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Abstract—The fusion of heterogeneous image data, in partic-
ular optical images and synthetic aperture radar (SAR) images,
is highly worthwhile in the context of remote sensing tasks as it
allows to exploit complementary information – such as spectral
and distance measurements or different observation perspectives
– of the two data sources while diminishing their individual
weaknesses (e.g. cloud cover, difficulty of image interpretation,
limited sensor revisit). However, relating the heterogeneous data
on the signal level requires a data alignment step, which cannot
be realized without auxiliary knowledge. This paper addresses
and discusses this fundamental fusion problem in remote sensing
in the context of a framework named SimGeoI, which solves
the multi-sensor alignment task based on geometric knowledge
from existing digital surface models. Sections of optical and
SAR images are related to individual objects using interpretation
layers generated with ray tracing techniques. Results of SimGeoI
are presented for a test site in London in order to motivate an
object-related fusion of remote sensing images.

I. INTRODUCTION

Any data fusion endeavor needs to solve the tasks of data
alignment and data/object correlation before the actual fusion
step, which is particularly challenging when heterogeneous
remote sensing data are involved [1]. One prominent exam-
ple in this context is the combination of synthetic aperture
radar (SAR) and optical satellite imagery [2]. This is mainly
caused by the strongly different imaging modalities of these
two sensor principles: While optical images basically collect
angular measurements and information about the chemical
characteristics of the observed environment, radar images re-
sult from range measurements based on emitted signals and the
observation of physical information of the illuminated surfaces
(e.g. roughness or moisture). Thus, scenes imaged by both
sensors typically appear vastly different so that homogeneous
areas can only be matched under favorable circumstances [3],
[4]. One approach for SAR-optical multi-sensor alignment is
based on the introduction of prior knowledge about the three-
dimensional structure of the scene, which is used to connect
the different images supported by a simulation framework [5].
In this paper, we will describe this simulation-based alignment
approach, named SimGeoI, and demonstrate how it can be
used to relate and analyze multi-sensor remote sensing images
in an object-based manner. As main contribution, the context
of the proposed approach and results of a case study in London

are used to address and discuss the difficulty of aligning the
multi-modal remote sensing data.

II. SIMGEOI FOR OBJECT-BASED MULTI-SENSOR
REMOTE SENSING IMAGE ALIGNMENT

The basic challenge of fusing optical and SAR images
becomes apparent in Fig. 1, which shows an optical and a
SAR image for an urban scene in London. It is obvious
that both image types exhibit completely different radiometric
appearances, which is caused by the sensors collecting infor-
mation from different fields of the electromagnetic spectrum.
Looking closely to the image details reveals that furthermore
severe image differences are caused by the different imaging
geometries: Structural details are mapped differently from
3D to the two 2D image spaces and hence not found at
the same image positions. Thus, image content with equal
spatial location cannot be jointly interpreted or analyzed in
a straight-forward manner. Two main reasons are responsible
for that: on the one hand, the images have been acquired
with different imaging modes: While the optical sensor is of
the push-broom type, the SAR sensor carries out distance-
dependent imaging. This leads to contradictory geometric
distortion effects (see example shown in Figs. 2 and 3). On the
other hand, differences of the sensor perspectives impose their
own effect on the geometry of above-ground objects, which is
also experienced when mono-sensor images are acquired from
different viewing perspectives. All this shows that the fusion
of multi-modal data on the signal level, which is typical for
the discipline of remote sensing, is a difficult task and hardly
possible without auxiliary information.

In this paper, the challenges and opportunities of signal-
level data fusion in multi-sensor remote sensing scenarios are
exemplified. In order to solve the necessary multi-sensor data
alignment problem, we make use of a method named SimGeoI
[5], which provides a framework for aligning optical and SAR,
SAR and SAR or optical and optical images – regardless of
the viewing perspective. The link between the heterogeneous
image sources is defined based on geometric prior knowledge
of the scene.

Figure 4 shows the basic work flow (see [5] for details). The
geometry of the scene of interest, given as a digital surface
model in Universal Transverse Mercator (UTM) coordinates,



(a) WorldView-2 image (pan channel) (b) TerraSAR-X image (spotlight mode)

(c) Digital surface model (generated from 5 images), triangulated to
closed surface

(d) Digital surface model (generated from 2 images), triangulated to
closed surface

Fig. 1: Data of London test site. Meta information of the image data and the digital surface model (DSM) are required as
input for SimGeoI.

