
F E A T U R EF E A T U R E

©
E

Y
E

W
IR

E

February 200460
0272-1708/04/$20.00©2004IEEE

IEEE Control Systems Magazine

High-Performance
Numerical Software
for Control

By Sabine Van Huffel,
Vasile Sima, Andras Varga,
Sven Hammarling, and
François Delebecque T

his article is concerned with the development of quality
control-application software that performs efficiently
and reliably on modern computing machines. In particu-
lar, we describe the subroutine library SLICOT (Subrou-
tine Library In COntrol Theory) [1], give the background
and motivation for the development of this library, and

describe its most important features.
The need to solve the increasingly challenging large-scale problems

that arise in control systems analysis and design has led to a need for
more powerful algorithms able to solve these problems. Most users of
standard control-oriented commercial software tools tend to have a
blind confidence in the “quality” of the computed solutions and in the
“efficiency” of the underlying methods. In many cases, however, it can
be difficult to judge the numerical accuracy of the solutions as well as
the efficiency of the implemented methods. It is a sad and mostly
ignored fact that in many cases such tools are of dubious numerical
quality. Therefore, to judge the numerical performance of algorithms,

Developing reliable
and efficient software
for control applications.

we need to understand the requirements for satisfactory
numerical algorithms. Some of the employed algorithms
are inappropriate for solving large-scale problems and reg-
ularly fail even for relatively low-order problems. However,
such failures are not always caused by the algorithms but
rather their naive implementation. It
is rarely the case that estimates of the
accuracy of the solution or of the sen-
sitivity of the problem being solved
are also returned. The latter can be
vital to help judge whether or not the
modeling process has led to a well-
posed problem.

The purpose of the SLICOT collec-
tion of computer-aided control sys-
tem design (CACSD) algorithms is to have a strong basis
for a new generation of control systems design packages
by establishing a comprehensive standard set of numeri-
cally robust routines with known performance in terms of
reliability and efficiency. To achieve this goal, it was neces-
sary to develop new control-relevant algorithms by taking
into account the latest developments in the numerical
analysis field and relying on the expertise of qualified
implementors.

The approach used in building SLICOT was to utilize the
standard numerical linear algebra packages BLAS (Basic
Linear Algebra Subprograms) [2]–[4] and LAPACK (Linear
Algebra Package) [5], which form the basic linear algebra
layer of SLICOT. Additionally, routines for the numerical
solution of mathematical problems often encountered in
CACSD are provided, such as linear and quadratic matrix
equations, rational matrix factorization, and the computa-
tion of condensed forms. The applicability of the library is
facilitated when its routines are embedded, by means of
appropriate interfaces, in widely accepted user-friendly
environments, such as MATLAB or Scilab [6]. Such a
framework has all the advantages of open-source software
and provides the user with a flexible and easy way to com-
bine and experiment with the routines of the library and
the tools of MATLAB and Scilab. The use of Fortran 77 as
the implementation language has a considerable advantage
with respect to execution speed, compared to similar gen-
uine MATLAB or Scilab functions. Besides guaranteed
numerical quality of algorithms, performance gains of
600% or more in speedup can occasionally be achieved.
Moreover, the low-level nature of Fortran 77 makes it easy
to call SLICOT from other languages such as C or C++, as
well as to build interfaces to MATLAB and Scilab.

The outline of this article is as follows. First, we discuss
the requirements for high-quality control software, giving
some illustrative examples and indicating the features of
high-quality software in the context of numerical computa-
tion. We then give an overview of linear algebra and control
libraries that have been important influences in the develop-

ment of SLICOT, describe the recent history of SLICOT, and
follow with a section on the functional capabilities of SLI-
COT. Next we discuss and illustrate the performance of SLI-
COT and then describe some user-friendly interfaces to
SLICOT. Finally, we indicate some future directions.

Requirements on
High-Quality Control Software
In developing a library of high-quality subroutines, several
criteria must be fulfilled, such as reliability and accuracy
of underlying algorithms, high computational efficiency,
robustness of implementations, ease-of-use interfaces,
rich functionality, and portability across a wide range of
machines [7]. In what follows, we discuss these aspects in
the context of developing the copyrighted freeware sub-
routine library SLICOT to solve control-related computa-
tional problems. The implementation of these
requirements in the software is not only time consuming
but also requires skilled experts in numerical analysis,
control, and computational programming. Commercially,
these requirements are not necessarily attractive. Instead,
the implementation of these requirements in software
should be performed in a standardized way and coordi-
nated by an academic consortium. This group can then
join with experts worldwide to promote the dissemination
of the software by means of integration into the existing
commercial and freeware packages, thereby improving
the overall software quality.

Reliability
The reliability of numerical software is strongly related to
the guaranteed accuracy of the computed results and can
only be ensured by a proper selection of the underlying
algorithms. Many basic linear algebra algorithms, as well
as some control-related algorithms, are proven to be
numerically stable. Numerical stability (or more exactly
numerical backward stability) of an algorithm means that
the results computed by that algorithm are exact for slight-
ly perturbed original data. As a consequence, a numerical-
ly stable algorithm applied to a well-conditioned problem
will produce guaranteed accurate results. If a problem is
intrinsically ill-conditioned, no algorithm is guaranteed to
deliver an accurate result. However, numerically stable
algorithms are guaranteed to solve a problem close to the
exact problem and can thus provide accurate solutions for

February 2004 61IEEE Control Systems Magazine

To judge the numerical performance
of algorithms, we need to understand

the requirements for satisfactory
numerical algorithms.

February 200462 IEEE Control Systems Magazine

acceptably well-conditioned problems. On the other hand,
unstable algorithms could produce wrong results even for
well-conditioned problems.

Example 1
The poles of a minimal-order linear system with n × n state
matrix A are the roots of the characteristic polynomial of
A, det(A − λ In), where In is the identity matrix of order n,
and λ is a complex variable; equivalently, the poles are the
eigenvalues of A. For

A =
(

1 ε

ε 1

)
,

with ε ∈ R , the characteristic polynomial is
λ2 − 2λ + (1 − ε2) , so the poles are λ1 = 1 + ε , and
λ2 = 1 − ε. Let εu be the round-off unit of the computer
used for computations, that is, the smallest positive repre-
sentable number so that the floating-point representation
of 1 + εu, fl(1 + εu), is greater than 1 (but fl(1 + ν) = 1, for
0 ≤ ν < εu). If ε2 < εu < ε < 1, then the roots computed
using the MATLAB commands roots(poly(A)) are
λ̂1 = λ̂2 = 1, since fl(1 − ε2) = 1. Hence, roughly half of the
accuracy could be lost by this simple computation. The
interested reader can try this example in MATLAB on an
Intel Pentium machine for ε = 5 · 10−9. On the contrary, if
the poles are computed using the MATLAB function
eig(A), full accuracy will be retained. This example shows
that intuitive algorithms can be unreliable in finite-preci-
sion computation even on well-conditioned problems.

The difficulties shown by the above example will be
even more severe for larger problems or sophisticated
algorithms, which can require the solution of many sub-
problems. A basic ingredient for achieving numerical stabil-
ity is the use of orthogonal transformations wherever
possible. Their usage often makes it possible to find
bounds for perturbations of the initial data that are equiva-
lent to the cumulative effect of round-off errors during the
computations therefore verifying the numerical stability of
an algorithm. One approach to developing numerically reli-
able algorithms for solving control problems is to reduce
the original problem, using orthogonal transformations, to
an equivalent one that is easier to solve. The reduced prob-
lem is solved by specialized algorithms, and the solution of
the original problem is recovered by back transformation.

A key aspect for enhancing the reliability of algo-
rithms is to exploit structural information about the
underlying computational problem. The following exam-
ples show that, without exploiting the problem struc-
ture, numerical reliability can be lost even when using
numerically stable algorithms.

Example 2: Eigenvalues of Hamiltonian Matrices
Hamiltonian matrices play an important role in solving Ric-
cati equations, where the main numerical problem is the

computation of eigenvalues and orthogonal bases of spe-
cial invariant subspaces. Consider the matrices

H =
(

A F
Q −AT

)
, J =

(
0 In

− In 0

)
,

where A, F , Q ∈ Rn×n and F and Q are symmetric matri-
ces. The matrix H has the property that JH = (JH)T . Such
matrices are called Hamiltonian. Since JT = − J = J−1, it
follows that HT = JH J , or JT HT J = −H . Hence, −H has
the same eigenvalues as HT and H, and so, if λ ∈ 	(H),
then −λ ∈ 	(H), with the same (algebraic) multiplicity.
(The notation 	(M) denotes the set of eigenvalues of the
matrix M .) However, if the eigenvalues are computed
numerically with a standard eigensolver (for instance, with
the function eig from MATLAB), this pairing property can
no longer be guaranteed. For instance, by taking

A =
(

10 0
10 0

)
, F =

(
10 10
10 0

)
, Q =

(
0 10
10 10

)
,

the MATLAB function eig(H) gives

± 17.32050807568877,

−1.094633850125614e−15
± 1.003289648705741e−7i.

The last two eigenvalues should be zero, and hence more
than half the machine accuracy was lost. Moreover, these
eigenvalues form a complex conjugate pair, and thus are
qualitatively wrong, since they should have opposite val-
ues (if nonzero). An algorithm relying on the above-men-
tioned pairing property would therefore fail.

On the other hand, using the combination of the SLI-
COT routines MB04ZD and MB03SD to implement a Hamil-
tonian structure-preserving algorithm [8], yields the
eigenvalues ±17.32050807568877, 0, 0.

