.
IEEE, 2006.

Jonathan Fink and Vijay Kumar. Online methods for radio signal mapping with
mobile robots. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 1940–1945. IEEE, 2010.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. BIT*:
Batch informed trees for optimal sampling-based planning via dynamic pro-
gramming on implicit random geometric graphs. Technical report, Tech. Re-
port TR-2014-JDG006, ASRL, University of Toronto, 2014a.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed
RRT*: Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic. arXiv preprint arXiv:1404.2334, 2014b.

http://arxiv.org/abs/1610.01303

BIBLIOGRAPHY 191

Seng K Gan, Robert Fitch, and Salah Sukkarieh. Online decentralized informa-
tion gathering with spatial–temporal constraints. Autonomous Robots, 37(1):
1–25, 2014.

Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2013.

S Grime and H F Durrant-Whyte. Data fusion in decentralized sensor networks.
Control Engineering Practice, 2(5):849–863, Oct. 1994.

B Grocholsky, J Keller, V Kumar, and G Pappas. Cooperative air and ground
surveillance. IEEE Robotics Automation Magazine, 13(3):16–25, Sept 2006.
ISSN 1070-9932.

Carlos Guestrin, Andreas Krause, and Ajit P Singh. Near-optimal sensor place-
ments in Gaussian processes. In Proceedings of the 22nd international confer-
ence on Machine learning, pages 265–272. ACM, 2005.

Leonidas J Guibas, Christopher Holleman, and Lydia E Kavraki. A probabilistic
roadmap planner for flexible objects with a workspace medial-axis-based sam-
pling approach. In Intelligent Robots and Systems, 1999. IROS’99. Proceed-
ings. 1999 IEEE/RSJ International Conference on, volume 1, pages 254–259.
IEEE, 1999.

Durdana Habib, Habibullah Jamal, and Shoab A Khan. Employing multiple
unmanned aerial vehicles for co-operative path planning. International Journal
of Advanced Robotic Systems, 10:1–10, 2013. ISSN 17298806.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, 1968.

G M Hoffmann and C J Tomlin. Mobile sensor network control using mutual
information methods and particle filters. IEEE Transactions on Automatic
Control, 55(1):32–47, Jan 2010. ISSN 0018-9286.

Geoffrey Hollinger and Sanjiv Singh. Multi-robot coordination with periodic
connectivity. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 4457–4462. IEEE, 2010.

Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based robotic informa-
tion gathering algorithms. The International Journal of Robotics Research, 33
(9):1271–1287, 2014.

192 BIBLIOGRAPHY

Geoffrey A Hollinger, Sunav Choudhary, Parastoo Qarabaqi, Christopher Mur-
phy, Urbashi Mitra, Gaurav S Sukhatme, Milica Stojanovic, Hanumant Singh,
and Franz Hover. Underwater data collection using robotic sensor networks.
IEEE Journal on Selected Areas in Communications, 30(5):899–911, 2012.

David Hsu, Tingting Jiang, John Reif, and Zheng Sun. The bridge test for
sampling narrow passages with probabilistic roadmap planners. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference
on, volume 3, pages 4420–4426. IEEE, 2003.

Yong K Hwang and Narendra Ahuja. A potential field approach to path planning.
IEEE Transactions on Robotics and Automation, 8(1):23–32, 1992.

Maani G Jadidi, Jaime V Miro, Rafael Valencia, and Juan Andrade-Cetto. Ex-
ploration on continuous Gaussian process frontier maps. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on, pages 6077–6082.
IEEE, 2014.

Maani G Jadidi, Jaime V Miro, and Gamini Dissanayake. Mutual information-
based exploration on continuous occupancy maps. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 6086–
6092. IEEE, 2015.

Léonard Jaillet, Anna Yershova, Steven M La Valle, and Thierry Siméon. Adap-
tive tuning of the sampling domain for dynamic-domain RRTs. In Intelligent
Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Con-
ference on, pages 2851–2856. IEEE, 2005.

