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ABSTRACT

Cooperative swarms of robots equipped with cameras are
robust against failures, and can explore GNSS (Glob-
al Navigation Satellite System)-denied environments effi-
ciently. VSLAM (Visual Simultaneous Localization and
Mapping) techniques have been developed in recent years
to estimate the trajectory of vehicles and to simultaneously
reconstruct the map of the environment using visual clues.
Due to constraints on payload size, weight, and costs, many
VSLAM applications must be based on a single camera.
The associated monocular estimation of the trajectory and
map is ambiguous by a scale factor. This work shows that
by exploiting sparse range measurements between a pair of
dynamic rovers in planar motion, the correct scale factors
of both cameras and the relative position, as well as the
relative attitude between the rovers, can be estimated.

INTRODUCTION

Autonomous robotic platforms are utilized in the explo-
ration of extreme environments, e.g., extraterrestrial ex-
ploration or catastrophe rescues. In order to increase the
system robustness against hazards in the missions, e.g.,
strike during landing, and to improve the exploration ef-
ficiency, we propose to use a robotic swarm including mul-
tiple autonomous units such as multicopters and ground
rovers [1] [2]. Autonomous navigation of the swarm el-
ements often relies on several sensors such as mobile re-
ceivers, Inertial Measurement Units (IMUs), laser scanners
and, most substantially, cameras [3]. Due to constraints on
size, weight, accommodation and costs in swarm elements,
monocular cameras are used instead of stereo rigs in most



cases. VSLAM techniques using monocular cameras have
been developed in recent years to estimate the trajectory
of vehicles and to simultaneously reconstruct the map of
the environment. Klein and Murray developed the Parallel
Tracking and Mapping (PTAM) algorithm [4], which di-
vides the tracking and mapping into separate threads to ac-
celerate the computation. Engel, Schops and Cremers pro-
posed a large scale dense SLAM algorithm using monoc-
ular cameras [5], which minimizes the photometric error
instead of the feature reprojection error for reducing the
computational costs and improving the performance. An-
other state-of-the-art approach is ORB-SLAM from Mur-
Artal, Montiel and Tardds [6]. The method utilizes OR-
B (Oriented FAST and Rotated BRIEF) features [7] and a
novel keyframe-based graph structure, to provide a robust
real-time monocular SLAM solution even in large scale s-
cenarios and relatively low frame rate. However, all these
algorithms estimate the motion only up to a global scale.

A number of approaches have been considered for resolv-
ing the global scale ambiguity. Most of them use IMUs,
see for example Niitzi et al. [8] and Abeywardena et al. [9].
However, the inherent drift of IMUs is prone to introduc-
ing estimation biases. Therefore, we developed a method
for estimating the global scales of a pair of dynamic rover-
s in planar motion, using sparse range measurements on
a single ranging link. In the case of a swarm of robots,
these measurements could be performed between any pair
of swarm elements [10]. Strictly, the algorithms developed
in this paper do not depend on the method of ranging. It
can be adapted without restrictions, from radio-frequency-
based ranging to other sources of ranging measurements,
e.g., radar or lidar. In addition, the relative position and
attitude between the two rovers can be estimated. Fig.
1 shows a scenario of two dynamic rovers equipped with
monocular cameras and a ranging link between them. U-
tilizing the cooperation between the pair of vehicles, the
scale problem in VSLAM of both monocular cameras can
be solved by the proposed method. Additionally, the s-
cale estimation problem is coupled with the estimates of
the initial relative position and attitude. As a consequence,
the relative pose between the two rovers can be obtained
simultaneously.

The paper continues with the system model and a brief
introduction of motion estimation in monocular-camera-
based VSLAM. Subsequently, a method of scale and rel-
ative pose estimation of two cooperative rovers using
monocular cameras and sparse range measurements is pro-
posed. Then the simulation results for various geometries
and noise conditions are provided. The conclusions are
drawn from the analysis of the results.
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Figure 1: Two dynamic rovers with ranging measurements