Example 3:
Computation of Hankel Singular Values
The Hankel singular values are input–output invariants of
stable linear systems and play a fundamental role in find-
ing balanced realizations and in model reduction. They are
defined as the nonnegative square roots of the eigenvalues
of the product PcPo, where Pc and Po are the nonnegative
definite controllability and observability Gramians, respec-
tively, and PcPo has nonnegative eigenvalues. For a stable
state-space realization (A, B, C) , A ∈ Rn×n , B ∈ Rn×m ,
C ∈ Rp×n, of a discrete-time linear time-invariant system,
the Gramians are given by the solutions of the stable dis-
crete-time Lyapunov equations, also called Stein equations

APc AT − Pc = −BBT and AT Po A − Po = −C T C .

By solving these equations without taking into account the
symmetry and semidefiniteness of the solutions, round-off

February 2004 63IEEE Control Systems Magazine

errors can cause the computed Gramians to become non-
symmetric or indefinite. This error can result in negative
or even complex Hankel singular values, which contradicts
the system-theoretic properties. For instance, considering

A =

0.0101 −0.0030 0.0167
−0.0117 0.0055 −0.0334

0.0566 0.0451 −0.0342

 ,

B =

0.4678
−0.3276
−0.7043

 ,

C = (−0.8113 −0.6185 −0.0309),

the MATLAB functions gram and eig(PcPo) give (with five
significant digits)

2.4147e−2, 2.7170e−7, −5.7231e−19.

Hence, the computed Hankel “singular values” are the non-
negative square roots of the above eigenvalues, i.e.,

1.5539e−1, 5.2125e−4, 7.5651e−10i,

the last value being purely imaginary! On the other hand,
the SLICOT function AB13AD computes the real Hankel sin-
gular values

1.5539e−1, 5.2125e−4, 9.0630e−10,

by exploiting the fact that the Hankel singular values can
be equivalently computed as the singular values of the
product RcRo, where the upper triangular matrices Rc and
Ro are the Cholesky factors of the Gramians satisfying
Pc = RcRT

c and Po = RT
o Ro . It is essential to compute Rc

and Ro by solving the Lyapunov equations directly for
these factors using the algorithm in [9]. Also, the condi-
tion numbers (in the two-norm) of the Gramians are the
squares of (and hence larger than) those for their factors,
and, therefore, the SLICOT approach is to be preferred.

Structure-preserving algorithms have been developed
for many control domains, and robust software implemen-
tations are available in SLICOT. Some of the most recent
algorithmic developments are: balancing-free square-root
methods for model reduction [10] (and the references
therein), periodic Schur methods for solving periodic Lya-
punov equations [11], descriptor systems analysis proce-
dures [12], symplectic methods for solving Riccati
equations [13], [14], and subspace identification methods
[15] (and the references therein).

A key ingredient for assessing the quality of computed
results is the use of condition estimators. Since many real-

life problems include hidden ill-conditioned subproblems, it
is useful to have techniques for tracking the conditioning of
the subproblems that can significantly affect the accuracy of
the final results. Cheaply computable condition number esti-
mators are available for most of standard linear algebra
problems and are implemented in LAPACK [5]. Condition
number estimates and error bounds are also available in SLI-
COT for some control related computations, as the solution
of linear matrix equations (Lyapunov, Stein, and Sylvester).

Efficiency
The availability of efficient algorithms and codes is important
for solving large-scale engineering design problems, where
extensive computations have to be performed repeatedly, for
various design parameters. Efficient algorithms are also
essential for some real-time control problems, where the
results must be available in time slots smaller than the sam-
pling period. There are several factors that affect the compu-
tational efficiency. At the algorithmic level, it is essential to
take advantage of structure that the underlying problem
might possess, such as symmetry, or definiteness. Therefore,
we need to design specialized algorithms for each important
type of data processed by these algorithms. At the implemen-
tation level, it is important to ensure flexibility, portability,
and adaptability to various computing platforms, including
the ability to use the potential of modern high-performance
computer architectures (vector, parallel, with memory hier-
archies). For medium-size and large-scale problems, exploit-
ing the memory hierarchies is a key issue, since the problem
data cannot be fully stored in the fastest (cache) memory
level, and frequent data moving between the fast and slow
memory levels will strongly degrade the computational per-
formance. A similar argument is valid for parallel computing
architectures, where the communication between processors
is usually the bottleneck in terms of efficiency.

In view of these needs, it is necessary to make use of
any existing tools for performance improvement. These
tools include high-performance compilers, such as (high-
performance) Fortran, message-passing paradigms, such as
MPI (for inter-processor communication), and preexisting
efficient computational building blocks such as LAPACK
and optimized BLAS and their parallel counterparts, ScaLA-
PACK [16] and PBLAS. The use of suitable data structures
is also essential; for instance, the solution of large-scale
problems typically involves operations with sparse matri-
ces. A sparse matrix has most of its entries zero. The essen-
tial idea is to store and operate with the nonzero elements
only. Besides the values of the nonzero elements, informa-
tion about their row/column indices must be stored.

To illustrate the benefits of exploiting sparsity, consid-
er a 2000-by-2000 tridiagonal matrix A, with nonzero ele-
ments only on the main diagonal and the first sub- and
superdiagonal. Such a matrix has 5,998 nonzero elements
at most. Using MATLAB sparse matrix computations, each

solution of Ax = b, for several vectors b, was obtained in
no more than 0.05 s on a Pentium 3 machine at 500 MHz.
But when A was considered as a full matrix, the calcula-
tions needed about 1.43 s. This speed-up results from
using the general sparse matrix representation. If the tridi-
agonal structure is exploited by a solver, even greater effi-
ciency is possible. Then the number of floating-point
operations is O(n), compared to O(n3) for a general linear
system solver, where n is the order of A.

Algorithm-blocking and vectorization techniques have
contributed decisively to the high performance of many
LAPACK codes, and this feature has been partly inherited
by the implementations of many SLICOT subroutines,
where many linear algebra subproblems are handled near
the peak achievable performance. Moreover, in all SLICOT
routines matrix–matrix operations are performed by
means of the corresponding BLAS routines [4]. Still, gener-
ally, the algorithms implemented in SLICOT are not block
oriented but can be essentially considered as highly vec-
torized. Thus, we expect that the SLICOT routines will pro-
vide near-peak performance on many vector processors,
but the performance for large-order systems could be lim-
ited on some machines by the rate of data movement.

Robustness
Robustness of software implementations means avoid-
ing overflows, harmful underflows, and unacceptable
accumulation of round-off errors. To achieve robust-
ness, the computational routines must be able to deter-
mine the floating-point properties, such as the overflow
and underflow thresholds OVFL and UNFL, at run time,
without overflowing. OVFL and UNFL can be used for
scaling to prevent overflow and harmful underflow dur-
ing subsequent calculations. By careful implementation,
it is frequently possible to avoid overflow in situations
where the numerical results lie within the range of rep-
resentable values, but where partial results can over-
flow. A typical example is the Euclidean length of a real
vector x : ||x||2 := (

∑
i x2

i)1/2. If |xi| > OVFL1/2 , then x2
i

will overflow, although ||x||2 may be well below OVFL. A
careful implementation of this norm computation is a
nontrivial task, and a special routine is available in BLAS
[2] for this purpose. Another aspect of implementation
robustness is the use of default values for tolerances.
These values are used, for instance, for rank determina-
tion or in the stopping criteria for iterative processes,
so that meaningful results are returned for well-scaled
problems. In this context, the round-off unit εu plays an
important role. To determine OVFL, UNFL, εu , and other
double precision floating-point representation related
quantities, the LAPACK routine DLAMCH is called by SLI-
COT routines.

A control specific aspect of computational robustness
is the scaling of initial data. The entries of the state space

matrices (A, B, C) resulting from physical modeling or sys-
tem identification often have a wide range of magnitudes.
An example is a state-space realization of a Butterworth fil-
ter, obtained, for instance, by using the MATLAB function
butter . Scaling a linear state-space system model
(A, B, C) implies determining an input-output equivalent
representation (Ã, B̃, C̃) by means of a similarity transfor-
mation of the form

(
Ã, B̃, C̃

)
:=

(
T−1 AT, T−1 B, C T

)
,

where T is a diagonal matrix chosen such that the range of
entries of the triple (Ã, B̃, C̃) is the least possible. Scaling a
state-space model often contributes to improving the accu-
racy of results and in extreme cases can even prevent algo-
rithmic failures because of false rank determinations, or
extreme inaccuracies. Scaling can be optionally done in
almost all SLICOT routines where state-space models are
manipulated (for example, minimal realization, model
reduction, and conversions). Scaling of individual matrices
is also implicitly performed in many linear algebra routines
of LAPACK, as for example in computing eigenvalues or
solving Sylvester-like matrix equations.

Ease of Use
Ease of use of numerical software can be achieved if imple-
mentation details are largely hidden from the user and thus
not visible through the user interface. In this regard, SLICOT
provides user-callable routines, which cover a typical sys-
tem theoretic or mathematical functionality. These routines
are fully documented, and for most of them, accompanying
simple test examples are also available to allow a quick
check of the installation correctness. Many user-callable
routines rely on supporting routines, which implement
either computational steps if a more complex algorithm is
considered, or solve special subproblems (for example,
after reducing the original problem to a simpler form).

Another aspect of ease-of-use is to provide meaningful
default settings for all algorithm parameters, such as toler-
ances for rank determination, and tolerances for stopping
iterative processes. In most SLICOT routines, method-relat-
ed parameters have standard settings, which are satisfac-
tory in most cases.

