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ABSTRACT

Modern robotic platforms for in-situ space exploration

are single-robots equipped with a number of special-

ized sensors providing scientists with unique informa-

tion about a planet’s surface. However, there is a number

of exploration problems where large spatial apertures of

the exploration system are necessary, requiring a com-

pletely new perspective on in-situ space exploration and

it’s required technologies.

Large networks of robots, called swarm, pave the way:

agents in a swarm span ad-hoc communication net-

works, localize themselves based on radio signals, share

resources, process data and make inference over the net-

work in a decentralized fashion. By cooperation, local

information collected by agents becomes globally avail-

able. In this work we present our recent results in devel-

opment of swarm technologies for future in-situ space

exploration missions: a wireless system jointly used

for communication and localization, and swarm naviga-

tion and exploration strategies to sample and reconstruct

static spatial fields.

1 INTRODUCTION

Space exploration has been traditionally relying heav-

ily on remote sensing technologies. While these greatly

enhanced our knowledge of the cosmos, it is in-situ ex-

ploration systems that will pave the way for human col-

onization of our solar system and support our search for

life on other planets. Already in the seventies the Soviet

and American robotic systems demonstrated that in-situ

exploration of Moon and Venus is possible. With the

Philae Lander the European Space Agency (ESA) has

recently shown for the first time that it is possible to

land on a comet. In-situ Mars exploration with Curios-

ity rover, future ExoMars and Mars2020 rovers clearly

demonstrate that in-situ Mars exploration will intensify.

Modern robotic rover platforms, like Curiosity or Exo-

Mars exemplify well the state-of-the-art in in-situ space

exploration. These are single-unit sophisticated mobile

platforms that are primarily remotely operated, and the

degree of autonomy is still very low. Equipped with a

number of specialized sensors, they provide scientists

with valuable and quite unique information about the

planets surface. However, there is a number of explo-

Figure 1: Multi-agent network – a swarm – spanning an

aperture for seismological investigations. Position and

time of taken measurements are important to reconstruct

geological structures. Wireless signals are jointly used

for communication and estimating the distances among

agents for localization.

ration problems where a large spatial aperture of the

exploration system is required, e.g., for seismological

investigations, fast terrain scouting, or guiding the ex-

ploration system back to the lander over very large dis-

tances. Such applications require a completely new per-

spective on in-situ space exploration that is discussed in

this work.

In particular, we consider a multi-agent system - a

swarm - that consists of multiple mobile robotic plat-

forms designed specifically for a particular sensing task,

e.g., seismography. While to some extent inspired by

nature, swarms in the context of space exploration do

differ from their biological counterparts. Agents in the

swarm span a communication network that they use to

autonomously localize themselves, share resources, and,

most importantly, process data and make inference over

the network in a decentralized fashion. The latter makes

the whole system more robust against failures of indi-

vidual agents.

Fig. 1 shows a swarm of rovers spanning a sensor aper-

ture for seismological investigations: each agent can

excite the underground with acoustic waves, while the

other agents are in a listening mode. By sharing their
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measurements in the network, agents are able to prelim-

inarily reconstruct the underground geological structure

and can move to new positions with a new sensor aper-

ture. Such an automated seismological sensor network

requires inter-agent communication, location and time

information to relate measurements for reconstruction,

and methods to infer from the globally available recon-

struction where agents should take new measurements.

The goal of this work is to demonstrate some of our

recent results in development of swarm technologies

for future space exploration missions, and we deliber-

ate on the details as follows: in Sec. 2 we give an

overview of our proposed wireless communication and

radio-localization system. Sec. 3 shows details and re-

sults of multi-objective optimization algorithms taking

radio-localization and multi-agent control jointly into

account to enable new sensor apertures. Two aspects of

swarm exploration are addressed in Sec. 4: distributed

exploration strategies to learn a representation of a static

spatial field and distributed multi-agent coordination un-

der complex constraints. In Sec. 5 we conclude and give

an outlook on future work.

2 WIRELESS COMMUNICATION AND

RADIO-LOCALIZATION

The swarm depicted in Fig. 1 can be seen as mo-

bile meshed wireless sensor network. Each measure-

ment from a scientific instrument taken by an agent

must be stamped with a time and precise location in-

formation. Agents making inference over the network

in a decentralized fashion require ad-hoc communica-

tion, localization, and timing. Distributed localiza-

tion and exploration algorithms, as well as distributed

control within the swarm require a broadcast commu-

nication scheme and high update rates with low to

medium sized data packets. Hence, we propose a con-

cept for a swarm Communication-Position-Navigation-

Timing (CPNT) system and deliberate on the details

summarized as three building blocks next.

2.1 Decentralized Channel Access

Organizing the channel access of the shared radio chan-

nel is one of the main challenges. Data packet collisions

on the medium access control (MAC) layer result in poor

communication performance and poor update rates for

distributed algorithms. We propose time division multi-

ple access (TDMA) as an efficient MAC protocol and

orthogonal frequency division multiplex (OFDM) sig-

nal modulation to combat multipath and enable high-

rate communication as the first building block. Each

TDMA time slot is accessible for a single agent exclu-

sively to avoid access interference. State-of-the-art com-
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Figure 2: TDMA slot scheme and OFDM symbols per

slot. In this example the channel access update rate per

agent is set to 10 ms.

Table 1: Swarm communication system gross-

throughput for a bandwidth of 25 MHz.

Throughput [Mbit/s] QAM-4 QAM-16 QAM-64

Per agent 1.7 3.4 5.1

Aggregated 43.1 68.3 102.4

munication systems using TDMA require a central unit,

e.g., a base station or master, to provide global time slot

boundaries on which the users in the network synchro-

nize. This central unit is a single point of failure (SPOF).

