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Abstract: We propose a numerically reliable computational ap-
proach for the design of residual generators for fault detection
and isolation filters. The new approach is based on computing
solutions of least dynamical orders of linear equations with ratio-
nal matrix coefficients in combination with special rational fac-
torizations. The main computational ingredients are the orthogo-
nal reduction of the associated system matrix pencil to a certain
Kronecker-like staircase form, the solution of a minimal dynamic
cover design problem, and the computation of stable and proper
rational factorizations with diagonal denominators. For all these
computations we discuss numerically reliable algorithms relying
on matrix pencil and descriptor system techniques. The proposed
residual generator design approach is completely general, is ap-
plicable to both continuous- and discrete-time systems, and can
easily handle even unstable and/or improper systems.
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1. INTRODUCTION

In the model based fault diagnosis, the fault detection task is achieved by detecting
discrepancies between the outputs of the monitored plant and the predictions obtained
with a mathematical model. These discrepancies - called alsoresiduals- are indica-
tions of faults and are produced by special devices calledresidual generators. From
a system theoretic point of view, the residual generators are physically realizable sys-
tems having as inputs the measured outputs and the control inputs of the monitored
system, and as outputs the generated residuals. The residual generators are usually
implemented as parts of control algorithms or as independent monitoring procedures.

Several algorithms underlying the design of residual generators require the manip-
ulation of rational matrices. For low dimensional systems, this is possible to some
extent by using symbolic manipulation software as provided by tools like Maple or
Mathematica. However for large order systems, symbolic computation is not any-
more applicable because of tremendous manipulation efforts, and therefore the use
of numerical algorithms is the only possible option. The need to address the nu-
merical issues encountered in designing fault detection and isolation filters has been
already recognized by Chen and Patton (1999). By using recently developed numer-
ically reliable descriptor system algorithms, many of computational problems in the
fault detection field can be addressed for high dimensional systems.

We propose a new computational approach for the design of residual generators for
fault detection and isolation filters based on solving linear equations with rational
matrix coefficients. Additionally, rational factorization techniques are employed to
ensure the properness and stability of the resulting residual generators. For the solu-
tion of these computational problems we propose numerically reliable algorithms re-
lying on descriptor system techniques. The main computational ingredient in solving
linear equations with rational matrices is the orthogonal reduction of the associated
system matrix pencil to a certain Kronecker-like staircase form. Using this form a
solution can be easily constructed, without the need to explicitly invert any rational
or polynomial matrix. To determine stable and proper solutions of least dynamical
orders, minimal dynamic cover design techniques in combination with coprime fac-
torization procedures are employed. The proposed computational approach to design
residual generators for fault detection and isolation filters is completely general, is
applicable to both continuous- and discrete-time systems, and can easily handle even
unstable and/or improper systems. The design procedure of residual generators can
be easily implemented using the robust numerical tools available in theDESCRIPTOR

SYSTEMS Toolbox developed by the author1.

1http://www.robotic.dlr.de/control/num/desctool.html
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2. DESIGN OF FAULT DETECTION AND ISOLATION FILTERS

Consider the linear time-invariant system described by the input-output relations

y(λ) = Gp(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ), (1)

wherey(λ), u(λ), f(λ), andd(λ) are Laplace- or Z-transformed vectors of thep-
dimensional system output vectory(t), m-dimensional plant input vectoru(t), q-
dimensional fault signal vectorf(t), andr-dimensional disturbance vectord(t), re-
spectively, and whereGp(λ), Gf (λ) andGd(λ) are thetransfer-function matrices
(TFMs) from the plant inputs to outputs, fault signals to outputs, and disturbances
to outputs, respectively. According to the system type,λ = s in the case of a
continuous-time system orλ = z in the case of a discrete-time system.

The fault detection and isolation(FDI) problem can be formulated as follows: de-
termine a linear residual generator (or detector) of least dynamical order having the
general form

r(λ) = R(λ)

[
y(λ)
u(λ)

]
(2)

such that:(i) r(t) = 0 whenf(t) = 0; and (ii) ri(t) 6= 0 whenfi(t) 6= 0, for
i = 1, . . . , q. Besides the requirement that the TFM of the detectorR(λ) has least
possible McMillan degree, it is also necessary, for physical realizability, thatR(λ) is
a proper and stable TFM.