Wide Scope
Wide scope refers to the range of control problems and
system representations that the algorithms and software
can address. This scope implies rich functionality. To illus-
trate, the system representations handled in SLICOT are

� continuous-time and discrete-time standard state-
space models of the form

ẋ(t) = Ax(t) + Bu(t)

y(t) = C x(t) + Du(t)

February 200464 IEEE Control Systems Magazine

and

x(t + 1) = Ax(t) + Bu(t)

y(t) =C x(t) + Du(t)

� continuous-time and discrete-time generalized (or
descriptor) state-space models of the form

Eẋ(t) = Ax(t) + Bu(t)

y(t) = C x(t) + Du(t)

and

Ex(t + 1) = Ax(t) + Bu(t)

y(t) = C x(t) + Du(t),

where E is a square matrix, and A − λE is regular
� input–output models given by rational Laplace-trans-

form or Z-transform transfer-function matrices G(s)
or G(z), respectively

� polynomial fraction input–output transfer-function
matrix models represented as G(λ) = N(λ)M(λ)−1 or
G(λ) = M(λ)−1N(λ), where N(λ) and M(λ) are poly-
nomial matrices in the complex variable λ = s for a
continuous-time system and λ = z for a discrete-time
system

� time-series of input and output vectors for state-
space system identification. Several routines are pro-
vided to perform conversions between these
representations.

Although SLICOT can handle all of these system repre-
sentations, SLICOT has been restricted to state-space
analysis and design methods because of the intrinsic ill-
conditioning present in manipulating polynomial and ratio-
nal matrices.

Portability
Since code developed on one machine is often embedded
(and hidden) in an application on another machine, and
possibly used on a third machine, it would be unreason-
able to expect a user acquiring code to modify all of its
subparts to ensure that they run correctly. Hence, porta-
bility of programs has always been an important consider-
ation in implementing numerical libraries like LAPACK and
SLICOT. We use here the term portability in the restricted
sense of portability of functional correctness, which means
that a code written in a standard language such as Fortran
will run correctly on an arbitrary machine with an arbi-
trary Fortran compiler. The more general concept of porta-
bility of performance is more difficult to achieve (see [7]).

One way to reduce code-porting difficulties is to iso-
late non-portable features such as floating-point proper-
ties in a few routines and modify only these routines
when porting is necessary. Alternatively, the developers
of LAPACK implemented special routines (SLAMCH/

DLAMCH) to return floating-point properties at run time.
By doing so, a tradeoff between portability, on the one
hand, and efficiency, accuracy, and robustness, on the
other hand, automatically results. For example, assum-
ing the availability of IEEE arithmetic for the target
machine and standard high level language access to its
exception handling, this approach allows significantly
faster, more accurate, and more robust code in many
LAPACK routines [7].

The key to portability is to rely on standards. In the
case of SLICOT, the implementation language is Fortran
77, with only one non-standard extension. This exception
is the double precision COMPLEX*16 data structure,
which is supported by a majority of compiler vendors
and is now standard in Fortran 90. Another aspect of
achieving the high portability of SLICOT is the use of the
standard libraries BLAS and LAPACK as underlying linear
algebra tools.

The BLAS can be seen as a key to the portability of per-
formance. Its use in LAPACK and also in SLICOT can pro-
vide portable high performance on many platforms, for
which assembly-coded BLAS tuned for particular architec-
tures is available. The freely available standard implemen-
tation of BLAS serves not only for code development and
testing, but may substantially improve the efficiency of
programs when they run with nonoptimizing compilers.

Reusability
Many sophisticated CACSD platforms, such as ANDECS
[17], EASY5 of the Boeing Company, MATLAB, or Scilab
[6], rely on robust implementations of numerically reli-
able and computationally efficient algorithms. In the
architecture of such CACSD platforms we can identify and
usually access a basic computational layer consisting of
subroutine libraries, such as RASP (a product of the
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR),
Oberpfaffenhofen, Germany) in ANDECS [17], SLICOT in
EASY5, or built-in functions in MATLAB and Scilab. This
layer includes all computational routines for specific
mathematical and control computations, simulation, and
optimization. An important advantage of developing con-
trol libraries such as RASP and SLICOT is that the
process is not restricted by specific requirements of the
CACSD platform operation, by the languages used for its
implementation, or by the employed data structures.
Moreover, such control libraries can serve the develop-
ment of several platforms, or can be used within other
dedicated engineering software systems. This low-level
reusability can only be achieved by using general pur-
pose programming languages such as C or Fortran 77 as
implementation languages.

In the case of RASP and SLICOT libraries, Fortran 77 has
been chosen as the implementation language since rou-
tines from the high-performance linear algebra packages

February 2004 65IEEE Control Systems Magazine

BLAS, EISPACK, LINPACK, and recently LAPACK, can be
directly and efficiently called.

Overview of Linear Algebra
and Control Libraries
For the past 20–25 years, there has been a great deal of
activity in the area of algorithms and software for solving
both linear algebra problems and control-relevant compu-
tational problems. High performance on codes that are
portable across platforms have been achieved by identify-
ing the computational hierarchy of the main linear algebra

packages (for example, BLAS, EISPACK, LINPACK, LAPACK)
and of several control libraries based on them. It is impor-
tant to emphasize the influence of the underlying linear
algebra tools on the development of control-oriented soft-
ware. It seems appropriate, in this historical section, to
give a brief review of the linear algebra packages that rep-
resent milestones in developing high quality portable
numerical software.

Linear Algebra Libraries

The Handbook
During the 1960s a number of Algol procedures were devel-
oped and published in the journal Numerische Mathematik,
then collected into a volume [18], generally referred to
simply as “The Handbook.”

EISPACK
“The Handbook” was the basis for the EISPACK collection,
an influential set of Fortran routines for solving eigenvalue
problems, and the first of many “PACKs” [19], [20].

BLAS
Another fundamental development at this time was the
design of the Basic Linear Algebra Subprograms (the
BLAS), a set of kernel routines for basic scalar and vector
operations such as generating a plane rotation, computing
the Euclidean length of a vector, and computing the dot
product of two vectors [2]. In view of subsequent develop-
ments, these are now usually referred to as the Level 1
BLAS. The advent of vector machines in the late 1970s with
vector registers and pipelines meant that the Level 1 BLAS
were at too low a level of granularity to take advantage of

the speed of these machines, and this realization led to the
development of specifications for a set of Level 2 BLAS for
matrix-vector operations [3]. Soon afterwards the level of
granularity was raised once again with the specification of
a set of Level 3 BLAS for matrix–matrix operations targeted
at machines with hierarchies of memory and shared mem-
ory multiprocessor machines [4]. The aim of the specifica-
tion of the BLAS has been to encourage the production of
efficient machine-specific versions, and this aim has been
successfully realized.

LINPACK
The success of EISPACK motivated
the development of a second pack-
age of high quality software for lin-
ear algebra problems, LINPACK,
for solving linear equations and
linear least squares problems [21].
One of the distinctive features of
LINPACK was efficiency, which
was achieved by the column orien-

tation of the algorithms (storage of arrays in Fortran being
by column) and the use of the Level 1 BLAS.

LAPACK
The advent of vector machines, of machines with hierar-
chies of memory, and of multiprocessor machines meant
that the earlier software packages were no longer efficient
on modern machines. This realization led to the develop-
ment of LAPACK, a linear algebra package for the solution
of dense and banded linear algebra problems, combining
and extending the facilities of EISPACK and LINPACK.
LAPACK uses the Level 3 and Level 2 BLAS wherever possi-
ble for efficiency, and also puts great emphasis on error
and condition estimation.

Control Libraries
The development of efficient, reliable, and portable numer-
ical software for CACSD requires joint expertise in control
theory, numerical mathematics, programming, and soft-
ware engineering. Therefore, the development of fully test-
ed, production-quality numerical software for CACSD is a
challenging and time-consuming task, which involves coop-
erative efforts over a lasting period of time. In what follows
we present a short historical survey of control libraries
that contributed to the development of the current release
of the SLICOT library. From this limited perspective, our
survey is biased toward tracing the roots of this library
and therefore we apologize for any omissions. For a fairly
complete inventory of control libraries and CACSD pack-
ages available around 1985 see [22]. A more recent presen-
tation is in [1].

The SLICOT library is the result of international cooper-
ation among leading numerical algebra and control numer-

February 200466 IEEE Control Systems Magazine

The need to solve the increasingly
challenging large-scale problems that arise
in control systems analysis and design has
led to a need for more powerful algorithms.

ics experts. Many routines in SLICOT originate from earlier
implementations available in the control libraries
BIMAS/BIMASC, LISPACK, RASP, SLICE, SYCOT.

BIMAS and BIMASC are Fortran 77 control libraries
developed at the Research Institute for Informatics (ICI),
Bucharest, Romania, and used to build the interactive
package SIPAC [23]. BIMAS [24] extends the capabilities of
the underlying EISPACK and LINPACK software for control-
related computational problems, such as solving matrix
equations (Lyapunov, Sylvester, Riccati), computing
matrix exponentials, and reordering Schur forms. The
library BIMASC [25], based on BIMAS, provides a rich col-
lection of subroutines covering system analysis, modeling,
design, and simulation.

LISPACK is another East European control library devel-
oped by a Bulgarian group from the Technical University
of Sofia. LISPACK is based mainly on EISPACK and its con-
tent is similar to that of BIMAS. LISPACK served as the
basis of SYSLAB [26], an interactive package extending the
1984 free initial version of MATLAB.