Fig. 2: Layover effect in SAR imaging due to the measurement
of distance along line-of-sight. Signal contributions from roof,
facade, and ground are merged for the building example.

and image meta information (image parameters, surface illu-
mination, sensor type) are exploited to predict the appearance
of scene objects. The combination of simulated images allows
for the generation of interpretation layers in world coordinates
(i.e. in the UTM coordinate system) which are used to extract
semantically meaningful parts of the remote sensing images.
The impact of signal illumination, sensor perspective, spatial
distance, signal-surface intersection, and occlusion effects is
covered by ray tracing methods.

The digital surface models (DSM; geometric prior knowl-

Fig. 3: Geometric projection in optical image for off-nadir
angle. Facade and roof parts remain separated but are geo-
metrically distorted.

edge) are derived from high-resolution optical data using semi-
global matching [6], which requires a set of optical images
for reconstructing the scene geometry (see examples in Figs.
1c and 1d). In a pre-processing step, the DSM is filtered
for vegetation and noise [7]. Thereafter, elevated parts are
extracted from the DSM using an adapted version of the
method reported in [8] for detecting terrain (digital terrain
model, DTM). The subtraction of terrain from the DSM leads
to the identification of elevated objects in the DSM, referred to
as normalized digital surface model (nDSM) in the remainder



Fig. 4: Basic flow chart of SimGeoI.

of this paper. As vegetation has been filtered beforehand, the
nDSM mainly contains man-made structures for urban areas.
Individual building blocks can be identified in the nDSM,
leading to a second type of input model for SimGeoI.

In SimGeoI, the following main steps are conducted:
1) A scene model is defined, considering the sensor per-

spective / signal source (known from image meta data),
triangulated surface models (DSM, nDSM, DTM) and
surface parameters. Direct and strong signal response is
assigned to surfaces to ensure the visibility of objects in
the resulting images.

2) The appearance of the DSM, nDSM, and DTM is
simulated, either in the optical or SAR image plane.
To this end, a ray tracer detects signal contributions
throughout the modeled scene. The image pixel size is
derived from the meta data.

3) The simulated images are geocoded in UTM coordinates
to match the coordinate system of the satellite data.

4) Binary interpretation layers are generated by combining
simulated images, marking, e.g., building extents (see
examples below), shadow regions or ground. For in-
stance, the extent of ground is marked by the difference
of the simulated DSM (all parts responding) and nDSM
(elevated parts responding, ground missing in scene
model; see [5]). The extent of buildings is derived by
simulating the extent of the nDSM, where ground and
vegetation is filtered out (see examples in Fig. 6).

The basic motivation for the development of SimGeoI was
to relate parts of heterogeneous remote sensing images. As
a consequence, SimGeoI provides the basis for subsequent
object-related image analysis, e.g., in the context of city mon-
itoring, machine learning, or change detection. The potentials
of optical images (object shape, spectral characteristics, famil-
iar perspective) and SAR images (distance information, slant
view, physical characteristics) become combinable although
the images cannot be matched in image space directly.

III. TEST DATA

The data alignment in this paper is realized for images of
two sensors, WorldView-2 (optical, properties summarized in
table I) and TerraSAR-X (SAR, properties summarized in table
II, see [9] for more information on the sensor). Figure 1 shows
the image data (London city center) to be interpreted and the
digital surface model as geometrical description of the scene.
The optical image in Fig. 1a corresponds to the pan channel
of WorldView-2 which is sensitive to the full range of visible
light. The TerraSAR-X image in Fig. 1b relies on signals in the
X-Band of the electromagnetic spectrum (wave length: 3.1cm)
and is captured in high-resolution spotlight mode, where the
time for image capturing is increased with focus on a local
scene. For the case study presented below, two triangulated
DSMs are used as input, being generated from two or five
WorldView-2 images. The WorldView-2 images have been
captured on one pass of the satellite, i.e., subsequent data
takes with slightly varying perspective along the orbit (optical
image in Fig. 1a is one of those). As shown in Figs. 1c and
1d, the DSM derived from five images is less noisy and better
describes the geometric shape of buildings. Nevertheless, a
DSM created from just two images can still be an important
data source as data access is often limited in realistic scenarios.
The spatial resolution of the DSM is 0.5m horizontally and
1m in height.