One possibility to determine a least orderR(λ) is to solve the following minimal
design problem (Varga, 2002): choose a suitable diagonalM(λ) (i.e., stable, proper
and invertible) and find a least McMillan degree solutionR(λ) of the linear equation
with rational matrices

R(λ)

[
Gf (λ) Gd(λ) Gp(λ)

O O Im

]
=

[
M(λ) O O

]
(3)

which is stable and proper. This equation arises by imposing for a detector of the
general form (2) the condition thatr(λ) = M(λ)f(λ) for all d(λ) andu(λ).

To solve the above equation for properly chosenM(λ), the minimum degree algo-
rithm of Wang and Davison (1973) can be considered as basis for a possible numer-
ical approach using polynomial techniques. Alternatively, provided[ Gf (λ) Gd(λ) ]
is left invertible, a numerically reliable inversion based procedure has been proposed
by Varga (2002). Here we compute first (using a state space based approach) a least
order left-inverseG+(λ) of

G(λ) =

[
Gf (λ) Gd(λ) Gp(λ)

O O Im

]
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and then determineR(λ) as the numerator of a stable and proper fractional represen-
tationG+

1 (λ) = M(λ)−1R(λ), whereG+
1 (λ) represents the firstq rows ofG+(λ)

andM(λ) is diagonal. Note that determining a least orderR(λ) is part of the com-
putation of the left-inverseG+(λ), and can be explicitly addressed.

In this paper we propose an alternative approach based on solving the rational equa-
tion (3) to obtain a least order stable and proper solutionR(λ) by choosing an appro-
priateM(λ). This computation can be performed in several steps involving manip-
ulation of rational matrices. For each step we propose matrix pencil based reliable
numerical algorithms which allow to determine the solution by computing exclu-
sively with real matrices of state space models. By using the proposed approach,
the fault detection and isolation filter design problem can be solved in the most gen-
eral setting. Thus our approach represents a completely general solution to the FDI
problem, being a numerically reliable computational alternative to various inversion
based methods (Ding and Frank, 1990; Frank and Ding, 1994; Gertler and Mona-
jemy, 1995; Penget al., 1997; Gertler, 1998; Chen and Patton, 1999; Gertler, 2000).

3. SOLVING RATIONAL EQUATIONS

For the design of residual generators in the most general setting, we have to solve a
rational equation of the form (3), where we have the additional freedom of choosing
a diagonalM(λ) such that the resultingR(λ) is proper and stable. Since the solution
is in general non-unique, we would like to compute a solution which has the least
McMillan degree.

In order to solve this problem, we consider, for convenience, the more general dual
problem to solve a linear rational system of the form

G(λ)X(λ) = F (λ)M(λ) (4)

whereG(λ) andF (λ) are givenp × m andp × q rational TFMs, respectively, and
we need to choose an invertible diagonalM(λ) such that the resulting solutionX(λ)
is proper, stable and has the least possible McMillan degree. It is a well known fact
that the system (4) has a solution provided the rank condition

rankG(λ) = rank[ G(λ) F (λ) ] (5)

is fulfilled. We assume throughout the paper that this condition holds.

For a givenM(λ) the general solution of (4) can be expressed as

X̂(λ) = X0(λ) + XN (λ)Y (λ),
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whereX0(λ) is a particular solution of (4) andXN (λ) is a rational basis matrix for
the right nullspace ofG(λ). Thus a straightforward procedure to solve (4) would
be to compute firstX0(λ) andXN (λ) for M(λ) = I, then to determine a suitable
Y (λ) to obtain a solutionX̂(λ) of least McMillan degree, and finally to choose an
appropriateM(λ) ensuring the stability and properness ofX(λ) = X̂(λ)M(λ).

The main difficulty using this approach is the computation ofY (λ) in the case when
X0(λ) is not proper. In this case the correspondingY (λ) can be improper as well
and for this computation there is no known computational procedure. In contrast, if
X0(λ) andXN (λ) are proper rational matrices, then the resulting properY (λ) can be
determined by employing the approach proposed by Morse (1976) based on minimal
cover design techniques. The following conceptual procedure is merely a refining
of the above steps in order to guarantee the applicability of the approach of Morse
(1976). For this, we determineM(λ) in a factored formM(λ) = Mf (λ)Ms(λ),
whereMf (λ) is a proper and stable factor chosen to ensure the properness ofX0(λ)
andMs(λ) is a proper and stable factor chosen to ensure the stability of the solution
X(λ). In what follows we formalize the main steps of the solution procedure and
subsequently we discuss suitable computational methods based on pencil manipula-
tion techniques to perform these steps.