SYSTEM MODEL AND MOTION ESTIMATION US-
ING MONOCULAR CAMERAS

The measurement scenario addressed in this work is shown
in Fig. 1. Two cooperative rovers equipped with a monoc-
ular camera and a ranging device, e.g., a wireless radio re-
ceiver, execute SLAM tasks on the ground. The motion
of the vehicle is constrained to be planar. The additional
difficulties of coping with the same problem in a three-
dimensional (3D) motion are discussed in the following
(W
(k] )
frame (W) at the time k. In the remainder of this paper, we
use a superscript with parentheses () to denote the coordi-
nate frame in which the vector is represented. Vectors such
as ¢ € R? with geometric meanings are written with an ar-
row. Time, denoted with square brackets [-], is measured in
keyframes, i.e., the time reference instances in which both
the range measurements and the trajectory estimation are
available. We use (k) to express the local coordinate frame
at keyframe k. The homogeneous coordinates in the ex-
tended Euclidean space are written as 7 € P2. In addition,
the origin of the body frame is defined at the position of the
ranging sensor. Since the relative pose between the camera
and the ranging sensor can be obtained by calibration, the
body frame and camera frame are not distinguished. This
assumption does not affect the validity of the algorithm if
the body is assumed to be rigid.

section. Let ¢;,;’ € R? be the position of the robot in world

The range measurements can be obtained by using pilot
signals for synchronization. If the clock on the trans-
mitter and receiver sides are precisely synchronized, the
range can be estimated using time of arrival (ToA) mea-
surements. If a satisfactory synchronization cannot be
achieved, round-trip-delay (RTD) techniques can be im-
plemented to eliminate the impact of the clock offset. The
precision of the range measurements is constrained by their
Cramér-Rao lower bound. The details of ranging using RT-
D for navigation purposes are discussed in [10].

In the proposed scheme, the rovers have basic communica-
tion capabilities so that one of them can transmit its local



estimated trajectory {6(11\[}{])} to the other one. The trajectory

is estimated by VSLAM algorithm in the navigation frame
of the rover, i.e., the fixed reference frame taking the start-
ing location as the origin and the initial heading direction
as the y-axis. Our method does not require transmission
of extracted feature vectors or the local maps, so the data
throughput requirement is significantly low. A radio-based
system with both ranging and communication capabilities
for robotic swarms is proposed by Zhang et. al. in [11].
To obtain the trajectory in navigation frame {EE]]:]/) }, the fol-
lowing steps of monocular-camera-based motion estima-
tion are essential. Generally, the transformation between
two coordinate frames (P) and (Q) follows

XD =R )X +7p0), (1)

where X (#) and X(@) denote the coordinates of an arbitrary
3D point X eR3 expressed in the corresponding (P) and
(Q) frames, R(p_, ) € SO(3) denotes the orthonormal rota-
tion matrix, and ?( p—s0) denotes the translation vector from
the origin of (P) to the origin of (Q).

According to perspective projection, a visible point with
3D coordinates in the navigation frame )?i(N) € R? is pro-
jected to a two-dimensional (2D) point ﬁl@ in the measure-
ment set ) at k-th keyframe as

l

il = E(XKN>,EEIIC\]/)7R(N4<) )eQuCRL ()

Qpy is the set consists of the 2D coordinates of all the
points of interest on the image plane. In feature-based ap-
proaches, the measurement space € is continuous, whereas
in direct methods it is a discrete set, i.e. the set of all the
pixels. In homogenous coordinates, the projection can be
simply denoted as

_(k o (N

i) = kP&, 3)
where K denotes the camera intrinsic matrix, and Fy; the
extrinsic projection matrix at time k. In planar motion case,

(V)
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Py = Riv—) [ L
where 3 denotes the three-dimensional identity matrix.

By tracking features in consecutive image sequences, the
essential matrix E ;1 1) can be estimated using the epipo-
lar geometry constraint:
1 ~k+D)\T 1~k

K@ N iy (K1) =0, (5)
This equation shows the scale invariance of E(; ;1) in
epipolar constraints. The essential matrix can be decom-
posed into a rotation R 1) and a unit vector of transla-

tion &1y € R? a8t Egopst) = [Cumsisn)] , Riokr1)s

where [-]x denotes the 3 x 3 skew symmetric matrix built
as

el 0 —e3 (%)
() = es 0 —e1] . (6)
es —e)n €1 0

X

The translation in true scale is related to the monocular
estimation by

Tkt 1) = Sgl(ksk 1) E(k—k1) @)