Hence, we use a decentralized TDMA slot synchroniza-

tion based on a pulse coupled oscillator (PCO) principle

to achieve a self-organized slot synchronization.

The design of the OFDM communication system is

mainly based on the maximum expected channel ex-

cess delay of 2 µs, a maximum number of 20 agents in

the swarm, and an update rate of 100 Hz for the overall

network. OFDM signal bandwidth is flexible and cho-

sen as multiple of 25 MHz, with 1024 subcarriers per

25 MHz. Fig. 2 illustrates the TDMA and OFDM signal

framing. Each agent has access to the wireless channel

every 10 ms and the illustrated increasing TDMA slot

assignment is an example. The first OFDM symbol is

an agent-specific preamble symbol comprising Zadoff-

Chu sequences and is used for TDMA slot synchroniza-

tion, OFDM time- and frequency-synchronization and

channel estimation, identifying the emitting agent, and

for ranging. The second OFDM symbol is currently re-

served for ranging data, see Sec. 2.2. Nine OFDM sym-

bols are dedicated for universal communication, e.g., ex-

changing information and distributed control: existing

coding and resource allocation techniques can be ap-

plied, such as from 3GPP-LTE or WiFi. Tab. 1 sum-

marizes achievable gross-throughputs for a signal band-

width of 25 MHz and single-input single-output (SISO)

communication.



2.2 Ranging with Wireless Signals

The second building block of Swarm-CPNT is ranging:

estimating distances between agents based on the emit-

ted radio signal. The swarm is not perfectly synchro-

nized in time, as each agent uses its own local clock.

Various time-based ranging techniques based on round-

trip delay (RTD) of data symbols exist to mitigate clock

offsets and the impact of clock skew on distance estima-

tion at the high cost of multiple channel access result-

ing in high channel utilization. We focus on two-way

RTD to reduce the number of required channel accesses.

The ranging initiator encodes its precise transmission

time and a data packet identification number (ID) in one

OFDM symbol called ranging data symbol, see Fig. 2. A

receiver decodes the ranging data symbol and estimates

the precise reception time with a maximum-likelihood

(ML) estimator based on the preamble symbol. The

reply-time between reception of the ranging data sym-

bol and re-transmission at the receiver is encoded and

transmitted back to the ranging initiator. The ranging

initiator calculates the distance based on the transmis-

sion time stamps, the decoded reply-time, and the ML

time-estimate of the received OFDM frame.

Two-way RTD ranging is sensitive to clock skew: the

distance estimate is biased proportional to the reply-time

and the clock skew. The clock skew is time-variant de-

pending on the quality of the clock, e.g., temperature-

compensated Quartz crystal clocks commonly become

unstable for observation durations above 0.5 sec. Com-

mon strategies to mitigate this effect are very short reply

times as in ultrawide bandwidth (UWB) ranging devices

or very stable clocks. Both strategies pose stringent re-

quirements on practical realizations. We propose to ex-

ploit the broadcasting nature of our Swarm-CPNT sys-

tem: based on the regularly broadcasted OFDM symbols

we estimate and track the clock skew with a Kalman fil-

ter. The resulting clock skew estimate is used to com-

pensate the initially estimated RTD. Parameters for the

process noise covariance in the Kalman filter are de-

termined from Allan deviation measurements of eight

software-defined radios (SDRs). Fig. 3 shows distance

estimates between two SDRs connected over a radio fre-

quency (RF) splitter with and without clock skew com-

pensation over a duration of about 23 min. Measure-

ments are taken simultaneously and the mean value has

been removed. We clearly see the drift in distance es-

timate for the uncompensated case resulting in distance

errors of more than one meter and a 1σ standard devia-

tion of 53 cm. With clock skew tracking and compensa-

tion enabled we obtain a constant distance estimate over

time with a 1σ standard deviation of 2.4 cm at an es-

timated signal-to-noise ratio (SNR) of 29.4 dB, see the

blue curve in Fig. 3.
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Figure 3: Distance estimates with and without clock

skew tracking and compensation over a measurement

duration of about 23 min.

2.3 Distributed Localization

Ad-hoc communication and precise ranging provide the

basis for the third building block: distributed localiza-

tion of all agents in a Bayesian framework realized as

distributed particle filter [1]. Centralized localization

techniques are out of scope due to SPOF of a central

entity.

Most work in the field of cooperative localization, also

referred to as anchor-free localization if no a-priori

known anchors are available, considers localization as

a two-step problem [1]: distance estimation (ranging)

and location estimation (localization). Each step is op-

timized individually. In the first step, the distance of

each inter-agent link is estimated by the receiver: com-

monly as single-tap ML estimator calculating the cross-

correlation and finding the maximum peak of the corre-

lation function. This maximum peak is considered as

geometry line-of-sight (GLOS). In the second step, a

non-linear estimator uses the distance estimates of mul-

tiple links as measurement input and solves the loca-

tion equation. The error distribution of the distance es-

timate must be accurately determined to fuse distance

estimates from multiple inter-agent links. A Gaussian

error model is commonly assumed for the ranging er-

ror: based on the estimated SNR the Cramér-Rao lower

bound (CRLB) or Ziv-Zakai lower bound (ZZLB) can

be calculated to lower bound the variance of distance es-

timates. The lower bounded variance is then applied as

weight for each inter-agent link. However, the coherence

between ranging and localization is not fully exploited.

Multipath propagation causes incorrect maximum corre-

lation peak detection resulting in incorrect link weight-

ing and large localization errors.