1. Compute a particular solutionX0(λ) satisfyingG(λ)X0(λ) = F (λ).

2. Compute a proper rational basisXN (λ) of the right nullspace ofG(λ).

3. Compute a diagonalMf (λ) having the least McMillan degree such thatX̂0(λ) :=
X0(λ)Mf (λ) is proper.

4. Determine a properY (λ), such that the solution̂X(λ) = X̂0(λ) + XN (λ)Y (λ)
has the least possible McMillan degree.

5. Determine a diagonalMs(λ) having the least McMillan degree such thatX(λ) :=
X̂(λ)Ms(λ) is stable.

In what follows we discuss numerically reliable state space computational algorithms
for each step of the above procedure.

3.1 Computation ofX0(λ)

Let assume that the compound TFM[G(λ) F (λ) ] has a minimal descriptor realiza-
tion of ordern of the form

Eλx(t) = Ax(t) + BGu(t) + BF ν(t)
ξ(t) = Cx(t) + DGu(t) + DF ν(t)

(6)
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satisfying

[G(λ) F (λ) ] = C(λE −A)−1[ BG BF ] + [ DG DF ] (7)

According to the system type,λ also represents here either the differential oper-
atorλx(t) = ẋ(t) in the case of a continuous-time system or the advance operator
λx(t) = x(t+1) in the case of a discrete-time system. Note that for most of practical
applications[ G(λ) F (λ) ] is a proper TFM, thus we can always choose a realization
such thatE = I. However, for the sake of generality, we only assume that the pencil
A−λE is regular, without assumingE is nonsingular. In this way, we will also cover
the most general case of solving rational linear systems.

Let SG(λ) andSF (λ) be the system matrix pencils associated to the realizations of
G(λ) andF (λ)

SG(λ) =

[
A− λE BG

C DG

]
, SF (λ) =

[
A− λE BF

C DF

]

Using the straightforward relations
[

A− λE BG

O G(λ)

]
=

[
In O

−C(A− λE)−1 Ip

]
SG(λ)

[
A− λE BF

O F (λ)

]
=

[
In O

−C(A− λE)−1 Ip

]
SF (λ)

it is easy to see thatX(λ) is a solution ofG(λ)X(λ) = F (λ) if and only if

Y (λ) =

[
Y11(λ) Y12(λ)
Y21(λ) X(λ)

]

satisfies
SG(λ)Y (λ) = SF (λ) (8)

The existence of the solution of (8) is guaranteed by (5), which is equivalent to

rankSG(λ) = rank[ SG(λ) SF (λ) ] (9)

It follows that instead of solving the rational equationG(λ)X(λ) = F (λ), we can
solve the polynomial equation (8) and take

X(λ) =
[

O Im

]
Y (λ)

[
O
Iq

]
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In fact, since we are interested in the second block columnY2(λ) of Y (λ), we need
only to solve [

A− λE BG

C DG

]
Y2(λ) =

[
BF

DF

]
(10)

and computeX(λ) as

X(λ) =
[

O Im

]
Y2(λ)

The condition (9) for the existence of a solution becomes

rank

[
A− λE BG

C DG

]
= rank

[
A− λE BG BF

C DG DF

]
(11)

To solve (10), we isolate a full rank part ofSG(λ) by reducing it to a particular
Kronecker-like form. LetQ andZ be orthogonal matrices to reduceSG(λ) to the
Kronecker-like form

SG(λ) := QSG(λ)Z =




Br Ar − λEr Ar,reg − λEr,reg ∗
0 0 Areg − λEreg ∗
0 0 0 Al − λEl


 (12)

whereAreg − λEreg is a regular subpencil, the pair(Ar − λEr, Br) is controllable
with Er nonsingular and the subpencilAl − λEl has full column rank. The above
reduction can be computed by employing numerically stable algorithms as those pro-
posed in (Varga, 1996; Beelen and Van Dooren, 1988).