The image data of TerraSAR-X and WorldView-2 belong to
the class of high-resolution sensors and represent a renowned
and accessible source of information in the remote sensing
community. The data varies in sensor perspective, signal
source, and acquisition date.

The urban scene of London has a spatial extent of 1150m×
650m and contains different types of buildings / building
blocks with variable height between 10m and 85m. The visual
interpretation of the optical image is straightforward except for
the impression of height whereas identifying and interpreting
geometric structures in the SAR image is a hard task.

TABLE I: WorldView-2 data properties for test site London
(pan channel, geo-referenced, level 2A).

Pixel spacing (east, north) 0.5 m
Off-nadir angle (at scene center) 10.8◦

Scene azimuth angle 208.7◦

Sun azimuth angle 177.2◦

Sun elevation angle 27.6◦

Acquisition date 2011-10-22

TABLE II: TerraSAR-X data properties for test site London
(geo-referenced, level 1B).

Azimuth resolution 1.14 m
Ground range resolution 1.0 m
Pixel spacing (east, north) 0.5 m
Signal incidence angle (at scene center) 41.0◦

Orbit ascending
Acquisition date 2008-05-05



(a) Optical Image (black: sun shadow)

(b) SAR-Image (black: sensor shadow), distance to the sensor increases
from right to left

Fig. 5: Simulated images using SimGeoI. Geometric model:
DSM based on 5 WorldView-2 images.

IV. FROM SCENE INTERPRETATION TO IMAGE ALIGNMENT

The difficulty of aligning optical and SAR images is related
to object height. Elevated parts of the buildings are mapped
differently due to the contrary imaging concepts of the sensors.
With increasing height, building parts are mapped towards the
SAR sensor due to decreasing spatial distance. In the optical
case, building parts are mapped in the opposite direction in the
image plane. Hence, corresponding structures appear at differ-
ent UTM coordinates. One may solve the alignment task by
geometrically transforming one image to the other. However,
this would mean a loss of information in one of both data
sources. Moreover, this way of image fusion is obsolete for
all surfaces not visible from both sensors. SimGeoI performs
image alignment in the original image planes. Image pixels
are not matched geometrically but linked to individual scene
objects derived from so-called interpretation layers.

The generation of interpretation layers is based on simu-
lating images with ray tracing techniques (extended version

(a) Layer for WorldView-2 image, DSM based on 5 images

(b) Layer for WorldView-2 image, DSM based on 2 images

(c) Layer for TerraSAR-X image, DSM based on 5 images

(d) Layer for TerraSAR-X image, DSM based on 2 images

Fig. 6: Building layers, geocoded in UTM coordinates. Build-
ing areas marked with white color.

of POV-Ray [10]). Figure 5 shows the simulated optical and
SAR image for the urban scene in London. The definition
of the sensor and signal position allows for the consideration
of sensor perspective and shadowing effects (sun shadow in
optical image; signal shadow in SAR image). Assigning high
roughness to the DSM, i.e., strong diffuse reflection, helps to



distinguish the spatial extent of responding surfaces. SimGeoI
does not focus on realistic image radiometry but the separation
of foreground (bright color) and background (black color) in
order to generate layers for automated interpretation.

Using the DSM and both a DTM and an nDSM derived
thereof as input to SimGeoI, the spatial distribution of scene
content can be predicted, e.g., ground parts, buildings, and
shadow. As an example, Fig. 6 shows simulated interpretation
layers for building areas (see [5] for further types of interpre-
tation layers).

When comparing the masks for the optical (Figs. 6a and
6b) and SAR image (Figs. 6c and 6d), it is obvious that the
building shapes do not match, which is due to the different
imaging concepts of the sensors. Therefore, image pixels with
equal UTM coordinates are not comparable for most areas of
the scene. SimGeoI helps to link parts of images to the same
object (here: building parts extracted from full scene). The
geometry of the object is the connecting element.

Substituting the connecting element, we can move one
step further. To this end, individual building models are
extracted from the nDSM. Pixels with height information are
grouped to a new model if the identified segment exceeds a
size threshold. In case of the London example, 40 building
models are derived using a threshold of 4000 pixels and the
DSM based on five WorldView-2 images. Figure 7 shows
four selected models with variable shape and height intervals.

(a) Building 13 (b) Building 16

(c) Building 25 (d) Building 12

Fig. 7: Building models for processing depth level 2, color
indicating height. DSM based on five WorldView-2 images.