To overcome the shortcomings of the two-step localiza-

tion approach the raw received signal samples are taken

as measurements to derive the joint likelihood function

of location estimate with single channel-tap assumption.

We propose a direct signal domain particle filtering al-
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Figure 4: Swarm localization error of state-of-the-art

two-step localization with ranging error modeling based

on the ZZLB and the proposed DiPLoc filter. Inher-

ent inter-agent link weighting in DiPLoc significantly

reduces the localization error caused by erroneous dis-

tance estimates [2].

gorithm for network localization (DiPLoc) based on the

derived likelihood function: obtaining location infor-

mation directly from received signal samples avoiding

ranging model approximation [2]. The proposed DiPLoc

is not a maximum a posteriori probability (MAP) esti-

mator for a multipath scenario. However, it takes every

peak of the correlation function as soft hypotheses and

prevents making hard decision in the intermediate step.

The high number of inter-agent links jointly support the

right hypotheses and reject wrong ones with high prob-

ability. Within DiPLoc, multiple links are inherently

weighted by the overall likelihood, preserving as much

information as possible from the signal domain to the

location domain.

We conducted an outdoor experiment with six agents to

show the benefit of using DiPLoc over the two-step lo-

calization approach. One agent has been maneuvered

remotely to create a dynamic measurement track. Fig. 4

shows resulting swarm localization errors for the state-

of-the-art two-step localization approach and our pro-

posed DiPLoc. The applied two-step approach lower

bounds the ranging variance with the ZZLB to take cor-

relation peak detection ambiguities caused by low SNR

into account. We clearly see high localization errors

resulting from multipath and incorrect inter-agent link

weighting. DiPLoc preserves all information from the

received signal and shows a significant gain: the local-

ization error is reduced by a factor of 10.

3 SWARM NAVIGATION

Once agents in a swarm establish a network and are able

to localize themselves, they can exploit this information

to navigate and explore. Swarm navigation in the scope

of this work is understood as computational data driven
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(b) Quasi-lattice formation.

Figure 5: Localization CRLB for random and quasi-

lattice swarm formations [1]. Blue lines show wireless

connections between agents indicated as green dots. The

localization error ellipse is drawn in magenta.

technique to optimize swarm movements. What makes

this approach differ from that of classical single-agent

navigation is the fact that due to cooperation the local in-

formation collected by the agents, e.g., location informa-

tion, becomes globally available. Combining distributed

swarm control and radio localization permits dynamic

spatial topologies which we elaborate in three steps next.

At first, we introduce location-aware formation control.

Localization performance also depends on the relative

geometry (formation) of the swarm and can be altered

through control of individual agents. In example, swarm

agents distributed along a straight line will have an unfa-

vorable geometric dilution of precision (GDOP) result-

ing in large localization errors. A distributed controller

can be designed, which optimizes an objective function

subject to minimizing the global localization error [1]

and avoiding collisions of agents. Fig. 5 shows the re-

sulting localization CRLB for random swarm formation,

and for an optimized swarm formation taking the dis-

tributed controller into account. Random swarm forma-

tions suffer from bad GDOP and low connectivity among

agents particularly at the edge of the network: the local-

ization error ellipses become large. The distributed con-

troller ensures optimal localization error for all agents

in the swarm. As a result, localization-optimal swarm

formations emerge, e.g., to automatically create a dis-

tributed sensor array with high precision location infor-

mation.

In a second step, location-aware formation control can

be extended: agents span a phased array and coopera-

tively detect and estimate the bearing of a low-frequency

navigation beacon placed at the landing base [3]. Signal

detection and bearing estimation are solved jointly us-

ing sparse Bayesian learning with dictionary refinement.



Figure 6: Swarm cooperatively spanning a phased array

to determine the bearing of a radio navigation beacon

from the landing base. Agents must additionally localize

themselves and jointly move towards the landing base.

Bayesian sparsity is applied to detect the presence of the

navigation beacon. Once the navigation beacon has been

detected, its parameters are estimated with a gradient-

based technique which uses classical average consensus

for the gradient and the cost function.

The third and last step combines the previous two steps

to enable a new navigation application: swarm return-to-

base navigation, see Fig. 6. In swarm return-to-base ap-

plication, all agents shall automatically be guided back

to the very far away landing base [4]. A low-frequency

radio navigation beacon at the landing base is used to

cover an exploration area much larger than the achiev-

able communication distance among agents from the

Swarm-CPNT system. Agents in the swarm estimate

their relative location (swarm formation), automatically

span a phased array to estimate the bearing of the bea-

con, and move towards to landing base.

In general, swarm navigation applications are multi-

objective optimization problems. For swarm return-to-

base the objectives consist of three problems [5]. Prob-

lem 1 - location information seeking: agents shall min-

imize the localization error. The localization error in-

cludes both, the swarm formation estimation error based

on our Swarm-CPNT system, and the bearing estimation

of the navigation beacon. Problem 2 - collision avoid-

ance: the distance between agents shall be larger than

a certain threshold. Problem 3 - return-to-base: it must

be guaranteed that the swarm arrives at the landing base

after a certain number of time steps.

In the following we present numerical results based on

the work in [5]. Fig. 7 shows the result of the loca-

tion driven algorithm after some time steps, taking all

three aforementioned problems into account. For bear-
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Figure 7: Result of the location information driven algo-

rithm after some time steps. Red dots indicate the true

agent positions, and green circles the estimated relative

position. The navigation beacon is located on the posi-

tive x-axis and is 7465 m away from the swarm with the

dashed line indicating the true bearing. The green line

overlapping the dashed one shows the estimated bearing

by the swarm array [5].

ing estimation only, the agents would span an as large

as possible linear array, but relative localization perfor-

mance of agents spanning a linear array is worse. Hence,

a quasi-lattice type linear array of agents results from

the location information driven algorithm. Fig. 8 shows

the bearing estimation error for four different algorithms

tackling the multi-objective optimization problem with

details found in [5]. Applying the location driven al-

gorithm yields the lowest bearing estimation error over

distance to the landing base showing the benefit of joint

distributed localization and swarm control.