Léonard Jaillet, Juan Cortés, and Thierry Siméon. Transition-based RRT for
path planning in continuous cost spaces. In Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, pages 2145–2150.
IEEE, 2008.

Léonard Jaillet, Juan Cortés, and Thierry Siméon. Sampling-based path plan-
ning on configuration-space costmaps. Robotics, IEEE Transactions on, 26(4):
635–646, 2010.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of Robotics Research,
page 0278364915577958, 2015.

Brian J Julian, Sertac Karaman, and Daniela Rus. On mutual information-based
control of range sensing robots for mapping applications. The International
Journal of Robotics Research, 33(10):1375–1392, 2014.

BIBLIOGRAPHY 193

Ma Kai-Chieh, Ma Zhibei, Liu Lantao, and Gaurav S Sukhatme. Multi-robot
informative and adaptive planning for persistent environmental monitoring. In
Proceedings of the 13th International Symposium on Distributed Autonomous
Robotic Systems, DARS, 2016.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth
Teller. Anytime motion planning using the RRT*. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1478–1483. IEEE,
2011.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4):566–580, 1996.

Anssi Kemppainen, Janne Haverinen, Ilari Vallivaara, and Juha Röning. Near-
optimal SLAM exploration in Gaussian processes. In Multisensor Fusion and
Integration for Intelligent Systems (MFI), 2010 IEEE Conference on, pages
7–13. IEEE, 2010.

Donghyuk Kim, Junghwan Lee, and Sung-eui Yoon. Cloud RRT*: Sampling
cloud based RRT*. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, pages 2519–2526. IEEE, 2014.

Kangjin Kim, Joe Campbell, William Duong, Yu Zhang, and Georgios Fainekos.
DisCoF + : Asynchronous DisCoF with flexible decoupling for cooperative
pathfinding in distributed systems. In IEEE International Conference on
Automation Science and Engineering (CASE), pages 369—-376. IEEE, 2015.
ISBN 9781467381833.

Marin Kobilarov. Cross-entropy motion planning. The International Journal of
Robotics Research, 31(7):855–871, 2012.

Andreas Krause and Carlos Guestrin. Near-optimal observation selection using
submodular functions. In AAAI, volume 7, pages 1650–1654, 2007a.

Andreas Krause and Carlos Guestrin. Nonmyopic active learning of Gaussian
processes: an exploration-exploitation approach. In Proceedings of the 24th
international conference on Machine learning, pages 449–456. ACM, 2007b.

194 BIBLIOGRAPHY

Andreas Krause and Carlos Guestrin. Submodularity and its applications in
optimized information gathering. ACM Transactions on Intelligent Systems
and Technology (TIST), 2(4):32, 2011.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies. The Journal of Machine Learning Research, 9:235–284, 2008.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on information theory, 47(2):
498–519, 2001.

James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach
to single-query path planning. In Robotics and Automation, 2000. Proceed-
ings. ICRA’00. IEEE International Conference on, volume 2, pages 995–1001.
IEEE, 2000.

Yoshiaki Kuwata and Jonathan P How. Cooperative distributed robust trajec-
tory optimization using receding horizon MILP. IEEE Transactions on Control
Systems Technology, 19(2):423–431, 2011. ISSN 10636536.

Yoshiaki Kuwata, Justin Teo, Sertac Karaman, Gaston Fiore, Emilio Frazzoli,
and Jonathan P How. Motion planning in complex environments using closed-
loop prediction. In Proc. AIAA Guidance, Navigation, and Control Conf. and
Exhibit, 2008.

Xiaodong Lan and Mac Schwager. Planning periodic persistent monitoring tra-
jectories for sensing robots in Gaussian random fields. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 2415–2420.
IEEE, 2013.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Steven M LaValle and James J Kuffner. Rapidly-exploring random trees:
Progress and prospects, 2000.

Steven M LaValle and James J Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, 2001.

Nicholas RJ Lawrance and Salah Sukkarieh. Autonomous exploration of a wind
field with a gliding aircraft. Journal of guidance, control, and dynamics, 34
(3):719–733, 2011.