In this equation /(4 1)€t x4 1) is the estimated transla-
tion from monocular vision, in which [ ;1) € R* de-
notes the estimated norm of the translation from time k to
k+1, and €41y denotes the direction of the motion.
sg € R™ is the true global scale in the world frame, which
cannot be obtained in the monocular-only case [12]. The
relative scale between two translations can be estimated.
Without loss of generality, one can assume /(1 _,5) = 1. The
3D coordinates of the tracked points can be estimated by
triangulation to build a local map. Consequently, a local
optimization, e.g., bundle adjustment [13], shall be applied
using the estimated motion to initialize the tracking thread
of the SLAM algorithm. Then the positions at the follow-
ing time instances can be obtained by minimizing the re-
projection residual (photometric residual in direct method
cases)

g

where X is the measurements covariance matrix.

SCALE AND RELATIVE POSE ESTIMATION EX-
PLOITING SPARSE RANGE MEASUREMENTS

Without any other anchor point with known absolute posi-
tion, one can only estimate the position and attitude of the
cameras with respect to a known point in the navigation
frame. We choose the initial position of the camera projec-
tion center of rover 2 as the coordinate reference system’s
origin, and the camera’s principal axis as the y-axis. Fig. 2
illustrates the reference system and the geometry of the two
rovers. The initial position and attitude of the two rovers
can be expressed in the reference frame as

4 T
C%)] = rR(a)[1,0]", R, —w) =R(a+6 — 5). 9)

E%)} =[0.0",  Ry,w)=1h, (10)

where I, denotes the two-dimensional identity matrix, and
R(-) € SO(2) denotes a 2D rotation matrix.

Using the images from the monocular cameras, the egomo-
tion of the two rovers in their navigation frames can be in-

dependently estimated up-to-scale as {E(IAE;C]) } and {Z”g\&]) 1.
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Figure 2: Reference system and the geometry of the two rovers

In the common reference frame (W), the position of the
two rovers at k-th keyframe can be expressed as

2™ 2

&

g = SR sw) ) gy ¢y (11)
(W (N
& = 502850 (12)

Although the monocular camera itself can only estimate
the motion with a scale ambiguity, with the additional help
of a sparse set of noisy range measurements {py }, where

ZW) _ 2W)
1 K] 2*[k]“ +le> (13)

Pi =

a method for estimating the scale factors sg1,5,0 can be
devised by exploiting consecutive ranging measurements
at keyframes. The true range between the two rovers at
time k is

Gk(sglvsgba 0 }”1) = Z:(1‘4[//()] _Z:(Z‘j‘[/k)]H
T,
— ‘ SglR(a+9 — —)CEA{II{]) +V1R(a)[1,0} SgZCZ [i] )

which is determined by the rover trajectories in navigation
frames and 5 unknown scalar parameters: the scale factors
S¢1,8¢2 € R the polar angle a € [0,27), the attitude angle
6 € [0,27), and the initial distance r; € R*. We stack them
into a parameter vector & = [s,1, 5,0, 0,71]7.

Utilizing communication functionality of the radio link be-
tween the two rovers, rover 1 can transmit its estimated
motion (up-to-scale) to rover 2. Rover 2 serves as the mas-
ter that obtains both local trajectory estimates. Therefore,
by using the available set of range measurements, the un-
known parameters can be estimated by minimizing

[5]=argm§inllp—G(~’§)||2Qm st.BE>0,  (15)

where the Vecto p = [p1,p2,-pk)T and G(&) =
G (

[G1(€),Ga(8),. &))"

1 0
B= |0 1
0 0

(=]

0 0
0 O] is a selection matrix used to im-
0 1

pose the positiveness of both scales and the initial dis-
tance. Q@ is the covariance matrix of the noise 11 =
[M1,M2,...,nk]T. The covariance of the range measure-
ments can be obtained from the signal receiver. The
Cramér-Rao lower bound of the range estimation can be
used as an approximation when the covariance calculation
is unavailable. If the ranging noise are uncorrelated, Q is a
diagonal matrix.