4 SWARM EXPLORATION

The ability of swarm agents to establish a network

and navigate can be used as a key building block for

swarm exploration – computational, data driven tech-

niques which permit agents in a swarm to analyze mea-

sured data and move according to some objective data-

dependent function. Specifically, agents can exploit the

communication network and localization information to

(i) spatially relate the sensory measurements, (ii) coop-

eratively process and analyze the data, and (iii) com-

pute optimal movement strategies. What makes this ap-

proach differ from that employing a single agent is the

fact that, due to cooperation, the local information col-

lected by agents become globally available. Moreover,

if the data processing is designed in an appropriate fash-

ion, a swarm can tolerate outages of individual agents.
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Figure 8: Bearing estimation error over distance to the

landing base. The low-RF navigation beacon is located

at the landing base [5].

This in turn leads to higher robustness in general with a

gradual performance degradation when agents are fail-

ing.

In the following we will discuss the use of swarm ex-

ploration techniques for the task of exploring unknown

static spatial processes. The discussion will address two

– often complimentary – aspects of swarm exploration.

First, we will consider a distributed estimation strat-

egy that exploits a decentralized cooperative algorithm

to learn a representation of a static spatial field from

spatially distributed samples using kernel regression [6].

We will extend classical regression by imposing sparsity

constraints on the resulting models, which will effec-

tively permit compressing the information “on the fly.

Also, this will allow relaxing storage and computational

requirements at each agent. Furthermore, using the the-

ory of optimal experiment design [7] we then propose

an exploration scheme that quantifies the uncertainty of

the learned model and proposes “points of interest” for

each agent. Second, we will describe a distributed co-

ordination algorithm for multi-agent exploration under

complex constraints, such as obstacles in the environ-

ment or agent movement constraints. In particular, we

will consider how sampling algorithms can be used for

optimal (informative) path planning based on the esti-

mated models of the spatial processes.

4.1 Splitting-over-features approach to
distributed learning

We begin by consider a multi-agent system with K mo-

bile agents. Agents are connected in a communication

network such that there is a connection between any two

agents in the network. In other words, we assume a

network to be connected, but not necessarily fully con-

nected, see Fig. 1 as an example swarm topology. Such

connectivity requirements are needed to ensure that in-

formation collected by an agent in the network can prop-

agate to other agents.

We will assume that each agent is making a scalar sensor

measurement yk[n] ∈ Y ⊂ R, k = 1, . . . ,K, e.g., gas con-

centration, magnitude of a magnetic field, terrain height,

etc., at a 2D position xk[n] ∈ X ⊂ R2, k = 1, . . . ,K, that

is estimated using some localization system. In the fol-

lowing we will assume that the positions where agents

take measurements are known. This implies that the lo-

calization problem has been solved using e.g., SLAM

algorithms [8], or our proposed Swarm-CPNT system.

Notation [n], n = 1, . . . ,Nk, denotes a measurement

sample taken by the kth agent and Nk is a total number

of measurements done by the agent. Thus, each mea-

surement consists of a pair {xk[n], yk[n]}. Our goal is to

reconstruct an unknown spatial function f̃ : X 7→ Y

using all collected data in a distributed fashion.

To reconstruct the unknown function f̃ we approximate

it with a model m : X 7→ Y that consists of a super-

position of atoms (or kernels) φk(x′; x) : X × X 7→ R,

k = 1, . . . ,K, such that

f̃ (x) ≈ m(x) =

K∑

k=1

Nk∑

n=1

wk,nφk(xk[n]; x). (1)

The atoms φk(x′; x) play a role of features. Their form

might vary depending on the application; typically, they

are selected to reflect spatial correlations in the esti-

mated field in the vicinity of the measurement location

x′. Radial basis functions [9] exemplify well possi-

ble atom choices: they change monotonically with dis-

tance from some central point, which in our case rep-

resents a measurement location. Also note that within

the splitting-over-features approach the features and the

corresponding weights wk,n are different for each agent.

In other words, each agent constructs its own model of

the environment; however, the agents in the swarm share

their measured data.

In this work we explicitly assume that some of the

weights wk,n are zero. This assumption will reflect the

fact that not all features are relevant for representing

the measured data. This is realized by imposing spar-

sity constraints on the weights, as will be explained in

the following. Given measurements {xk[n], yk[n]}
Nk

n=1
,

k = 1, . . . ,K, the learning problem then aims to es-

timate distributed coefficients wk = [wk,1, . . . ,wk,NK
]T ,

k = 1, . . . ,K, under assumption of sparsity.

To be able to formulate the corresponding optimization

problem, we cast (1) in a more convenient matrix form.



