Measurement and Analysis of ITS-G5 in Railway Environments

Paul Unterhuber, Andreas Lehner and Fabian de Ponte Müller

German Aerospace Center (DLR)
Institute of Communications and Navigation
Outline

- Motivation
- Measurement setup
- Environment and scenarios
- Measurement results and analysis
- Conclusion and Outlook
Motivation (1)

Future wireless railway communications

- Reliable
- Low latency
- High throughput

- Safety critical
- Interoperable
Motivation (2)

Intelligent Transportation System ITS-G5

- Vehicle-to-Vehicle (V2V)
- Vehicle-to-Infrastructure (V2I)

- ITS frequency allocation
 - Service Channel (Ch) 3,4
 ITS- non-safety applications
 - Control Ch + Service Ch 1,2
 ITS road safety
 - Service Ch 5,6
 Future ITS applications
Measurements Setup

Cohda ITS-G5
• Transmitter (Tx) - Train
• Receiver (Rx) - Car

Dual channel operation:
• Control channel: **Ch 180 - 6 Mbps**
• Service channel 1: **Ch 176 - 3 Mbps**
• 10 MHz bandwidth
• 21 or 24 dBm output power
• 100 Hz message repetition rate
• Message length 150 and 400 Byte
BOB – Route network
Environments

- Urban area
- Rural area
- Tunnel
- Cross bridge
- Open field
- Forest
Scenarios

Video see attachment
Passing manoeuver
Overtaking manoeuver
Opposing manoeuver
Coverage

Transmit power $P_{Tx} = 21$ dBm

- Avg(Ch 180)
- Avg(Ch 176)
- Path loss model (21 dBm)
- Receiver sensitivity
- Avg(Ch 176) 150
- Avg(Ch 180) 150
- Avg(Ch 176) 400
- Avg(Ch 180) 400

$P_{Tx} = 24$ dBm

- Avg(Ch 180)
- Avg(Ch 176)
- Path loss model (24 dBm)
- Receiver sensitivity
- Avg(Ch 176) 150
- Avg(Ch 180) 150
- Avg(Ch 176) 400
- Avg(Ch 180) 400
Conclusion and Outlook

• ITS-G5 can handle different railway environments

• Coverage
 • $P_{Tx} = 21$ dBm ~ 400 m
 • $P_{Tx} = 24$ dBm ~ 600 m
 $$P_{Tx} = 33$$ dBm ~ 1200 m

• Update Delay of ITS-G5 is sufficient for railway applications

• Further measurements on High Speed Trains
Thank you for your attention!

Questions?

German Aerospace Center (DLR)
Institute of Communications and Navigation

Paul Unterhuber
Andreas Lehner
Fabian de Ponte Müller

Knowledge for Tomorrow
References