Allan R Leite, Fabricio Enembreck, and Jean-Paul A Barthes. Distributed con-
straint optimization problems: Review and perspectives. Expert Systems with
Applications, 41(11):5139–5157, 2014.

BIBLIOGRAPHY 195

Daniel Levine, Brandon Luders, and Jonathan How. Information-theoretic mo-
tion planning for constrained sensor networks. Journal of Aerospace Informa-
tion Systems, 10(10):476—-496, 2013. ISSN 2327-3097.

Daniel S Levine. Information-rich path planning under general constraints using
rapidly-exploring random trees. Master’s thesis, Citeseer, 2010.

Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on infor-
mation theory, 28(2):129–137, 1982.

Kian H Low, John M Dolan, and Pradeep Khosla. Adaptive multi-robot wide-
area exploration and mapping. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems-Volume 1, pages 23–
30. International Foundation for Autonomous Agents and Multiagent Systems,
2008.

James MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA., 1967.

Roman Marchant and Fabio Ramos. Bayesian optimisation for intelligent en-
vironmental monitoring. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 2242–2249. IEEE, 2012.

Alexandra Meliou, Andreas Krause, Carlos Guestrin, and Joseph M Hellerstein.
Nonmyopic informative path planning in spatio-temporal models. In AAAI,
volume 10, pages 16–7, 2007.

Luis Merino, Fernando Caballero, J Ramiro Mart́ınez-de Dios, Joaquin Ferruz,
and Ańıbal Ollero. A cooperative perception system for multiple UAVs: Ap-
plication to automatic detection of forest fires. Journal of Field Robotics, 23
(3-4):165–184, 2006.

Luis Merino, Fernando Caballero, and Anibal Ollero. Active sensing for range-
only mapping using multiple hypothesis. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 37–
42, Taipei (Taiwan), October 2010.

Nathan Michael, Michael M Zavlanos, Vijay Kumar, and George J Pappas. Main-
taining connectivity in mobile robot networks. In Experimental Robotics, pages
117–126. Springer, 2009.

196 BIBLIOGRAPHY

Lauren M Miller and Todd D Murphey. Optimal planning for target localization
and coverage using range sensing. In Automation Science and Engineering
(CASE), 2015 IEEE International Conference on, pages 501–508. IEEE, 2015.

Pratap Misra and Per Enge. Global Positioning System: Signals, Measurements
and Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.

Pragnesh J Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality guarantees. Ar-
tificial Intelligence, 161(1):149–180, 2005.

Mohd Murtadha Mohamad, Nicholas K Taylor, and Matthew W Dunnigan. Ar-
ticulated robot motion planning using ant colony optimisation. In Intelligent
Systems, 2006 3rd International IEEE Conference on, pages 690–695. IEEE,
2006.

Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodriguez, and Nancy M
Amato. A machine learning approach for feature-sensitive motion planning.
In Algorithmic Foundations of Robotics VI, pages 361–376. Springer, 2004.

L Srikar Muppirisetty, Tommy Svensson, and Henk Wymeersch. Spatial wireless
channel prediction under location uncertainty. IEEE Transactions on Wireless
Communications, 15(2):1031–1044, 2016.

Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mush-
taq Khan, and Mannan S Muhammad. RRT*-SMART: A rapid convergence
implementation of RRT*. International Journal of Advanced Robotic Systems,
10, 2013.

Joseph L Nguyen, Nicholas RJ Lawrance, Robert Fitch, and Salah Sukkarieh.
Real-time path planning for long-term information gathering with an aerial
glider. Autonomous Robots, pages 1–23, 2015.

Cynthia Nikolai and Gregory Madey. Tools of the trade: A survey of various
agent based modeling platforms. Journal of Artificial Societies and Social
Simulation, 12(2):2, 2009. ISSN 1460-7425. URL http://jasss.soc.surrey.

ac.uk/12/2/2.html.

nytimes. Six years after Fukushima, robots finally find reactors melted uranium
fuel, 2017. URL goo.gl/ebSRB3.