To this end we define a vector function

φk,i = [φk(xk[i]; x1[1]), . . . , φk(x1[N1], xk[i]),

φk(x2[1], xk[i]), . . . , φk(x2[N2], xk[i]), . . . ,

φk(xK[1], xk[i]), . . . , φk(xK[NK], xk[i])]T ,

which represents an ith feature vector of the kth agent,

evaluated at all available measurement locations. Now,

let us define a matrix Φk = [φk,1, . . . ,φk,Nk
], which col-

lects all kernels associated with the kth agent. Likewise,

we collect the sensor measurements of the kth agent

as yk = [yk[1], . . . , yk[Nk]]T . All sensor measurements

collected by the swarm are represented with a vector

y = [yT
1
, . . . , yT

K
]T . Finally, following (1), the model of

measured sensor data can be represented as

y =

K∑

k=1

Φkwk + ξ = Φw + ξ, (2)

whereΦ = [Φ1, . . . ,ΦK] and w = [wT
1
, . . . ,wT

K
]T are ag-

gregated atoms and parameter vector, respectively, and ξ

is an additive zero-mean Gaussian measurement noise.

For simplicity we will assume that the noise ξ is a zero

mean Gaussian process with a known precision matrix

Λ. Note that while features, and thus agent models

Φkwk, are unique for each agent, the measurements are

shared. As such, a collaborative response (1) should

approximate the whole measurement data as closely as

possible. Also, due to possible correlations between the

features of different agents, the decision on relevance

of the features should likewise be done in a cooperative

fashion.

One of the key challenges associated with the considered

estimation problem is the fact that unless agent predic-

tions Φkwk are orthogonal, the models parameters wk,

k = 1, . . . ,K, will be correlated. This implies that agents

have to take measurements with a sufficient separation

between the sampling points to avoid overlapping of the

corresponding kernels – a complex scheduling and plan-

ning task. This incurs a rank deficiency of Φ, and thus

the estimator requires an appropriate regularization. A

regularization can be incorporated through sparsity con-

straints on w. In particular, we introduce sparsity using

sparse Bayesian learning (SBL) techniques [10, 11], as

explained in the following.

4.1.1 Sparse Bayesian learning

Using the model (2) we can define a likelihood function

p(y|w) of model parameters w as

p(y|w) ∝ e−
1
2

(y−Φw)T
Λ(y−Φw). (3)

Classical maximum likelihood approach to estimate w

involves maximizing (3); yet this approach is prone to

overfitting and might require numerical stabilization if

Φ does not have a full column rank. Also the re-

sulting estimate of w is generally not sparse. In SBL

[10, 11] the weights w are additionally constrained us-

ing a parametric prior p(w|γ) =
∏K

k=1

∏
l∈Ik

p(wk,l|γk,l),

where p(wk,l|γk,l) = N(0, γk,l) is a Gaussian pdf with zero

mean and variance γk,l; the latter are also treated as un-

known model parameters. SBL then seeks an estimate

of ŵ and γ̂ as a solution to the following optimization

problem

ŵ, γ̂ = argmax
w,γ

p(w,γ|y) = argmax
w,γ

p(w|y,γ)p(γ|y).

(4)

In (4) the pdf p(w|y,γ) ∝ p(y|w)p(w|γ) – the posterior

pdf of the parameters w – can be easily determined to be

a Gaussian pdf, with the mean ŵ and covariance matrix

Ω̂ given as

Ω̂ =
(
Φ

T
ΛΦ + Γ−1

)−1
, ŵ = Ω̂ΦT

Λy, (5)

where Γ = diag(γ) is a diagonal matrix with sparsity

parameters γ on the main diagonal. Expression (5) can

be recognized as a linear minimum mean squared error

estimator of the weights w, conditioned on sparsity pa-

rameters γ. Note that γ act explicitly as regularization

coefficients.

The second pdf p(γ|y) in (4) can be computed as follows

p(γ|y) ∝ p(γ)p(y|γ) = p(γ)

∫
p(y|w)p(w|γ)dw

= p(γ)|Σ|−
1
2 e−

1
2

yT
Σ
−1 y,

(6)

where Σ = Λ−1 + ΦΓΦT . It is important to note for

the following discussion that for solving (4) it suffices

to find an estimate of γ̂ that maximizes (6) (see [11] for

more details).

Now we are ready to discuss a distributed approach to

implementing the splitting-over-features approach with

SBL. To this end we discuss two distributed algorithms:

a distributed Expectation-Maximization (EM) based al-

gorithm, and algorithm that uses alternating directions

method of multipliers (ADMM) to estimate the parame-

ters of interest w and γ.

4.1.2 Distributed SBL with
Expectation-Maximization

Consider the posterior pdf p(w,γ|y). From Bayes theo-

rem, p(w,γ|y) ∝ p(y|w)p(w,γ), where we used the fact

that y is conditionally independent of γ given w. Here

our goal is to maximize p(y|w)p(w,γ) with respect to

γ and w using the expectation-maximization approach

[12, 13].



To this end we introduce a latent variable h =

[hT
1 , . . . , h

T
K]T , with sub-vectors hk, k = 1, . . . ,K, de-

fined as

hk = Φkwk + ξk, k = 1, . . . ,K. (7)

These can be conceived as noisy “prediction” of K

agents. The additive noise component ξk in (7) is ob-

tained by arbitrarily decomposing the total noise ξ in (2)

into K independent contributions, such that E{ξkξ
T
l } = 0

for k , l, E{ξkξ
H
k } = Λ

−1
k = βkΛ

−1 for 0 ≤ βk ≤ 1,

and
∑K

k=1 βk = 1. The relationship between y, h then

becomes

y =

K∑

k=1

hk = [I, . . . , I︸  ︷︷  ︸
K times

]h = IK h, (8)

Within the EM algorithm the maximization of the “in-

complete” posterior p(w,γ|y) is done via the maximiza-

tion of the corresponding complete posterior

p(h,w,γ|y) ∝ p(y|h)p(h|w)p(w,γ) (9)

Applying the EM algorithm requires computing two op-

timization steps: E-step and M-step [13, 12]. The E-step

of the algorithm aims at estimating the complete data

and in our cases it can be computed in closed form as

ĥk = Φkŵk + βk

y −

K∑

k=1

Φkŵk

 , k = 1, . . . ,K. (10)

The M-step requires solving the following optimization

{ŵ
′
,̂γ
′
} = argmax

w,γ

K∑

k=1

log p(wk,γk) −
1

2
‖ĥk −Φkwk‖

2
Λl

(11)

It can be seen that the use of complete data decouples the

optimization (11) in K parallel optimization with respect

to the parameters of each agent. The interdependency

between the agents is resolved through the complete data

h. As such, to implement the algorithm in the distributed

fashion ĥ in (10) should be computed distributively.