The development of the RASP library started in the
early 1980s at the University of Bochum and was continued
by the control group at the German Aerospace Center
(DLR) in Oberpfaffenhofen, Germany. Based on EISPACK
and LINPACK, RASP covers a broad area of control engi-
neering computations supporting frequency- and time-
domain analysis and synthesis techniques, multi-criteria
parameter optimization, simulation, and graphics. Special
attention is given to the numerical reliability of the imple-
mented algorithms. The last official release, RASP’95, con-
sisted of about 350 user-callable routines. RASP and the
engineering-database and operating system RSYST togeth-
er formed the software infrastructure of the computer-
aided control engineering environment ANDECS [17].

In the early 1980s, a British cooperative initiative led to
the development of the control library SLICE, which con-
tains a set of almost 40 control routines. When this initia-
tive ended, the routines were further distributed by the
Numerical Algorithms Group (NAG) from Oxford (U.K.),
who issued a revised version of SLICE. In the same period,
the Working Group on Software (WGS) was founded as a
Benelux cooperation among several academic institutes
and industries, aiming to develop reliable control soft-
ware.The first achievement of the WGS was the develop-
ment of the control library SYCOT. To produce a library
that meets professional standards, the WGS associated
itself in the late 1980s with NAG, and they decided to inte-
grate their libraries, SLICE and SYCOT, into a new library,
called SLICOT. This cooperation was effective and led to
the first release of SLICOT in 1991. A second release of SLI-
COT in 1993 contained about 90 user-callable routines for
computations related to the analysis, modeling, transfor-
mation, and synthesis of systems. Around 1995, the WGS
began to operate on a European level.

SLICOT is a general purpose basic control library and
can primarily be viewed as a mathematical library for con-
trol theoretical computations. The main emphasis in SLI-
COT is on numerical reliability of implemented algorithms
and the numerical robustness and efficiency of routines.
Special emphasis is placed on algorithmic flexibility and
rigorous implementation and documentation standards
(see [27]).

Recent Evolutions of the SLICOT Library
Around 1994, only SLICOT and RASP were in active develop-
ment. To avoid duplication of effort, DLR and WGS intro-
duced the mutual compatibility concept, which enabled the
coordinated development of both libraries. Part of this
agreement was to incorporate the numerical linear algebra
packages BLAS Level 3 [4] and LAPACK [5] in both libraries.

The RASP/SLICOT cooperation was only a first step
toward the realization of a standard, generally accepted,
platform for computational control tools. A more recent
development in this direction was the first public release
(Release 3) of SLICOT in 1997, when WGS, NAG, and DLR
took the initiative to extend the scope of cooperation to a
European level and make SLICOT freely available to ensure
faster and wider distribution. A European network, called
NICONET (Numerics In COntrol NETwork), for defining
standards, and producing and disseminating CACSD soft-
ware was established, joining research centers and univer-
sities with complementary expertise in the development of
numerical control software. The main objectives were to
enlarge the control systems areas covered with new top-
ics, such as subspace identification, robust control, model
reduction, descriptor systems, and nonlinear systems, and
to better fulfill the users’ requirements and industrial
needs. This successful cooperation between 11 universi-
ties/research institutes and six companies, started in 1997,
led to the rapid development of the SLICOT Library, which
now includes more than 200 user-callable routines and 150
lower level documented routines (compared to 90 user-
callable routines in 1997), covering the basic areas in sys-
tems and control theory. In addition, extended
documentation, benchmarks, and industrially oriented test
examples, as well as gateways to important CACSD envi-
ronments such as MATLAB and Scilab, are provided for
many typical CACSD calculations, making the software
more accessible for industry and control education.
Detailed information about SLICOT and NICONET is provid-
ed at the Web site http://www.win.tue.nl/niconet/. Since
1997, SLICOT has been copyrighted freeware; go to
http://www.win.tue.nl/niconet/NIC2/slicot.html to down-
load the software. Online html documentation files are
available. Built on LAPACK and BLAS (and partly on their
extensions for parallel computers, ScaLAPACK and
PBLAS), the SLICOT routines can exploit the capabilities of
some modern high-performance computer architectures.

February 2004 67IEEE Control Systems Magazine

SLICOT Library Functional Capabilities
The SLICOT Library includes the following chapters: Analy-
sis Routines, Benchmark and Test Problems, Data Analy-
sis, Filtering, Identification, Mathematical Routines,
Synthesis Routines, Transformation Routines, and Utility
Routines. A chapter-by-chapter SLICOT library contents
with sections and subsections is given in [28]. The basic
computational tools in the SLICOT library cover several
problem areas in systems and control theory.

System analysis routines perform tasks such as finding
condensed forms of system matrices exhibiting structural
properties, computation of invariant zeros of a system, or
various system norms. A rich collection of routines is avail-
able for model reduction using accuracy enhanced meth-
ods. Analysis of generalized state-space systems is also
covered.

Benchmark and test problems routines generate bench-
mark examples for time-invariant dynamical systems, as
well as for (generalized) Lyapunov and algebraic Riccati
equations.

Data analysis routines deal with the convolution/
deconvolution of two signals and perform transforms of
real or complex signals.

Filtering routines cover enhanced accuracy (square-
root) covariance propagation schemes for time-varying
and time-invariant filters, including the conventional
Kalman filter and fast recursive least-squares filter.

Identification routines implement subspace identifica-
tion techniques for both linear time-invariant state-space
systems and nonlinear Wiener-type systems.

Mathematical routines implement algorithms for com-
putations that are not available in LAPACK or BLAS. Exam-
ples include structured matrix factorizations, including
those for (block) Toeplitz or Hessenberg matrices, solu-
tion of the corresponding linear systems, special updating
of QR-like factorizations, calculations related to polynomi-
als and matrix polynomials, and solving (structured) non-
linear least-squares problems. Worth mentioning are
specialized algorithms such as the computation of the Kro-
necker-like staircase form of a linear pencil, the computa-
tion of the minimal polynomial basis of a polynomial
matrix, and the reduction of a product of matrices to the
real Schur form without forming the product using the
periodic Hessenberg and Schur forms.

System synthesis routines cover the computational
problems in control systems design: pole assignment; solu-
tion of algebraic Riccati equations, solution of (general-
ized) Lyapunov and Stein equations, of Sylvester equations
AX + X B = C , AX B + X = C and generalized Sylvester
equations AR − LB = C , DR − LE = F (solved for R and
L); minimum norm feedback matrix for deadbeat control;
coprime factorization of transfer-function matrices; and
designing H∞ (sub)optimal, and H2 optimal state con-
trollers. All factorization and synthesis routines, as well as

most matrix equation solvers, cover continuous-time as
well as discrete-time settings.

Transformation routines include conversions between
various system representations. A set of routines perform
conversions between state-space representations, such as
calculation of the controller/observer Hessenberg forms,
or compute the minimal realization of a state-space repre-
sentation. Other routines transform a given system repre-
sentation to another representation, such as state-space to
polynomial, or rational matrix representation (or con-
versely), polynomial representation to frequency
response. Transformation routines for generalized state-
space systems are also provided.

Most SLICOT routines work for matrices with real
entries.

We illustrate the functional flexibility of the basic com-
putational tools, taking as an example the SB03OD routine,
which solves small or medium-size stable non-negative def-
inite Lyapunov equations. Let op(M) denote either the
matrix M or its transpose MT . SB03OD computes the solu-
tion X of either the stable nonnegative definite continuous-
time Lyapunov equation

op(A)T X + Xop(A) = −σ 2op(B)T op(B), (1)

or the convergent discrete-time Lyapunov equation

op(A)T Xop(A) − X = −σ 2op(B)T op(B), (2)

in the factored form X = op(U)T op(U), where U is upper
triangular. The factor U is determined instead of X by
Hammarling’s variant of the Bartels/Stewart method [9].
The first step of this algorithm is the reduction of A to the
real Schur form (RSF). Next, the respective equation is
solved for the reduced form of A, and the solution is recov-
ered by back-transforming the computed factor. Note that
the resulting scalar σ is a subunitary scaling factor (usual-
ly set to one) determined by the routine to prevent solu-
tion overflow. In many applications such as model
reduction, the solution for both forms of op(A)in (1) or (2)
are needed (see also Example 3). The solver’s ability to
deal with the two forms of op(·) in conjunction with the
reduced form of A is advantageous in this context since
only one reduction of A to the RSF is needed to solve both
equations. Since the reduction to RSF is more expensive
than the solution of reduced equations and the back-trans-
formation of the factor, the computational effort for solv-
ing two equations is practically the same as that of a single
equation. The special case in which A is already in RSF is
handled by the solver SB03OD as an option.

Similar capabilities are implemented in other solvers.
The codes for solving algebraic Riccati equations have
options for various scaling strategies and for sorting the
eigenvalues (so that antistabilizing Riccati solutions can be

February 200468 IEEE Control Systems Magazine

obtained); linear quadratic optimization problems with
coupling terms can be optionally solved. Special cases of
matrices in real Schur form, and/or Hessenberg form can
efficiently be dealt with by additional solvers. Estimates of
the reciprocal condition numbers for Riccati and
Lyapunov equations can be computed.

The SLICOT Library contents is summarized in Table 1.
The current version includes 415 documented user-callable
or programmer-callable routines as well as 193 example
programs, with associated data files and results. The down-
loadable library archive file contains over 2,200 files.