Ruofei Ouyang, Kian H Low, Jie Chen, and Patrick Jaillet. Multi-robot active
sensing of non-stationary Gaussian process-based environmental phenomena.
In Proceedings of the 2014 international conference on Autonomous agents and

http://jasss.soc.surrey.ac.uk/12/2/2.html
http://jasss.soc.surrey.ac.uk/12/2/2.html
goo.gl/ebSRB3

BIBLIOGRAPHY 197

multi-agent systems, pages 573–580. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

Mark Owen, Randal W Beard, and Timothy W McLain. Implementing Dubins
airplane paths on fixed-wing UAVs. In Handbook of Unmanned Aerial Vehicles,
pages 1677–1701. Springer, 2015.

Timothy Patten, Robert Fitch, and Salah Sukkarieh. Large-scale near-optimal
decentralised information gathering with multiple mobile robots. In Proceed-
ings of the Australasian Conference on Robotics and Automation, 2013.

Sven M Persson and Inna Sharf. Sampling-based A* algorithm for robot path-
planning. The International Journal of Robotics Research, 33(13):1683–1708,
2014.

Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint opti-
mization. In Internatioanl Joint Conference on Artificial Intelligence. Citeseer,
2005.

Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26
(3):308–333, 2009.

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source
Robot Operating System. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, May
2009.

Joaquin Quiñonero-Candela and Carl E Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Re-
search, 6(Dec):1939–1959, 2005.

J-P Ramirez-Paredes, Emily A Doucette, J Willard Curtis, and Nicholas R Gans.
Optimal placement for a limited-support binary sensor. IEEE Robotics and
Automation Letters, 1(1):439–446, 2016.

Carl E Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

Alessandro Renzaglia, Christophe Reymann, and Simon Lacroix. Monitoring the
evolution of clouds with UAVs. In IEEE International Conference on Robotics
and Automation, 2016.

198 BIBLIOGRAPHY

Markusand Rickert, Arne Sieverling, and Oliver Brock. Balancing exploration
and exploitation in sampling-based motion planning. IEEE Transactions on
Robotics, 30(6):1305–1317, December 2014.

NJ Robinson, PC Rampant, APL Callinan, MA Rab, and PD Fisher. Advances
in precision agriculture in south-eastern Australia. ii. spatio-temporal predic-
tion of crop yield using terrain derivatives and proximally sensed data. Crop
and Pasture Science, 60(9):859–869, 2009.

Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and
applications. CRC press, 2005.

Lorenzo Sabattini, Nikhil Chopra, and Cristian Secchi. Decentralized connec-
tivity maintenance for cooperative control of mobile robotic systems. The
International Journal of Robotics Research, 32(12):1411–1423, 2013.

Oren Salzman and Dan Halperin. Asymptotically near-optimal RRT for fast,
high-quality, motion planning. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 4680–4685. IEEE, 2014.

Oren Salzman and Dan Halperin. Asymptotically-optimal motion planning us-
ing lower bounds on cost. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 4167–4172. IEEE, 2015.

Nicola Santoro. Design and analysis of distributed algorithms, volume 56. John
Wiley & Sons, 2006.

Zeynep G Saribatur, Esra Erdem, and Volkan Patoglu. Cognitive factories with
multiple teams of heterogeneous robots: Hybrid reasoning for optimal feasible
global plans. In IEEE International Conference on Intelligent Robots and
Systems, pages 2923–2930, 2014. ISBN 9781479969340.

Michael C Shewry and Henry P Wynn. Maximum entropy sampling. Journal of
applied statistics, 14(2):165–170, 1987.

Thierry Siméon, J-P Laumond, and Carole Nissoux. Visibility-based probabilis-
tic roadmaps for motion planning. Advanced Robotics, 14(6):477–493, 2000.

Thierry Siméon, Stéphane Leroy, and J-P Lauumond. Path coordination for
multiple mobile robots: A resolution-complete algorithm. IEEE Transactions
on Robotics and Automation, 18(1):42–49, 2002.

Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J Kaiser. Effi-
cient informative sensing using multiple robots. Journal of Artificial Intelli-
gence Research, pages 707–755, 2009.

BIBLIOGRAPHY 199

Amarjeet Singh, Fabio Ramos, Hugh D Whyte, and William J Kaiser. Modeling
and decision making in spatio-temporal processes for environmental surveil-
lance. In Robotics and Automation (ICRA), 2010 IEEE International Confer-
ence on, pages 5490–5497. IEEE, 2010.

Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous
domains. European journal of operational research, 185(3):1155–1173, 2008.

Matthijs TJ Spaan, Tiago S Veiga, and Pedro U Lima. Decision-theoretic plan-
ning under uncertainty with information rewards for active cooperative per-
ception. Autonomous Agents and Multi-Agent Systems, 29(6):1157–1185, 2015.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer
Verlag, 1999.

Ruben Stranders, Alex Rogers, and Nicholas R Jennings. A decentralised on-
line coordination mechanism for monitoring spatial phenomena with mobile
sensors. In Workshop 15: Agent Technology for, page 9. Citeseer, 2008.

Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nicholas R Jennings.
Decentralised coordination of mobile sensors using the max-sum algorithm. In
Proceedings of the 21st international jont conference on Artifical intelligence,
pages 299–304. Morgan Kaufmann Publishers Inc., 2009.

Ruben Stranders, Francesco M D Fave, Alex Rogers, and Nicholas R Jennings.
A decentralised coordination algorithm for mobile sensors. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 874–880.
AAAI Press, 2010.

Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.
doi: 10.1109/MRA.2012.2205651. http://ompl.kavrakilab.org.

Ildiko Suveg and George Vosselman. Reconstruction of 3D building models from
aerial images and maps. ISPRS Journal of Photogrammetry and remote sens-
ing, 58(3):202–224, 2004.

J Swigart and S Lall. An explicit state space solution for a decentralized two-
player optimal linear-quadratic regulator. In Proc. of American Control Con-
ference (ACC.2010), volume 1, pages 6385–6390, 2010.

Onur Tekdas, Deepak Bhadauria, and Volkan Isler. Efficient data collection from
wireless nodes under the two-ring communication model. The International
Journal of Robotics Research, 31(6):774–784, 2012.

http://ompl.kavrakilab.org

200 BIBLIOGRAPHY

theguardian. Fukushima nuclear plant blast puts Japan on high alert, 2011. URL
goo.gl/gHrZuL.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

Chris Urmson and Reid G Simmons. Approaches for heuristically biasing RRT
growth. In IROS, volume 2, pages 1178–1183, 2003.

Alberto Viseras and Calin Olariu. A general algorithm for exploration with
Gaussian processes in complex, unknown environments. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on, pages 3388–3393.
IEEE, 2015.

Alberto Viseras, Zhe Xu, and Luis Merino. Distributed multi-robot coopera-
tion for information gathering under communication constraints. In Robotics
and Automation (ICRA), 2018 IEEE International Conference on, (accepted)
2017.

Alberto Viseras, Dmitriy Shutin, and Luis Merino. Online information gather-
ing using RRT-based planners and GPs. Robotics and Autonomous Systems,
(under review) 2017a.

Alberto Viseras, Zhe Xu, and Luis Merino. Distributed multi-robot information
gathering under complex constraints. Autonomous Robots, (under review)
2017b.

Alberto Viseras, Michael Angermann, Iris Wieser, Martin Frassl, and Joachim
Mueller. Efficient multi-agent exploration with Gaussian processes. In Robotics
and Automation (ACRA), 2014 Australasian Conference on, 2014.

Alberto Viseras, Rafael Ortiz Losada, and Luis Merino. Planning with ants:
Efficient path planning with rapidly exploring random trees and ant colony
optimization. International Journal of Advanced Robotic Systems, 13(5):
1729881416664078, 2016a.