Distributed computation of the E-step.

Consider an agent k and the corresponding estimate ĥk.

From (10) we see that ĥk is essentially a combination

of a current “local” responseΦkŵk and a scaled residual

signal y −
∑K

k=1Φkŵk; it is the latter term that requires

the participation of all agents. We note that

K∑

k=1

Φkŵk = K


1

K

K∑

k=1

Φkŵk

 = KΦŵ,

where Φŵ is an averaged response of all agents. The

averaging operation can be computed over a network in

an asynchronous fashion using classical averaged con-

sensus type algorithms (see e.g., [14, 15, 16]). The latter

perform averaging of information between direct one-

hop neighbors in the network. Thus, (10) can be com-

puted as

ĥk = Φkŵk + βk

(
y − KΦŵ

)
, k = 1, . . . ,K. (12)

by each agent individually once the consensus over Φŵ

is achieved.

Algorithm summary

The algorithm begins with updating the current mea-

surement set {xk[n], yk[n]}
Nk

n=1
, k = 1, . . . ,K, so that the

agents can re-compute a vector y and matrices Φk lo-

cally. Then, an initialization of parameters wk and γk,

k = 1, . . . ,K is performed. This can be realized as sum-

marized in Algorithm (1). After initialization, two main

Algorithm 1 Estimation of parameters

1: Initialize ŵ
[init]

k
←

(
Φ

T
kΛΦk

)†
Φ

T
kΛy.

2: Compute Φkŵ
[init]

k
using averaged consensus

3: ĥ
[init]

k ← eq. (12), ŵ
[init]

k
←

(
Φ

T
kΛkΦk

)†
Φ

T
kΛk ĥk

4: γ̂
[init]

k,l
← |ŵ

[init]

k,l
|2 +

[(
Φ

T
kΛkΦk

)†]

ll

steps of the algorithm follow: the consensus step to com-

pute Φkŵk and the complete data, and a local optimiza-

tion at the M-step to estimate wk and γk given an esti-

mate of complete date ĥk.

Let us also mention that the M-step of the algorithm can

also be solved efficiently using any SBL algorithm of

choice, e.g., [17, 18, 19].

4.1.3 Distributed SBL using Alternating
directions method of multipliers

Another technique that can be used for SBL in a dis-

tributed setting is an ADMM algorithm. The corre-

sponding approach to distributed SBL has been dis-

cussed in details in [20]; here we only give a summary

of the key steps of the algorithm.

Likewise here our goal is to maximize (4) with respect

to w and γ using a network of agents. Since weights

w can be estimated from (5) given γ, we look into dis-

tributed estimation of the latter. To this end, we consider

the cost functionL(γ) = −2 log p(y|γ) in (6) and assume

p(γ) ∝ const. The function L(γ) can be upper bounded

[18] as L(γ) ≤ zTγ − g∗(z) + yT
Σ
−1y = L(γ, z), where

g∗(z) is the concave conjugate of log |Σ| defined by the

duality relationship g∗(z) = minγ zTγ − log |Σ| [21].



Figure 9: Measured magnetic field data.

Then, L(γ) can be minimized indirectly (and more con-

veniently) via L(γ, z), which is also jointly convex in z

and γ [18, Lemma 1]. Now, for z fixed at some value ẑ
[i]

at the i-th iteration of the algorithm, the bound L(γ; ẑ
[i]

)

can also be upper bounded as follows [18, Lemma 2]:

L(γ; ẑ
[i]

) ≤γT ẑ
[i]
+ wT

Γ
−1w

+ ‖y −Φw‖2
Λ
= L(γ,w; ẑ

[i]
)

(13)

which is jointly convex in both γ and w. Due to this,

L(γ,w; ẑ
[i]

) can be “tightened” by interchangeably min-

imizing it with respect to γ and w. For any w, the bound

L(γ; w; ẑ
[i]

) is minimized at value

γ̂ = argmin
γ

L(γ,w; ẑ
[i]

) =


|w·,1|√

ẑ
[i]

·,1

, . . . ,
|w·,|I||√

ẑ
[i]

|I|


. (14)

By inserting the (14) in (13), L(γ,w; ẑ
[i]

) can then be

made tight by finding w as a solution to the following

optimization problem:

ŵ = argmin
w

‖y −Φw‖2
Λ
+ 2

∑

m∈I

√
ẑ

[i]
·,m|w·,m|

= argmin
w

∥∥∥∥∥∥∥
y −

K∑

k=1

Φkwk

∥∥∥∥∥∥∥

2

Λ

+ 2
∑

k

∑

l

√
ẑ

[i]

k,l
|wk,l|

(15)

The form of the objective function in (15) is also known

as the LASSO problem and there have een multiplke

approach proposed to solve LASSO optimization in a

distributed fashion. ADMM algorithm is one of the

most popular solutions; its application to (15) is rather

straightforward. In [20] the interested reader will find

more details on the ADMM application to SBL.