Due to the bounded search space and the presence of sev-
eral local minima, it is challenging to solve the nonlinear
inequality constrained optimization in Eq. (15). Howev-
er, not all minima violating the constraints represent er-
roneous solution, due to the symmetric properties of the
objective function. According to Eq. (14), the norm Gy
is invariant if the vector 5?,/‘[]13] — 52‘:‘[/,3] is reversed in direc-
tion. Consequently, for any parameter vector &, the value
of the object function is invariant to the following parame-

ter change:

Gk Sgl,sgz,(x 0 rl)
=Gy
=Gy

(

( Sgl,sgz,a,e—‘rﬂﬂ’l)
(—
=Gy (=541, —5g2,Q,0,—11)
(—

(
(s
(

Sgl,—Sg2, 00+ 7,0 +7,11)

(16)
=Gy (—Sg1,5¢2, A+ 7,0, —r1)

=Gy Sgl, —Sg2, 0+ T, 0 Vl)

=Gy (Sg1,—5g2,0, 0+ 7, —11)

=Gy Sgl58g2, 00 + TT, 0+, —rl)

Therefore, due to the numerical symmetry property of the
cost function, we can obtain the estimates of the parameters
by solving the corresponding unconstrained problem and
transform the results obtained with the relations given in
Table 1.

The nonlinear optimization problem (15) can be linearized
to an unconstrained linearized least-squares problem

§ = argmin|lp —J(§)S g1 (17)

with Jacobian matrix

9G1(§) 9GiI(E) 9GIE) 9GiIE) 9Gi(E)

dsgl Jsgo Jda 20 ary
0G,(8)  IG(E)  IG(E)  IGE)  IGHE)
J(é) _ (9S.g1 3sg2 Jda 20 arl

IGx(8) IGx(E) IGx(&) IGx(§) IGk(&)
Bsgl asgz da 20 arl




Table 1: Transformation on the results from unconstrained optimization.

If Transformation

§g1>0 §g2<0 71>0 §g1<—§g1 fgz(——fgz a+—a+m 0+ 6 Pl 7
§g1>0 §g2<0 <0 §81<—§g1 §g2<——§g2 o<+ o 0—0+m | P+ —P
§g1>0 §g2>0 71 <0 fgl%fgl fgz%fgz O« 0+m | 0+ 0+7m | F1 + —F
§g1 <0 fg2>0 71 >0 fgl <——§g1 §g2%§g2 o+ o 0+ 0+m 71— P
861 <0 | §2 <O | 71 >0 | $g1 ¢ —8o1 | §g0 ¢ 52 A« 0+m| 0+ 0+m Pl 7
§g1 <0 fgz <0 | 7A<0 §g1 — —fgl fgz — —fgz <« a 0+ 0 7l —7
§g1<0 §g2>0 71 <0 §g1<—7§g1 fgz%fgz G« o0+rm 0+ 6 1 —7

The optimization (17) can be solved iteratively as "

R R R N . . 60 T

b =&+ (T(E)07(E)) ITE)e (p-Glé))

(18) N

If 5¢1,5¢2 Or 11 are negative in the result, the parameters can 0 T

be mapped to the symmetric solution in the valid search 3 "\\

space as shown in Table 1. Consequently, the scales of >3 ’

the trajectories sg1 and s, are resolved. Additionally, the "

initial relative position and attitude between the two rovers

are obtained. Combining with the trajectory estimates in 10

navigation frames, the relative pose at any keyframe k can \_‘

be estimated. As a distributed system, the master rover can e e

x[m]

transmit the estimation results to the other one using the
communication system.

In order to solve the problem in Eq. (17), K > 5 range mea-
surements are required. Due to the high nonlinearity of the
objective function, the Levenberg-Marquardt algorithm is
applied, instead of a Gauss-Newton approach, in order to
exploit its superior global minimization capabilities. In ad-
dition, the initialization of the optimization is crucial due
to the presence of a number of local minima. Although a
suboptimal solution may have similar residual as the global
minimum, the estimated parameters can be far away from
the true value, leading to a wrong scale or pose. While
p1 is a precise approximation of the initial range r| due
to the high accuracy of ranging measurements, the scaling
factor s¢1 and s, are significantly insensitive to the glob-
al minima problem, provided that the selected keyframes
are sufficiently spaced. The estimation of the polar angle
« and the attitude angle 8 presents larger difficulties. For-
tunately, the parameters to be estimated are constants and
in most cases they do not need to be updated at high fre-
quency. Hence a serial search for the proper initialization
of the two angles is feasible. It is remarkable that if the
relative position between the two rovers can be estimated
by other methods, e.g., using ranging measurements from
the swarm network in [10], the polar angle o could be pre-
cisely initialized. As a result, the search space would even
reduce to a one-dimensional set. The requirement in ini-
tialization also explains why the problem with 3D motion
is much more challenging. First of all, the local attitude an-
gle have to be expressed with three orientation parameters
and the initial relative position need to be parameterized
by elevation and azimuth instead of &. Moreover, the ob-