SLICOT Performance
In this section we compare some performance characteris-
tics of SLICOT implementations such as speed and accura-
cy to those of functionally equivalent software tools
available in MATLAB. The comparisons are performed
entirely within MATLAB by using appropriate gateway func-
tions for the SLICOT subroutines. The MATLAB functions
that we compare are implemented in the MATLAB language
and belong to the Control Toolbox of MATLAB. Note that
the Control Toolbox, as well as similar toolboxes, are wide-
ly used CACSD tools in control education and industry.
Therefore, we consider it important to understand the limi-
tations of presently available tools and the need for an
alternative paradigm for high-performance CACSD.

Our comparisons illustrate the increased speed of SLI-
COT-based gateways at a same or better level of accuracy.
However, before discussing the results, it is appropriate to
comment on the limitations of a high-level interpretative
language such as MATLAB for implementing control-orient-
ed algorithms.

In this comparison it is helpful to recognize the balance
between MATLAB’s matrix handling power and the desire
to exploit intrinsic structural aspects of the problem.
Exploiting the structural features of computational prob-
lems often has the paradoxical effect of causing larger exe-
cution times, due to overhead in the interpretational
operation mode of MATLAB. Thus, high-order control
problems can rarely be tackled in an efficient way. In con-
trast, implementing algorithms in Fortran or C allows the
use of appropriate data structures, as well as the exploita-
tion and preservation of structural features, and can dras-
tically improve the performance of algorithms. Because of
the flexibility allowed by such programming languages,
algorithmic details can be explicitly addressed, the compu-
tational flow can be optimized, and memory use mini-
mized. Such opportunities have been exploited when
implementing the SLICOT codes. Consequently, the effi-
ciency of many MATLAB functions provided in toolboxes is
minor compared to similar implementations in Fortran
control libraries.

Overcoming such limitations has several side effects,
which can lead to severe performance losses. For example,

in many control-related algorithms the RSF of a real matrix
plays an important role in computations. However,
because of possible 2 × 2 blocks on the diagonal, the
exploitation of the RSF structure in some algorithms (for
example, when solving linear matrix equations) involves
complicated index manipulations and nonstandard cycling,
which significantly deteriorate the performance. The wide-
ly used ad-hoc solution is to turn computations to the
complex field, where the simpler, complex Schur form is
upper triangular. The net result is at least doubling the
computation times for the complex part of the algorithm.
This point is illustrated in the case of the lyap function for
solving Lyapunov equations.

The lack of structure exploitation can lead to wrong
results or unreliable computations. A typical example is
the computation of Hankel singular values (see Example 3)
in the context of balancing linear systems. Without solving
the Lyapunov equations for the Cholesky factors of the
Gramians directly, the computed Gramians can become
slightly nonnegative for nearly nonminimal systems. In this
case, the computation of the Cholesky factors from the
computed Gramians can fail. Consequently, the balancing
function balreal from the Control Toolbox can fail on ran-
dom stable systems [for example, when executing the com-
mand balreal(rss(20,1,1))]. At the same time, the
dimension of the problem can increase to 1,000 without
problems when employing the SLICOT gateway function
sysred for the same purpose.

Finally, the lack of structure exploitation can lead to a
catastrophic slowdown of algorithms as in the case of the
Control Toolbox function ctrbf for single-input systems.
Here, the computation reduces a matrix to Hessenberg
form by using an algorithm employing orthogonal House-
holder transformations. These transformations can be
compactly stored and efficiently applied to other matrices,
making the overall reduction algorithm of computational
complexity O(n3), where n is the order of the system. How-

February 2004 69IEEE Control Systems Magazine

Chapter Main Support Total

Analysis 37 15 52
Benchmark 6 0 6
Data analysis 7 2 9
Filtering 6 0 6
Identification 5 10 15
Mathematical 72 67 139
Nonlinear 0 16 16
Synthesis 48 68 116
Transformation 37 14 51
Utility 5 0 5

Total 223 192 415

Table 1. SLICOT Library summary. The numbers in the
column labeled “Main” refer to user-callable routines,
while the numbers in the column labeled “Support” refer
to programmer-callable or low-level auxiliary routines.

ever, if the transformations are explicitly accumulated at
each step and then applied to a matrix, the computational
complexity of the reduction becomes O(n4). Note that the
structure-exploiting implementation of the reduction algo-
rithm in SLICOT prevents loss of efficiency.

To illustrate some of the above points, we performed
several test runs using SLICOT-based gateways and equiva-
lent MATLAB functions. The calculations were performed
on an IBM PC computer at 500 MHz, with 128 MB memory,

using Compaq Visual Fortran V5.1, nonoptimized BLAS, and
MATLAB 6.1 (R12). Other results, obtained on a SUN Ultra 2
Creator 2200 workstation with 128 MB RAM and operating
system SunOS 5.5, by calling from MATLAB the gateways
produced by the NAGWare Gateway Generator for the cor-
responding SLICOT codes are given in [1]. These results
show that SLICOT routines usually outperform MATLAB cal-
culations. While the accuracy is comparable, and frequently
better, the gain in efficiency by calling SLICOT routines can
be significant. Even better efficiency is to be expected by
calling the SLICOT routines directly in Fortran (not through
MATLAB gateways) and using optimized BLAS libraries.

Figure 1 shows the ratio of the execution times (speed-up
factor) for the SLICOT gateway function sllyap (calling the
SLICOT Lyapunov equation solvers) and MATLAB function
lyap, for solving randomly generated continuous-time Lya-
punov equations with known solutions, and
A ∈ Rn×n, for n = 10 : 10 : 300. It can be observed that the
speed-up is four or larger up to dimension 50 and always
larger than two for larger dimensions. To explain these
results, we note that the most expensive step in the compu-
tational algorithm of [29] is the reduction to RSF of the coeffi-
cient matrix. This computation is performed in both cases by
using highly efficient LAPACK codes. The complexification of
computations (see above) is performed only during the
backsubstitution step, which leads to at least a doubling of
the computational times for larger dimensions. To measure
the net effect in performance loss of the complexification, we
solved Lyapunov equations whose coefficient matrices were
already in RSF. Figure 2 shows the resulting speed-up factors
for increasing dimensions (n = 30 : 30 : 300). Clearly, the SLI-
COT function is faster (between 16 and 28 times faster) since
it can exploit the problem structure.

Figures 3 and 4 plot the speed-up factor for the SLICOT
gateway function slconf and MATLAB function ctrbf, for
computing the controllability staircase form of a random
system (A, B, C) , for state vector dimensions
n = 30 : 30 : 300, and input and output vector dimensions
of m = p = n/15, and m = p = 1, respectively. In the sec-
ond case, the speed-up factors of slconf over ctrbf are
much larger, between 5 and 45. Note that rank decisions
are based on the rank-revealing QR factorization with piv-
oting and incremental condition estimation, in slconf,
and on the singular value decomposition, in ctrbf.

Figure 5 shows the speed-up factor for the SLICOT sys-
tem identification function slmoen (combined MOESP and
N4SID techniques), using the structure-exploiting fast QR
algorithm [15], and the latest n4sid implementation [30],
based on a standard QR factorization; default options
have been used for n4sid. The 22 input–output data sets
used, also considered in [31], include mainly the sets from
the DAISY collection, freely available at the site
www.esat.kuleuven.ac.be/sista/daisy, which contains
some large data sequences from various domains. Appli-

February 200470 IEEE Control Systems Magazine

Figure 1. Speed-up factor comparison: SLICOT sllyap
versus MATLAB lyap. Random continuous-time Lyapunov
equations with n = 10 : 10 : 300 are solved. The function
sllyap is 4 to 11 times faster than lyap for small orders
(n < 50) and more than twice as fast as lyap for larger
orders.

12

11

10

9

8

7

6

5

4

3

2

S
pe

ed
-U

p
Fa

ct
or

 S
LI

C
O

T
/M

AT
LA

B

0 50 100 150 200 250 300
n

Figure 2. Speed-up factor comparison: SLICOT sllyap
versus MATLAB lyap. Random continuous-time Lyapunov
equations with A in real Schur form and n = 30 : 30 : 300 are
solved. By exploiting the problem structure, SLICOT sllyap
is 16 to 28 times faster than lyap.

0 50 100 150 200 250 300
5

10

15

20

25

30

n

S
pe

ed
-U

p
F

ac
to

r
S

LI
C

O
T

/M
A

T
LA

B

cation 1 (Simulation of an ethane-ethylene distillation col-
umn) and Application 18 (Simulation of the western basin
of Lake Erie) consist of several data batches and cannot
be directly dealt with by n4sid; Application 16 (Steel sub-
frame flexible structure, with two inputs, 28 outputs, and
8,523 data samples) could not be solved by n4sid, since
an “Out of memory” error appeared. All SLICOT system
identification codes successfully solved the identification
problems for these applications. The problem for Applica-
tion 16 seems to be too large for n4sid, at least when
using a standard PC or Sun workstation. The matrix whose
R factor in a QR factorization should be computed has
about 8,500 rows (if all data are used for identification)
and over 1,700 columns. The SLICOT codes could exploit
the block-Hankel-block structure of that matrix, and effi-
ciently obtain the needed R factor.

User-Friendly Interfaces to SLICOT
There are essentially two ways to provide easy-to-use
interfaces for computational routines like those available
in SLICOT:

1) Provide gateways to existing problem-solving envi-
ronments. The conventional way to simplify the
interface by using new language constructs, such as
those available in Fortran 90, can be combined with
building interfaces or gateways to environments
such as MATLAB or the free software. Developing
suitable gateway functions provides the user with
seamless access to the powerful computational rou-
tines available in SLICOT and to build interactive
graphical or command language-based interfaces for
specifying and solving computational control prob-
lems. In the first subsection we describe the collec-
tion of prototype MEX- and M-function gateways
developed as part of the SLICOT implementation pro-
ject, which can be used for testing purposes and for
solving computational control problems.