4.1.4 Exploration strategy

The estimated model of the process can naturally be used

to design objective criteria for guiding agents to more in-

formative sampling locations, i.e., explore the process.

In other words, we intend to construct the agent trajec-

tory that would improve the inference model parame-

ters. The exploration strategy should (i) keep the num-

ber of measurements needed to estimate the parameters

low, (ii) obtain parameter estimates with high certainty

(high precision). In order to decide how an agent in a

swarm should move, mobile agents need a metric that

ranks different possibilities.

There are different approaches to defining such a met-

ric for exploration. An often used approach is an

uncertainty-driven exploration where the uncertainty

(typically variance) of the parameters of interest is used
to guide the agents. For linear models the corresponding

uncertainty (or error bars) can be computed using stan-

dard results ( see e.g., [6, 22, 23, 24, 25]). A similar

approach we propose to use here. Specifically, we em-

ploy use a theory of optimal experiment [7] design and

compute the next movement position so as to reduce the

posterior uncertainty of the model parameters.

Consider a potential measurement position x∗ ∈ X. If an

agent were to make a measurement at this position, the

posterior covariance matrix Ω∗ of the new weights can

then be computed as

Ω
∗(x∗) =


(
Φ φ∗k
φ∗k 1

)T

Λ

(
Φ φ∗k
φ∗k 1

)
+

(
Γ

0

)
−1

where φ∗
k

is a “to-be-added” feature of the kth agent eval-

uated at a test point x∗. Optimal experiment design then

aims to find such a measurement location x∗ that min-

imizes the size of the corresponding covariance matrix

Ω
∗(x∗). One possible choice for the size of Ω∗(x∗) is

its determinant, which is also known as a D-criterion

[7]. Specifically, we search for an optimal measurement

location x̂
∗

as a solution to the following optimization

problem:

x̂
∗
= argmin

x

log |Ω∗(x)| (16)

Using the properties of the matrix determinant the above

expression can also be computed in a distributed fashion.

We skip the computational details here, yet mention that

evaluation of (16) requires several additional averaged

consensus iterations per test point.

4.1.5 Experimental results

For evaluating the algorithm we are using a static map

of an indoor magnetic field with a spatial dimension ap-

prox. 9.6 m × 4.3 m. The data has been collected with a

spatial resolution of about 10cm. Note that this results

in a total of roughly 3200 possible measurement points.

The collected data set is visualized in Fig. 9.

We will consider a swarm consisting of K = 4 agents,

with each agent making 100 measurements. In the first
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Figure 11: (a) Estimated RMSE and (b) the averaged

number of kernels per agent.

Figure 10: Ground truth and reconstructed magnetic

field after 400 measurements. The dots in the lower plot

represent the measurement locations.

experiment we will compare several estimation algo-

rithms: the EM algorithm (EM-Alg), the ADMM-based

distributed estimation described in [20] (ADMM-Alg),

the centralized version of SBL algorithm (C-SBL), and

a centralized ridge regression solution (C-LS). As an ex-

ploration strategy we will use the optimization (16) com-

puted for x ∈ X, i.e., we will consider the whole ex-

ploration domain X for possible new measurement loca-

tions. Such optimization approach we will term Global

Eploration.

As a performance criterion we will compute the normal-

ized RMSE value between the estimated magnetic field

and the ground truth process and the averaged number

of features retained in the algorithm per agent. First,

in Fig.12b we show the results for the reconstructed the

magnetic field after a single algorithm run. As you can

see, after 400 measurements, the algorithm was able to

learn the key features of the explored process.

The next plots in Fig.11 show the averaged performance

of the algorithm after 10 independent Monte Carlo runs.

Specifically, the evolution of the RMSE as a function

of number of measurements and the resulting number

of kernels are shown. As we can see, the performance

of the methods in terms of RMSE is quite compatible,

however there are some differences in the number of the

estimated kernels. In particular, we see that the result-

ing model complexity varies: C-LS algorithm does not

profit from sparsity at all, i.e., all 100 measurement po-

sitions are retained in the model. On the other hand, the

EM-Alg, ADMM-Alg and C-SBL remove irrelevant in-

formation. In case of ADMM-Alg almost 40% of the

irrelevant measurement points have been removed with-

out any reduction of the RMSE as compared to other

schemes. EM-Alg removes the points more aggressively

(roughly 60% of the measurements are deemed as irrel-

evant), though at the expense of slightly reduced RMSE.

Next we study the performance of the distributed esti-

mation algorithm with different exploration strategies.

To this end we consider only the ADMM algorithm and

consider different criteria for selecting the next measure-

ment point. Specifically, in addition to the Global ex-

ploration we will consider the strategy where (16) is

solved in a small vicinity of the current agent position

(within approx. 0.5m radius); to this strategy we will

refer as Local Exploration. Additionally we will also

consider random movement of agents over the whole

exploration domain X (Global Random strategy), ran-

dom movements within a radius of 0.5m from the cur-

rent agent position (Local Random strategy), and a sys-

tematic Meander scanning strategy. The corresponding

results are summarized in Fig.12.

As we can see, local and meander strategies exhibit a

rather poor information gathering performance. Global

random approach does perform better, but still can-

not beat the intelligent exploration strategies employing

(16). This is due to the fact that the information is col-

lected in a more efficient way. On the other hand, we

can also see that reducing the complexity of computing

(16) by restricting the evaluation to a certain neighbour-
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Figure 12: (a) Estimated RMSE and (b) the averaged

number of retained kernels per agent for different explo-

ration strategies.

hood of the current position, also known as myopic or

greedy approaches, significantly reduce the efficiency of

the exploration.