Alberto Viseras, Thomas Wiedemann, Christoph Manss, Lukas Magel, Joachim
Mueller, Dmitriy Shutin, and Luis Merino. Decentralized multi-agent explo-
ration with online-learning of Gaussian processes. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 4222–4229. IEEE,
2016b.

Alberto Viseras, Valentina Karolj, and Luis Merino. An asynchronous distributed
constraint optimization approach to multi-robot path planning with complex

goo.gl/gHrZuL

BIBLIOGRAPHY 201

constraints. In Proceedings of the Symposium on Applied Computing, pages
268–275. ACM, 2017a.

Alberto Viseras, Dmitriy Shutin, and Luis Merino. Online information gathering
using sampling-based planners and GPs: An information theoretic approach.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 123–130, Sept 2017b.

Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot
path planning. Artificial Intelligence, 219:1–24, 2015. ISSN 00043702. URL
http://dx.doi.org/10.1016/j.artint.2014.11.001.

Shangxing Wang, Andrea Gasparri, and Bhaskar Krishnamachari. Robotic mes-
sage ferrying for wireless networks using coarse-grained backpressure control.
IEEE Transactions on Mobile Computing, 16(2):498–510, 2017.

Changyun Wei, Koen V Hindriks, and Catholijn M Jonker. Multi-robot cooper-
ative pathfinding: A decentralized approach. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8481 LNAI(PART 1):21–31, 2014. ISSN 16113349.

Wikipedia, the free encyclopedia. Venn diagram, 2017. URL goo.gl/svyMzK.
[Online; accessed August 21, 2017].

Ryan K Williams and Gaurav S Sukhatme. Probabilistic spatial mapping and
curve tracking in distributed multi-agent systems. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 1125–1130. IEEE,
2012.

Brian Yamauchi. A frontier-based approach for autonomous exploration. In
Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Pro-
ceedings., 1997 IEEE International Symposium on, pages 146–151. IEEE,
1997.

Kwangjin Yang, Seng Keat Gan, and Salah Sukkarieh. A Gaussian process-based
RRT planner for the exploration of an unknown and cluttered environment
with a UAV. Advanced Robotics, 27(6):431–443, 2013.

Peng Yang, Randy A Freeman, Geoffrey J Gordon, Kevin M Lynch, Siddhartha S
Srinivasa, and Rahul Sukthankar. Decentralized estimation and control of
graph connectivity for mobile sensor networks. Automatica, 46(2):390–396,
2010.

http://dx.doi.org/10.1016/j.artint.2014.11.001
goo.gl/svyMzK

202 BIBLIOGRAPHY

Yiqun Dong. What’s the difference between RRT and RRT* and which one
should we use, 2015. URL goo.gl/6nIkL7. [Online; accessed August 22,
2017].

Michael M Zavlanos, Magnus B Egerstedt, and George J Pappas. Graph-
theoretic connectivity control of mobile robot networks. Proceedings of the
IEEE, 99(9):1525–1540, 2011.

Weixiong Zhang, Zhao Xing, Guandong Wang, and Lars Wittenburg. An anal-
ysis and application of distributed constraint satisfaction and optimization
algorithms in sensor networks. In AAMAS, volume 3, pages 185–192, 2003.

Yu Zhang, Kangjin Kim, and Georgios Fainekos. Discof: Cooperative pathfinding
in distributed systems with limited sensing and communication range. Springer,
2016. ISBN 978-3-642-32722-3. URL goo.gl/4Bm4vZ.

Zhen Ziyang, Gao Chen, Zhao Qiannan, and Ding Ruyi. Cooperative path plan-
ning for multiple UAVs formation. In The 4th Annual IEEE International
Conference on Cyber Technology in Automation, Control and Intelligent Sys-
tems, volume 210016, pages 469–473, 2014. ISBN 9781479936694.

goo.gl/6nIkL7
goo.gl/4Bm4vZ

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notation
	List of Symbols
	I Introduction and Background
	Introduction
	Motivation
	Gaussian Processes Based Exploration
	Research Problem
	Thesis Overview and Objectives
	Thesis Contributions