2) Build new computational environments in which
parts of the SLICOT library have been fully integrat-
ed, as described in the last two subsections. We first
briefly present the free software Scilab and the sub-
stantial computational enhancements achieved by
integrating SLICOT into this package. Next, we
describe the Descriptor Systems Toolbox for MAT-
LAB, built around the SLICOT computational rou-
tines, to illustrate a new paradigm for developing
high-performance CACSD tools.

MATLAB Gateways
The essential functionality and performance of SLICOT
routines have been made accessible from the high-level
software environments MATLAB and Scilab by means of a
large collection of MEX- and M-function gateways repre-
senting user-friendly interfaces to the main user-callable

Fortran routines available in SLICOT. These MEX- and M-
functions can be seen as prototype gateway software offer-
ing a rich functionality and flexibility for solving
control-related computational problems.

February 2004 71IEEE Control Systems Magazine

Figure 3. Speed-up factor comparison: SLICOT slconf ver-
sus MATLAB ctrbf. The controllability staircase form is
computed for random continuous-time systems with
n = 30 : 30 : 300 and m = p = n/15. The function slconf is
faster since it uses the rank-revealing QR factorization
without accumulating the transformations, while ctrbf
computes a full singular value decomposition at each step of
the algorithm.

0 50 100 150 200 250 300
1.5

2

2.5

3

3.5

4

4.5

5

n

S
pe

ed
-U

p
F

ac
to

r
S

LI
C

O
T

/M
A

T
LA

B

Figure 4. Speed-up factor comparison: SLICOT slconf
versus MATLAB ctrbf. The controllability staircase form is
computed for random continuous-time systems with
n = 30 : 30 : 300 and m = p = 1. The function slconf is
much faster since it is significantly cheaper to apply House-
holder transformations than to compute the full singular
value decomposition of column vectors, as is done in ctrbf.

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

n

S
pe

ed
-U

p
F

ac
to

r
S

LI
C

O
T

/M
A

T
LA

B

The MEX-functions represent the basic interface to the
SLICOT computational tools. Typically, each MEX-function
interface has an extended scope by providing full access to
the complete functionality of several user-callable rou-
tines. The MEX interfaces are necessarily quite complex,
and therefore primarily intended for expert use and
further software developments. To allow a user-friendly
operation, easy-to-use M-functions have also been imple-
mented, where specific aspects are exploited by using sys-
tem objects defined in the Control Toolbox or providing
functionality covering a particular class of algorithms or
problems. In many cases, several M-functions have been
implemented as higher-level interfaces to a single MEX-
function. For instance, the MEX-function aresol calls the
SLICOT routines SB02MD, SB02MT, SB02ND, and SB02OD for
solving either continuous-time or discrete-time algebraic
Riccati equations (CARE/DARE) using standard or general-
ized Schur vector methods, while the higher-level M-func-
tions slcaregs, slcares, sldaregs, sldares, and
sldaregsv call aresol with appropriate settings to solve
a specific CARE or DARE using a certain method.

The SLICOT MEX-function gateways are implemented as
Fortran 90 subroutines. The main benefit of using Fortran
90 (instead of Fortran 77) is the use of allocatable arrays to
reduce storage requirements. For MEX-functions over-
loaded with several functionalities, special input argu-
ments are used to select the user or method options (for
example, to indicate the type of the system or scaling
options). Frequently, optional input arguments are
allowed, and the absence of some output arguments indi-

cates the possibility of avoiding unnecessary computa-
tions such as evaluating internal transformation matrices.
All MEX-functions perform an exhaustive test of input para-
meters for their types, shapes, and dimensions. Error or
warning messages are issued to indicate incorrect input-
output arguments or computational failures.

The current version of the SLICOT library is accompa-
nied by 50 MEX-functions covering several main computa-
tional areas. These include the reduction of system
matrices to condensed forms, system scaling, minimal
realization, solution of various matrix equations (Lya-
punov, Sylvester, Riccati), coprime factorization and
additive spectral decomposition of transfer-function
matrices, computation of system norms, pole assignment,
solving linear equations with structured matrices (for
example, Toeplitz), model and controller reduction, lin-
ear and Wiener system identification, structured-singular
value, and H∞/H2 robust synthesis. The collection of M-
functions is based on the provided MEX-functions and
covers the same functionality but in a more method-ori-
ented way. There are currently 238 M-functions (includ-
ing help and test files). Many of the M-functions can be
seen as enhancements of similar functions available in
the Control Toolbox of MATLAB. Other functions repre-
sent unique pieces of software, which are available for
free. This software includes the large collection of func-
tions covering frequency-weighted model and controller
reduction [10], [32], or the powerful suite of subspace
identification methods. Also worthwhile mentioning is
the collection of benchmark examples for continuous-
and discrete-time systems, as well as for Lyapunov- and
Riccati-equation solvers.

Scilab Computational Environment
Scilab is an open-source, free, general-purpose scientific
package for numerical applications. It provides a user-
friendly environment for systems, control, and signal pro-
cessing applications. Developed at INRIA and ENPC,
originally as a research tool for testing and developing new
control and optimization algorithms, Scilab is now widely
distributed and used in academia and industry. Scilab is
popular among students because they can access it for
free at home, as well as among researchers and engineers
who have contributed toolboxes that are freely available at
Scilab’s Web site scilab.org. Since the beginning, Scilab has
been strongly tied to SLICOT and has incorporated many
SLICOT routines. Scilab is currently developed under
Linux, although it works on most operating systems includ-
ing Windows, Mac, and Unix workstations.

Although the Scilab syntax is not identical to MATLAB
syntax, it is a matrix-based language in which all basic vec-
tor-matrix operations are performed in the same way.
Indeed, Scilab is similar to MATLAB in many respects (they
are both inspired by the original public domain MATLAB

February 200472 IEEE Control Systems Magazine

Figure 5. Speed-up factor comparison: SLICOT slmoen4
versus MATLAB 6.1 n4sid with default options. Data sets
from the DAISY collection are used. The function slmoen4
employs a structure-exploiting fast QR factorization, reveal-
ing a clear benefit over n4sid, which uses the standard QR
factorization.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 20 21 22
0

50

100

150

200

250

Application Number

S
pe

ed
-U

p
F

ac
to

r

program), and, in most control applications, Scilab can
easily be used in place of MATLAB. Simulation is, of
course, an essential task for validating and analyzing con-
trol laws, and most of the CACSD packages provide interac-
tive simulation tools. Scilab has a toolbox called Scicos for
modeling and simulation of dynamic systems through a
block diagram editor. Both continuous and discrete-time
systems can be modeled in Scicos. Moreover, Scicos for-
malism can handle events and thus, to some extent, hybrid
system modeling and simulation.

For numerical packages such as Scilab, reliability and
speed are the key issues. Regarding linear algebra algo-
rithms, Scilab is now based on the LAPACK library, which
is well tested, complete, and fast since LAPACK uses the
BLAS library for which optimized code exists. For systems
and control applications, SLICOT plays a role similar to
LAPACK, and Scilab’s basic control tools, such as the Lya-
punov and the Riccati equation solvers, are based on SLI-
COT modules implemented as built-in primitives. The
recently developed SLICOT identification programs are
also available. The robust control toolbox also uses SLI-
COT programs. The nonlinear simulation programs that
have been selected in SLICOT are also available in Scilab.
Linear (control) systems are manipulated in an object-ori-
ented manner. By operator overloading, these objects are
treated the same way as ordinary matrices. For example,
the series concatenation of two systems is denoted by
S1*S2. Descriptor systems that require sophisticated algo-
rithms are also handled.

In general, it is difficult to choose appropriate default
values for the parameters that appear in the calling
sequence of the basic primitives and are used to control
error tolerance. Scilab, in concert with error estimates pro-
vided by SLICOT programs, facilitates this task by propos-
ing appropriate default values for the parameters.

For most applications, it is not necessary to have
access to the complete SLICOT library. In fact, since the
SLICOT high-level algorithms are powerful, even a moder-
ate subset of the SLICOT library can be useful for sophis-
ticated control applications. For instance, the Kronecker
decomposition of a possibly singular pencil (which is
available in Scilab as a built-in SLICOT based primitive)
can be used in various control algorithms such as calcu-
lating multivariable zeros or solving singular control
problems. Consequently, general purpose routines of the
SLICOT library have been included in Scilab, and facilities
are provided for users to interface specific routines. In
many cases, such routines can be emulated using a Scilab
program without seriously affecting the efficiency. The
advantage of such an approach is the readability and the
adaptability of the code.

The Scilab Application Program Interface (API) was
designed to facilitate the addition of new incrementally
linked and interfaced routines. This interface is particular-

ly useful for specific routines of the SLICOT library that are
not linked by default. In particular, it is possible to pass a
linear system as a single object to the interface program,
which is often needed to exploit the particular structure of
a matrix. The technique of interfacing programs in Scilab is
slightly different from MATLAB. However, specific func-
tions that emulate the MATLAB MEX API, and MATLAB
MEX-files can also be used for interfacing programs. For
example, the SLICOT toolbox developed for MATLAB in the
NICONET project has been adapted with minor syntax
modifications for use in the Scilab environment.