(a) Full extent (WV-2) (b) Illuminated parts
(WV-2)

(c) Shadowed building
parts (WV-2)

(d) Layover (TS-X)

Fig. 8: Extracted image parts from WorldView-2 and
TerraSAR-X images for building 13. WV-2: WorldView-2; TS-
X: TerraSAR-X.

Figures 8, 9, 10, and 11 provide examples for image
sections extracted for these individual building blocks depicted
in Fig. 7. Looking at the image sections, the basic aim of
the SimGeoI method becomes obvious: The consideration of
sensor characteristics / perspectives and the impact of scene
height allows for the prediction of building shapes in the
optical and SAR images and subsequently for the extraction
of related image parts.

The impact of scene heights increases with growing off-
nadir angle when geometric distortions in the images become
more prominent. In case of SAR imaging, big off-nadir angles
are standard to obtain sensitivity with respect to differences
in distance. Due to lower distance, elevated parts of the
buildings are mapped towards the sensor and merged with
ground contributions with equal distance. This effect is called
”layover” and leads to the challenge of interpreting SAR
images of urban areas. The results for buildings shown in
this paper (Figs. 8d, 9d, 10d, and 11d) exemplify that is
hardly possible to define building outlines manually in SAR
images (see also visual impression of Fig. 1b). Due to signal
emission and detection in the microwave domain, most urban
structures are characterized by specular multiple reflections,
which lead to salient point-like signatures in the images.
Information on the extent of surfaces is hard to identify due
to weak diffuse signal response from flat building surfaces (as
a result, buildings are partly invisible) and the layover effect



(a) Full extent (WV-2) (b) Illuminated parts (WV-
2)

(c) Shadowed building
parts (WV-2)

(d) Layover (TS-X)

Fig. 9: Extracted image parts from WorldView-2 and
TerraSAR-X images for building 16.

(different building structures mapped to the same image pixels
due to equal distance). SimGeoI allows for the automatic
identification of building outlines in the SAR image which
eases follow-up steps of image interpretation significantly.

Optical images are mostly captured with nadir perspective
or small off-nadir angles. However, bigger off-nadir angles
are likely for near-real time image acquisitions on demand
for particular urban areas of interest. As an example, the
WorldView-2 image of London was captured with an off-
nadir angle of 10.8◦, which is moderate but already leads to a
noticeable geometric projection effect in the image. In contrast
to the SAR image, elevated building parts are mapped away
from the sensor. The view on facade structures is opened.

Besides the difference of imaging modes, the impact of
sensor perspective leads to secondary geometric projections.
The optical image has been captured from the south, leading to
mapping towards the north. The SAR image has been captured
on a descending orbit, i.e., the sensor line-of-sight was approx.
from east to west. As a consequence, the off-nadir angles of the
sensors lead to imaging of different facades of the buildings.
As geometric projections of one pixel from one image to the
other are not possible, this constitutes one further reason to
conduct image alignment on the object-level. SimGeoI marks
and extracts groups pixels which are not comparable in the
image plane but linked to the same object.

In the optical case, further types of interpretation layers are
reasonable, e.g., considering the impact of sun illumination

(a) Full extent (WV-2) (b) Illuminated parts (WV-
2)

(c) Shadowed building parts
(WV-2)

(d) Layover (TS-X)

Fig. 10: Extracted image parts from WorldView-2 and
TerraSAR-X images for building 25.

(Figs. 8b, 9b, 10b, and 11b). In terms of the impact of building
geometry, radiometric changes in the images can be related to
sun shadows (Figs. 8c, 9c, 10c, and 11c).

The main advantage of SimGeoI lies in aligning image
sections of optical images and SAR images in the context of
individual (building) objects. Accordingly, selected pixels of
the image sources can be connected despite different imaging
modes, sensor perspectives / resolutions, and signal types.
Information extracted from image parts remains connected to
scene models. The alignment of the heterogeneous images
is highly relevant for the remote sensing community in the
context of city monitoring or change detection tasks, where
methods have to be flexible for incoming data. Moreover,
methods for object-related analysis of heterogeneous image
data are rare due to missing strategies for the compensation
of geometric distortion effects.

V. IMPACT OF THE PRIOR KNOWLEDGE ON
SIMGEOI-BASED IMAGE ALIGNMENT

As mentioned earlier, prior knowledge about the 3D struc-
ture of the scene of interest is crucial for multi-sensor remote
sensing image alignment using the SimGeoI simulation frame-
work. It is thus necessary to discuss the impact of DSM that
constitutes this prior knowledge.