	Methods
	Gaussian Process Model for Spatial Data
	Signal and Sensor Models
	Gaussian Processes for Regression
	Learning of Gaussian Process Model

	Decision Making
	Discrete Graph-Based Myopic Approach
	Sampling-Based Non-Myopic Actions Planning: RRTs

	Information Metrics for Exploration
	Differential Entropy
	Mutual Information
	Differential Entropy and Mutual Information for GPs

	Robotic Exploration using GPs
	Model-based Exploration
	Information Metrics for Exploration
	Path Planners for Information Gathering
	Multi-Robot Architectures and Inter-Robot Constraints
	Final remarks

	II Single-Robot Exploration
	Myopic Single-Robot Exploration
	Robot and Sensor Model
	Model-Based Information-Driven Myopic Exploration using GPs
	GPs Regression for Exploration
	Entropy-Driven Exploration with GPs

	Simulations and Discussion of Results
	RMSE Evolution
	Algorithm's Scalability

	Experiments and Discussion of Results
	Summary and Outlook

	Sampling-Based Single-Robot Exploration
	Efficient Information Gathering using RRT-Based Planners and GPs
	Search for Highly Informative Stations
	Informative Path Planner using RRT*
	Information Metric
	Computational Complexity
	Simulations and Discussion of Results
	Simulations Setup
	Analysis of the Informative Path Planner
	Analysis of the Exploration Strategy

	Experiments and Discussion of Results
	Experimental Setup
	Experimental Results

	Summary and Outlook

	III Multi-Robot Exploration
	Myopic Multi-Robot Exploration
	Inter-Robot Communication
	Communication Model
	Communication Network Topology

	Multi-Robot Exploration with Online-Learning of GPs
	Simulations and Discussion of Results
	Experiments and Discussion of Results
	Experimental Setup
	Experimental Results

	Summary and Outlook

	Sampling-Based Multi-Robot Constrained Exploration
	Problem Statement
	Algorithm Overview
	Distributed Constraint Optimization: Max-Sum
	Information Metric
	Differential Entropy
	Mutual Information Non-Measured
	Mutual Information All
	Choice of Information Metric

	Algorithm Subsystems
	Calculate Candidate Paths and Generate Clusters
	Search Neighbors and Exchange Domains
	Calculate Robot Utilities and Execute Max-Sum
	Follow Path and Collect Measurements
	Exchange Measurements (Data Fusion)
	Update GPs Model

	Computational Complexity
	NoCluster
	Cluster
	ClusterSimplified
	Summary

	Simulations and Discussion of Results
	Simulations Setup
	Analysis of the Exploration Strategy
	Analysis of the Multi-Robot Coordination Strategy
	Analysis of the Clustering Procedure

	Experiments and Discussion of Results
	Experimental Setup
	Experimental Results

	Summary and Outlook
	Appendix - Analysis of Algorithm Parameters

	IV Conclusion and Future Work
	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Single-Robot Path Planning
	Introduction
	Ant Colony Optimization for Continuous Domains
	ACO-RRT/RRT* Algorithm
	Initialize Ants
	Sample ACO
	Construct Tree
	Calculate Utility
	Update Ants

	Anytime ACO-RRT*
	Simulations and Discussion of Results
	Time to Find a First Path and Associated Cost
	Algorithm Performance with Time
	Anytime ACO-RRT* Performance
	Performance with respect to the Algorithm Parameters
	Examples of Paths Planned with the ACO-RRT* Algorithm

	Summary and Outlook

	Multi-Robot Path Planning
	Introduction
	Problem Statement
	Asynchronous Distributed Constraint Optimization
	Algorithm Overview
	Multi-Robot Path Planning for a Connected Subnetwork
	Path Replanning
	Robots Synchronization
	Stations Separation

	Simulations and Discussion of Results
	Leader Election and Depth-First Search Tree Creation
	Distributed Assignment of Paths
	Multi-Robot Path Planning for a System with Multiple Subnetworks

	Experiments and Discussion of Results
	Summary and Outlook

	Bibliography