Descriptor Systems Toolbox
SLICOT provides a multitude of high-performance system-
theoretic computational tools, which are not provided in
standard CACSD tools such as the Control Toolbox of
MATLAB. To illustrate these tools, consider a descriptor
system of the form

Eẋ(t) = Ax(t) + Bu(t),

y(t) = C x(t) + Du(t),

with E square and possibly singular and with A − λE a reg-
ular matrix pencil, which is the most general description
for a linear time-invariant, continuous-time system. Such
systems arise when modeling interconnected systems,
even with standard tools such as Simulink (recall the “alge-
braic loop” warning). Descriptor models are also common
in modeling constrained mechanical systems (contact
problems). Moreover, the descriptor representation is nec-
essary to perform some operations even with standard
systems such as conjugation or inversion. Discrete-time
descriptor representations are frequently used to model
economic processes.

The Descriptor Systems Toolbox was primarily intend-
ed to provide an extended functionality for the Control
Toolbox of MATLAB, which formally supports descriptor
systems, but not those with singular E . Consequently,
some functions in the Descriptor Systems Toolbox simply
represent extensions of functions already present in the
Control Toolbox. Other functions are new and allow a con-
venient user-friendly environment for solving complicated
dynamics analysis problems such as, for example, the
determination of the complete Kronecker-structure of a lin-
ear pencil. Note also that the numerically reliable solution
of many standard control problems relies on descriptor
system techniques. Important examples are the solution of
Riccati equations, computation of system zeros, and
design of fault detection and isolation filters. The Descrip-
tor Systems Toolbox extends the capabilities of basic
MATLAB with matrix pencil methods, such as reordering
of (generalized) Schur forms, computation of Kronecker-
like forms, and solving generalized linear matrix equations.

The Descriptor Systems Toolbox is also useful for
manipulating rational and polynomial matrices. Recall that

February 2004 73IEEE Control Systems Magazine

each rational matrix R(λ) can be seen as the transfer-func-
tion matrix of a continuous- or discrete-time descriptor
system. Thus, each R(λ) can be equivalently realized by a
descriptor system quadruple (A − λE, B, C , D) satisfying

R(λ) = C (λE − A)−1 B + D,

where λ = s or λ = z for a continuous- or discrete-time
realization, respectively. It is widely accepted that most
numerical operations on rational or polynomial matrices
are best done by manipulating the matrices of the corre-
sponding descriptor system representations. Many opera-
tions on standard matrices (such as finding the rank,
determinant, inverse or generalized inverses) or the solu-
tion of linear matrix equations have natural generalizations
for rational matrices. The conjugate transposition of a
complex matrix generalizes to the conjugation of a rational
matrix, while the full-rank, inner–outer, and spectral factor-
izations can be seen as generalizations of the familiar LU,
QR, and Cholesky factorizations, respectively. Many prob-
lems for scalar polynomials and rational functions (poles
and zeros, minimum degree or normalized coprime factor-
izations, and spectral factorization) have nontrivial exten-
sions to polynomial and rational matrices.

The approach used to develop the Descriptor Systems
Toolbox exploited MATLAB’s matrix and object manipula-
tion features of by means of a flexible and functionally
rich collection of M-functions, intended for noncritical
computations, while simultaneously enforcing highly effi-
cient and numerically sound computations via MEX-func-
tions (calling selected Fortran routines from LAPACK,
SLICOT, and recent additions to RASP), to solve critical
numerical problems by using structure-exploiting algo-
rithms. The basic set of MEX-functions covers the follow-
ing problems: computation of Kronecker-like forms,
minimal realization of descriptor systems, generalized
system similarity transformations, computation of gener-
alized system zeros and Kronecker structure,
stable/unstable and finite/infinite spectral separations,
partial pole placement and solution of generalized
Sylvester and Lyapunov matrix equations. An important
aspect of the toolbox design was to ensure that standard
systems with E = I are fully supported, using specific
algorithms. In the same vein, all algorithms are available
for both continuous- and discrete-time systems.

The Descriptor Systems Toolbox supports the three
basic system representations in the standard Control Tool-
box: descriptor state space, rational, and pole/zero/gain rep-
resentations. By function overloading, the same function
performs, if appropriate, on all three representations. Auto-
matic model conversions are performed when necessary
and the results are provided in accordance with the original
system representation. In contrast to the Control Toolbox,
conversions always result in minimal representations.

Version 1.0 of the Descriptor Systems Toolbox is
described in [33], where the underlying algorithms are
also indicated and several examples illustrating the basic
operations are given. For the contents of the current ver-
sion of the toolbox (presently 1.04), see the Web site
http://www.robotic.dlr.de/control/num/desctool.html. The
implementations of all functions exploit the best of MAT-
LAB and Fortran programming, by trying to balance the
matrix manipulation power of MATLAB with the intrinsic
high efficiency of carefully implemented structure-exploit-
ing Fortran codes available in LAPACK and SLICOT. This
approach illustrates the possibility of turning high com-
plexity structure-exploiting algorithms into numerically
robust and user-friendly CACSD software. This paradigm is
applicable to the development of future computer-aided
control engineering environments.

Future Directions
The following are the main objectives for future develop-
ments of SLICOT.

� Develop control-oriented software for large-scale prob-
lems. The need for such software is higher nowadays
because of the increased use of high fidelity modeling
in industrial practice. The mathematical models origi-
nating from discretization of partial differential equa-
tions are usually large-scale linearized models, whose
constituent matrices are often sparse. Developing
tools to perform analysis, order reduction, simula-
tion, or controller design for large scale and possibly
sparse system models will broaden the ability to
solve industrial CACSD applications, where currently
available packages fail because of large dimensions.
Many computations based on sparse matrix tech-
niques (for example, in model reduction), can best be
done by implementing software that runs on parallel
machines. The main advantages over the currently
used dense matrix techniques are the improvement
in memory usage and increased computational effi-
ciency. Another direction is to develop new block-ori-
ented algorithms for control-relevant computations
to increase the computational performance on high-
performance computer architectures.

� Extend SLICOT to cover new industrially relevant
areas. Such areas include optimization-based control
system design, approximation of large-scale and
sparse control systems, simulation and control of dif-
ferential-algebraic systems, and robust and computa-
tionally feasible methods for solving large-scale
control problems, which occur in aerospace, auto-
motive, and robotic applications.

� Develop a Fortran 95 version of SLICOT. The Fortran
95 language standard is significantly enhanced com-
pared to Fortran 77 and is better adapted for exploit-
ing high-performance computer architectures. Since

February 200474 IEEE Control Systems Magazine

Fortran 95 is more frequently used by software
developers, LAPACK, the underlying linear algebra
software for SLICOT, has been upgraded to Fortran
95 by providing Fortran 95 interfaces by means of
modules to the Fortran 77 version of the routines.
The intended upgrading of SLICOT will benefit from
the new features of the language such as array calcu-
lation, dynamic memory allocation, or flexible para-
meter lists (with optional and keyword arguments).
Using the structure constructs available in the lan-
guage, system objects similar to those in MATLAB
and Scilab can also be easily defined and manipulat-
ed. These features will greatly facilitate the integra-
tion of SLICOT into CACSD environments.

� Integration into user-friendly CACSD environments.
The final goal is to develop a self-contained and func-
tionally rich Systems and Control Toolbox. Providing
appropriate gateways to the de facto standard user-
friendly CACSD environments, MATLAB and Scilab,
will improve the computational facilities provided by
these packages and will ensure an easy transfer of
SLICOT software to industry. The main focus is to
develop a self-contained collection of M-functions in
MATLAB and Scilab, which integrate the available
computational facilities in the SLICOT library. The M-
functions will serve as high-level MATLAB/Scilab
interfaces to a number of Fortran-based computa-
tional gateways calling SLICOT routines. The final
product will be a powerful Systems and Control Tool-
box, which combines the best of MATLAB/Scilab and
Fortran, that is, the object-oriented matrix manipula-
tion available in MATLAB and Scilab supported by
the efficient and robust numerical computations pro-
vided by the structure-exploiting algorithms avail-
able in SLICOT. A first step in this direction has
already been achieved by implementing the Descrip-
tor Systems Toolbox [33].

Acknowledgments
This work was supported in part by the European Communi-
ty BRITE-EURAM III Thematic Networks Programme
NICONET (project BRRT-CT97-5040), the Belgian Pro-
gramme on Interuniversity Poles of Attraction, initiated by
the Belgian State, Prime Minister’s Office for Science, Tech-
nology and Culture (IUAP Phase V-22), the Concerted Action
Project MEFISTO-666 (Mathematical Engineering for Infor-
mation and Communications Technology) of the Flemish
Community, and the FWO projects G.0078.01 (structured
matrices) and G.0270.02 (nonlinear Lp approximation).

References
[1] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga, “SLI-
COT—-A subroutine library in systems and control theory,” in Applied
and Computational Control, Signals, and Circuits, B.N. Datta, Ed. Boston,
MA: Birkhäuser, 1999, vol. 1, ch. 10, pp. 499–539.

[2] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh, “Basic linear
algebra subprograms for Fortran usage,” ACM Trans. Math. Softw., vol.
5, no. 3, pp. 308–323, 1979.

[3] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, “Algo-
rithm 656: An extended set of Fortran basic linear algebra subpro-
grams,” ACM Trans. Math. Softw., vol. 14, no. 1, pp. 1–32, 1988.