Figure 3: Trajectories of the two rovers in Scenario #1.

jective function will have numerous local minima. As a
result, with limited computational power, it is extremely
challenging to obtain correct parameters in the 3D motion
setup.

SIMULATION RESULTS

We test the proposed method on multiple trajectories using
simulation data with Gaussian additive noise. The trajec-
tories are generated with random walk processes as accel-
erations, starting from static locations with random rela-
tive position and attitude. In the simulation, there are t-
wo noise sources added on the measurements, the ranging
noise with standard deviation o), and the translation noise
with o;. In order to simulate a realistic scenario, the error
of the trajectory estimation is added on all the translation
estimates instead of on positions, i.e., the error accumu-
lates over frames.

For the trajectories shown in Fig. 3, the root-mean-square-
error (RMSE) of the parameter estimation under different
noise levels is shown in Table 2. All the RMSE are cal-
culated with ten repetitive runs with independent noise.
Rover 2, i.e., the master node, is plotted in blue and rover
1 is in red. Fig. 4 shows the first 30 frames of the rovers
to illustrate the initial relative geometry more clearly. In
the serial search of initial values of the polar angle o and
attitude angle 0, the grid size is set to be 10 degrees in
the simulation. It can be concluded from the results that



Table 2: Estimation error of scales and pose parameters in Scenario #1.

o; 1[cm] | 1[cm] 3 [cm] 5 [cm] 5 [cm]
Op 1[cm] | 10 [cm] | 10 [cm] | 10 [cm] | 20 [cm]
RMSE (sq1) 0.0016 | 0.0049 | 0.0120 | 0.0129 | 0.0086
RMSE (s¢2) 0.0015 | 0.0045 | 0.0127 | 0.0116 | 0.0067
RMSE () [deg] | 3.3893 | 3.3426 | 8.2128 | 6.9004 | 8.8601
RMSE(0) [deg] | 0.6539 | 1.8069 | 4.2246 | 8.5225 | 6.2905
RMSE(r;) [m] | 0.0171 | 0.0301 | 0.0596 | 0.1620 | 0.0716
. . At the same time, the relative position and attitude can be
= obtained. The algorithm was successfully tested on a num-
’ < ber of simulated datasets with various geometries and noise
. 7 patterns.
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Figure 4: First 30 frames of the two rovers in Scenario #1.

in this scenario, the optimization converges well even for
5 [cm] translation error and 20 [cm] ranging noise. The
scale factor of the trajectories for both rovers can be accu-
rately estimated. An improvement in estimation precision
of the angles can be obtained by setting a higher density
of serial search values in the initialization of the non-linear
optimization.

Other scenarios are also simulated to test the performance
of the proposed method in different motion geometries.
The trajectories of the rovers in various scenarios are
shown in Fig. 5 and the corresponding estimation result-
s are given in Table 3. It can be concluded that the method
performs well in various scenarios with different geome-
tries. A key factor that affects the precision of the esti-
mation is the magnitude of the simulated motion. If the
change of distance between the two rovers is comparable
to the ranging noise, the measurement noise would be dom-
inant in the estimation.

CONCLUSION

In many vision applications, a single camera is preferred
over a stereo rig due to weight and cost constraints. How-
ever, the global scale is not recoverable in monocular vi-
sion. We propose an algorithm to resolve the global s-
cale ambiguity in monocular VSLAM for a pair of cam-
eras mounted on two rovers moving independently on a
plane. By exploiting range measurements between the two
rovers, the correct scales of the egomotions are estimated.
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