4.2 A Distributed Coordination Algorithm for
Multi-Robot Exploration under Complex
Constraints

Robots employed in robotic exploration missions have

complex dynamics, as robots must adapt their motion to

drive on complex terrains. However, most state-of-the-

art multi-agent exploration algorithms do not consider

robots dynamics (see [26] for an overview). Moreover,

most algorithms do not take into account complex inter-

agent constraints like e.g. inter-robot collision avoidance

or inter-robot communication constraints. The ability

to handle collision avoidance and communication con-

straints is crucial to develop a multi-agent cooperative

system.

In this section, we introduce an approach that tackles

the two aforementioned issues: handling complex robot

dynamics, and inter-agent complex constraints. To this
end we propose an algorithm that combines (i) Gaus-

sian processes (GPs) [27] to model a physical process

of interest, (ii) a sampling-based planner (RRT) [28] to

plan paths that consider robots dynamics, and (iii) a dis-

tributed decision-making algorithm (max-sum) [29] to

achieve multi-robot coordination.

The combination of the three aforementioned elements

allows agents to perform an efficient exploration, subject

to inter-agent collision avoidance and communication

constraints. Next we present in Sec. 4.2.1 an overview of

our sampling-based multi-robot exploration (SBMRE)

algorithm [26]. This is followed in Sec. 4.2.2 by an eval-

uation of the proposed approach in simulations, and in a

field experiment where three quadcopters explore a sim-

ulated wind field.

4.2.1 SBMRE Algorithm Overview

We depict in Figure 13 a block diagram that describes

the algorithm’s execution. SBMRE algorithm is ex-

ecuted locally by each robot, and works sequentially,

where each full iteration solves the next finite-horizon

exploration task. The algorithm works as follows: first,

each of the agent individually grows an RRT with its cur-

rent position as root. Then agents send the set of paths

contained in the tree to their neighbors in order to coop-

erate about the optimal assignment of paths. Since the

number of paths in the tree could grow indefinitely, we

propose a clustering method that reduces the computa-

tional complexity of the cooperation procedure by clus-

tering the set of paths of each of the robots. Next agents

send these clusters to their neighbors.

Once an agent receives the clusters, it starts executing

max-sum to select the cluster that maximizes a user-

defined global utility function that is subject to inter-

robot constraints. Here we define this utility function as

an information-theoretic function – mutual information

(MI) – calculated from the underlying GPs model.

Once agents select their own cluster, they communicate

the selected cluster to their neighbors. Then, each agent

selects a path within its cluster by evaluating a MI be-

tween their current process estimation and their future

potential paths.

Next agents traverse the selected paths, and exchange the

gathered measurements through the network via a flood-

ing mechanism. These measurements are then employed

by the agents to update its GPs model. This loop is re-

peated till a user-defined stopping criterion, e.g. explo-

ration time or remaining uncertainty about the process,

is fulfilled.
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Figure 13: SBMRE algorithm block diagram.
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Figure 14: SBMRE algorithm’s performance. (a)RMSE

reduction; (b)Network connectivity.

4.2.2 SBMRE Algorithm Evaluation

We evaluate our SBMRE algorithm in simulations,

where a system composed by up to 4 agents explores a

wind field. In particular, we evaluate two metrics. First,

we evaluate the reduction of the root mean squared er-

ror (RMSE) between the initial process estimation and

the estimation that results after a 300 s exploration run.

Then, we evaluate the ability of robots to maintain net-

work connectivity. Note that our goal is to achieve a

100% in both RMSE reduction and network connectiv-

ity. We compare our SBMRE algorithm against a ran-

dom walk. Results of this evaluation are depicted in

Fig. 14. Results demonstrate that SBMRE algorithm

clearly outperforms a random walk. Moreover, results

indicate that SBMRE algorithm greatly benefits from

multi-agent coordination.

In addition to simulations, we carried out a field experi-

ment with 3 quadcopters. Experimental results indicate

that we achieve a 300% RMSE improvement with three

robots respect to one, which indicates an efficient multi-
agent coordination.

5 CONCLUSION AND FUTURE WORK

Several algorithms for distributed sparse Bayesian learn-

ing with spliting-over-features approach to data distri-

bution have been discussed. In the proposed algorithm

a multi-agent system is used to collaboratively learn a

stationary spatial process based on measurements per-

formed by individual agents. Such algorithms can be

useful when a swarm is needed to collaboratively and

efficiently map a static spatial process. The obtained

results demonstrate that the use of model-based explo-

ration strategies, and in particular strategies that aim

to reduce the uncertainty of the estimated parameters,

perform more efficiently as compared to the system-

atic scanning techniques. We also discussed a strategy

for planing agent movements in more realistic scenar-

ios, i.e., in situation when the environment is populated

with obstacles or realistic agent dynamics is taken into

account. From practical perspective, both realistic path

planing and distributed estimation algorithms have to be

combined. In particular, the proposal way points gener-

ated by the exploration algorithm should be used as an

input for SBMRE algorithm that will then produce real-

istic movement trajectories. The investigations of such

combined approaches is currently underway.

We are currently realizing the Swarm-CPNT concept

with software-defined radios for real-world experimen-

tation. The Swarm-CPNT concept is currently extended

with antenna arrays for each agent to enable orientation

estimation jointly with localization and time synchro-

nization. Swarm navigation does not consider the en-

vironment yet, e.g., reachable positions to span an array

or obstacles. Swarm exploration and swarm navigation

are not yet connected. Hence, future work will focus on

the fundamentals how to solve these class of optimiza-

tion problems efficiently and how resulting algorithms

can be realized for individual agents.
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