[4] J.J. Dongarra, J. Du Croz, I.S. Duff, and S. Hammarling, “A set of level
3 basic linear algebra subprograms,” ACM Trans. Math. Softw., vol. 16,
no. 1, pp. 1–17, 1990.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: SIAM, 1999.

[6] C. Gomez, Ed., Engineering and Scientific Computing with SciLab.
Boston, MA: Birkhäuser, 1999.

[7] J.W. Demmel, J.J. Dongarra, and W. Kahan, “On designing portable
high performance numerical libraries,” in Proc. Numerical Analysis 1991,
Proc. 14th Dundee Conf., D.F. Griffiths and G.A. Watson, Eds., Essex, U.K.:
Longman Scientific and Technical, 1992, vol. 260, pp. 69–84.

[8] C.F. Van Loan, “A symplectic method for approximating all the
eigenvalues of a Hamiltonian matrix,” Linear. Alg. Appl., vol. 61, pp.
233–251, Sept. 1984.

[9] S.J. Hammarling, “Numerical solution of the stable, non-negative
definite Lyapunov equation,” IMA J. Numer. Anal., vol. 2, no. 3, pp.
303–323, 1982.

[10] A. Varga, “Model reduction software in the SLICOT library,” in
Applied and Computational Control, Signals, and Circuits, B.N. Datta, Ed.,
Boston: Kluwer, 2001, vol. 2, pp. 239–282.

[11] A. Varga, “Periodic Lyapunov equations: Some applications and
new algorithms,” Int. J. Contr., vol. 67, no. 1, pp. 69–87, 1997.

[12] P. Misra, P. Van Dooren, and A. Varga, “Computation of structural
invariants of generalized state-space systems,” Automatica, vol. 30, no.
12, pp. 1921–1936, 1994.

[13] P. Benner, “Contributions to the numerical solution of algebraic
Riccati equations and related eigenvalue problems,” dissertation,
Fakultät für Mathematik, Technische Universität Chemnitz-Zwickau,
Germany, Feb. 1997.

[14] V. Sima, Algorithms for Linear-Quadratic Optimization. New York:
Marcel Dekker, 1996.

[15] N. Mastronardi, D. Kressner, V. Sima, P. Van Dooren, and S. Van
Huffel, “A fast algorithm for subspace state-space system identification
via exploitation of the displacement structure,” J. Comput. Appl. Math.,
vol. 132, no. 1, pp. 71–81, 2001.

[16] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R.C. Whaley, ScaLAPACK Users’ Guide. Philadelphia, PA: SIAM, 1997.

[17] G. Grübel, H.-D. Joos, M. Otter, and R. Finsterwalder, “The ANDECS
design environment for control engineering,” in Proc. 12th IFAC World
Congress, Sydney, Australia, 1993.

[18] J.H. Wilkinson and C. Reinsch, Eds., Handbook for Automatic Com-
putation, vol. 2, Linear Algebra. Berlin, Germany: Springer-Verlag, 1971.

[19] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C.
Klema, and C.B. Moler, Matrix Eigensystem Routines—-EISPACK Guide
2nd ed. New York: Springer, 1976.

[20] B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler, Matrix
Eigensystem Routines—EISPACK Guide Extension. Berlin: Springer-
Velag, 1977.

[21] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK
User’s Guide. Philadelphia, PA: SIAM, 1979.

February 2004 75IEEE Control Systems Magazine

[22] The Working Group on Software: WGS, “An inventory of basic soft-
ware for computer aided control system design,” WGS-report 85-1,
1985.

[23] T. Popescu, V. Sima, A. Varga, and C. Vasiliu, “Program package
for identification and control systems design,” in Computer Aided
Design of Control Systems, M.A. Cuenod, Ed. New York: Pergamon
Press, 1980.

[24] A. Varga and V. Sima, “BIMAS—A basic mathematical package for
computer aided systems analysis and design,” in Prepr. 9th IFAC World
Congr., Budapest, Hungary, 1985, vol. 8, pp. 202–207.

[25] A. Varga and A. Davidoviciu, “BIMASC—A package of Fortran sub-
programs for analysis, modelling, design and simulation of control sys-
tems,” in Prepr. 3rd IFAC/IFIP Int. Symp. Computer Aided Design in
Control and Engineering Systems (CADCE’85), Copenhagen, Denmark,
1985, pp. 151–156.

[26] P.H. Petkov, N.D. Christov, and M.M. Konstantinov, “SYSLAB: An
interactive system for analysis and design of linear multivariable sys-
tems,” in Prepr. 3th IFAC/IFIP Int. Symposium on Computer Aided Design
in Control and Engineering Systems (CADCE’85), Copenhagen, Denmark,
1985, pp. 140–145.

[27] The Working Group on Software: WGS, SLICOT Implementation and
Documentation Standards 2.1 WGS-report 96-1, 1996 [Online]. Available:
ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS, file rep96-1.ps.Z

[28] S. Van Huffel and V. Sima, “SLICOT and control systems numerical
software packages,” in Proc. 2002 IEEE Int. Conf. Control Applications
and IEEE Int. Symp. Computer Aided Control System Design, CCA/CACSD
2002, Glasgow, U.K., 2002, pp. 39–44.

[29] R.H. Bartels and G.W. Stewart, “Algorithm 432: Solution of the
matrix equation AX + X B = C ,” Commun. ACM, vol. 15, no. 9, pp.
820–826, 1972.

[30] L. Ljung, System Identification Toolbox for Use with MATLAB. User’s
Guide, Version 5. Natick, MA: MathWorks, 2000.

[31] V. Sima, D.M. Sima, and S. Van Huffel, “SLICOT system identifica-
tion software and applications,” in Proc. 2002 IEEE Int. Conf. Control
Applications and IEEE Int. Symp. Computer Aided Control System Design,
CCA/CACSD 2002, Glasgow, U.K., 2002, pp. 45–50.

[32] A. Varga, “Numerical software in SLICOT for low order controller
design,” in Proc. 2002 IEEE Int. Conf. Control Applications and IEEE Int.
Symp. Computer Aided Control System Design, CCA/CACSD 2002, Glas-
gow, U.K., 2002, pp. 51–56.

[33] A. Varga, “A descriptor systems toolbox for MATLAB,” in Proc.
CACSD 2000 Symposium, Anchorage, AK, 2000, pp. 150–155.

Sabine Van Huffel (Sabine.VanHuffel@esat.kuleuven.
ac.be) is a full professor at the Department of Electrical
Engineering from the Katholieke Universiteit Leuven, Leu-
ven, Belgium. Her research interests are in numerical linear
algebra, errors-in-variables regression, system identifica-
tion, pattern recognition, (non)linear modeling, numerically
reliable software for systems and control, parameter esti-
mation, and signal processing. In these areas, she has
authored one book and more than 90 papers in internation-
al journals and 120 conference contributions. She was the
central coordinator of the European thematic Numerics in
Control network NICONET (1996–2002) and is chair of the
numerics in control international society NICONET. She can
be contacted at the Department of Electrical Engineering

(ESAT), Katholieke Universiteit Leuven, Kasteelpark Aren-
berg 10, B–3001 Leuven–Heverlee, Belgium.

Vasile Sima is a first-degree senior researcher at the Nation-
al Institute for Research and Development in Informatics,
Bucharest, Romania. He received the dipl. ing. and Dr. ing.
degrees (control engineering) from Polytechnical Institute of
Bucharest in 1972 and 1983, and the dipl. math. degree from
Bucharest University in 1978. His research interests include
control system design, system identification, and scientific
computations. He authored the book Algorithms for Linear-
Quadratic Optimization (Marcel Dekker, 1996), and coau-
thored many papers. He has been the SLICOT librarian since
1996. He received a Romanian Academy Award and is a
Senior Member of IEEE and a member of AMS.

Andras Varga is a senior scientist at the German Aerospace
Center in Oberpfaffenhofen. He received the diploma in con-
trol engineering in 1974 and the Ph.D. degree in electrical
engineering in 1981, both from the University “Politechnica”
of Bucharest, Romania. His main research interests are in
developing reliable numerical methods and robust numerical
software for computer aided control system design (CACSD).
He is a Fellow of the IEEE and past associate editor of IEEE
Transactions on Automatic Control. He was program chair of
the 1999 Symposium on CACSD and general chair of the 2000
Symposium on CACSD. Since 2000, he has been chair of the
Technical Committee on CACSD within the IEEE Control Sys-
tems Society. For 2002–2003 he was a nominated member of
the Board of Governors of the Control Systems Society. He
received a research fellowship award from the Alexander
von Humboldt Foundation. He coauthored three books,
coedited one book, and published over 130 journal and con-
ference publications.

Sven Hammarling is a principal consultant in the Develop-
ment Division of The Numerical Algorithms Group Ltd.,
Oxford, U.K., and is a visiting professor at Cranfield Univer-
sity, RMCS, Shrivenham, U.K. His interests include numeri-
cal linear algebra, high-performance computing, and
portable numerical software and associated standards. He
is one of the authors of the Level 2 and 3 Basic Linear Alge-
bra Subprograms, as well as the linear algebra software
LAPACK and ScaLAPACK. He is an associate editor for ACM
Transactions on Mathematical Software.

François Delebecque received a Ph.D. in mathematics
from the University of Paris Dauphine in 1976. He is current-
ly senior scientist at INRIA, the French National Research
Institute in Automatics and Computer Science. He has been
an associate editor of Automatica. His main interests are in
numerical analysis and the development of numerical tools
for control and signal processing. He is one of the develop-
ers of the open source CACSD package Scilab.

February 200476 IEEE Control Systems Magazine

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