First and foremost, it can be seen from Figs. 1c and 1d that
the input model derived from two WorldView-2 images leads
to a poorer definition of building shapes and outlines in the



(a) Building 12: full extent (WV-2) (b) Building 12: illuminated parts
(WV-2)

//

(c) Building 12: shadowed building
parts (WV-2)

(d) Building 12: layover (TS-X)

Fig. 11: Result for input model with connected buildings. WV-
2: WorldView-2; TS-X: TerraSAR-X.

resulting masks. However, the result confirms that one pair of
optical images is still enough to provide appropriate geometric
information of the scene.

Furthermore, the examples shown in this paper indicate
that the spatial resolution of the WorldView-2 based DSM is
sufficient for describing the geometry of buildings. This is en-
couraging in the context of real scenarios, e.g. city monitoring
or change detection, where access to surface models with very
high spatial resolution is limited. Nevertheless, Fig. 7d exem-
plifies the challenge of DSM preprocessing. Several building
parts are connected to one model where visual perception
would favor further separation to sub-models. In addition, Fig.
11 exemplifies the impact of limited nDSM segmentation on
image extraction. As the underlying geometric model contains
several buildings (see Fig. 7d), the resulting image sections
do not reach the level of manual interpretation. Possible
improvements comprise:

• Improvement of the DSM: increasing the spatial resolu-
tion leads to a more precise definition of height steps and
building outlines.

• Improvement of terrain extraction: the DSM2DTM al-
gorithm can be substituted with alternative approaches.
Methods based on neural network strategies are promis-
ing in this field.

• Improved nDSM segmentation: the identification of
building models is based on a size criterion of segments
in the nDSM. The strategy could be improved by learning
typical building shapes to be identified in the nDSM.

The summarized options for improvement do not influence
the framework of SimGeoI whose simulation functionality is
independent of the quality of the input model. The ray tracing

(a) Missed building separation (b) Limited definition of building
shape (compare building 13 in Fig.
7)

(c) Extracted image part (WV-2) (d) Extracted image part (WV-2)

Fig. 12: Impact of DSM quality reduction (based on two
optical images).

environment is open to highly detailed geometric models (see
[10]).

In contrast to these improvement perspectives, Fig. 12
indicates the impact of reducing the quality of the DSM.
Here, the results for individual buildings are based on a
DSM which has been derived from only two WorldView-2
images (i.e. classical stereo reconstruction). On the one hand,
distinguishing individual models in the nDSM becomes more
difficult (connected building block in Fig. 12a) and leads to
larger image extracts provided by SimGeoI. On the other hand,
the geometric representation of building outlines in the nDSM
is more noisy (Fig. 12c) which leads to a poorer definition of
building shapes in the image (Fig. 12d; compare to result in
Fig. 8a for the nDSM derived from five WorldView-2 images).
To conclude, building blocks have to be more spatially isolated
to be identified as input models (applicability of SimGeoI
restricted to less buildings), extracted image sections are less
representative at building borders. Nonetheless, DSMs from
stereo views provide a suitable source of geometric scene
knowledge.



The application of SimGeoI is focused on urban areas so
far. However, it may be also applied to alternative regions with
uncompensated object geometry in the related sensor images.

VI. CONCLUSION & OUTLOOK

The alignment of multi-modal image data in remote sens-
ing requires geometric prior knowledge in order to consider
the impact of sensor type and perspective. This paper has
presented a framework, named SimGeoI, to solve the task
by exploiting a ray tracing-based simulation model and a
digital surface model of the scene as prior knowledge. For
a case study containing the city center of London object-
related image parts of an optical image and a synthetic aperture
radar (SAR) image have been matched successfully using the
presented framework. It has been shown that state-of-the-art
digital surface models provide sufficient geometric details to
link sections of remote sensing images. In the context of urban
scenes, directions for possible improvements of the application
of SimGeoI have been summarized and the consequences of
reduced DSM quality have been discussed.

Future work will focus on exploiting the potential of aligned
optical and SAR images in the context of classification by
extracting multi-sensor image pairs for training classifiers,
and in the context of city monitoring and change detection.
Moreover, quantitative measures are required to evaluate the
impact of the input scene model on the level of image
alignment.
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