If Y 2(λ) is a solution of the reduced equation

SG(λ)Y 2(λ) = Q

[
BF

DF

]
(13)

thenY2(λ) = ZY 2(λ) and thus

X(λ) =
[

O Im

]
ZY 2(λ)

is a solution of the equationG(λ)X(λ) = F (λ). Partition

Q

[
−BF

−DF

]
=




B1

B2

B3



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in accordance with the row structure ofSG(λ). SinceAl−λEl has full column rank,
it follows from (11) thatB3 = 0. Thus, we can chooseY 2(λ) of the form

Y 2(λ) =




Y 12(λ)
Y 22(λ)
Y 32(λ)

O


 ,

where the partitioning ofY 2(λ) corresponds to the column partitioning ofSG(λ).
ChoosingY 12(λ) = 0, we obtain

[
Y 22(λ)
Y 32(λ)

]
=

[
λEr −Ar λEr,reg −Ar,reg

O λEreg −Areg

]−1 [
B1

B2

]

Let partition[ O Im ]Z in accordance with the column structure ofSG(λ) as

[ O Im ]Z = [ Dr Cr Creg Cl ] (14)

and denote

A− λE =

[
Ar − λEr Ar,reg − λEr,reg

O Areg − λEreg

]
, B =

[
B1

B2

]
, C = [Cr Creg ]

Then a particular solutionX0(λ) of the equationG(λ)X(λ) = F (λ) can be ex-
pressed in form of a descriptor realization

X0(λ) = C(λE −A)−1B

To computeX0(λ) we employed exclusively orthogonal similarity transformations.
Therefore, this step is numerically stable, because we can easily show that the com-
puted system matrices in the presence of roundoff errors are exact for an original
problem with slightly perturbed data.

Some properties ofX0(λ) can be easily deduced from the computed Kronecker-like
form. The poles ofX0(λ) are among the generalized eigenvalues of the pair(A, E)
and are partly fixed, and partly freely assignable. The fixed poles represent the con-
trollable eigenvalues of the pair(B2, Areg − λEreg). The generalized eigenvalues of
the pair(Ar, Er) are called the ”spurious” poles, and they originate from the column
singularity ofG(λ). These poles are in fact freely assignable by appropriate choice
of a (non-orthogonal) right transformation matrix (Varga, 2002).

If G(λ) andF (λ) have no common zeros then the pair(B2, Areg−λEreg) is control-
lable. This condition is always fulfilled in the case of solving a system (4) originating
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from FDI problems, whereF (λ) = [I 0]T is a constant full column rank matrix.
In this case, the solutionX0(λ) will be proper if [Gf (λ) Gd(λ) ] (see (1) ) has no
infinite zeros (i.e., all infinite eigenvalues of the matrix pair(Areg, Ereg) are sim-
ple). Moreover, a stable and proper solution will exist provided[ Gf (λ) Gd(λ) ] is
additionally minimum-phase.

More generally, the solutionX(λ) of G(λ)X(λ) = F (λ) will have no pole inγ
(finite or infinite) if cγ(G) = cγ([G F ]), wherecγ(G) is thecontentof G(λ) in γ as
defined by Verghese and Kailath (1981). Roughly, this is equivalent to say that the
pole and zero structures ofG(λ) and[G(λ) F (λ)] at γ coincide. For practical com-
putations, this implies that some or all of common zeros ofG(λ) and[G(λ) F (λ)]
will cancel. This cancellation can be done either explicitly by removing the un-
controllable eigenvalues of the pair(B2, Areg − λEreg) using orthogonal staircase
algorithms (Varga, 1990), or implicitly at the next steps, during determiningX̂0(λ)
andX̂(λ).

Remark. In this moment, we can easily determine a stable and proper solution of
(4) by choosing an invertible diagonalM(λ) such thatX(λ) := X0(λ)M(λ) is sta-
ble and proper. The computation ofM(λ) can be done using methods discussed in
(Varga, 2002). Note however that the resulting solution is usually not of least McMil-
lan degree. Therefore, the next steps of the proposed procedure address exclusively
the least order aspect.

3.2 Computation ofXN (λ)

Using the same reduction ofSG(λ) to SG(λ) as in (12), a nullspace basisXN (λ) of
G(λ) can be computed from a nullspace basisY N (λ) of SG(λ) as

XN (λ) = [O Im ]ZY N (λ)

We can determineY N (λ) in the form

Y N (λ) =




I
(λEr −Ar)−1Br

O
O


 .

With Cr andDr defined in (14), we obtain a descriptor realization ofXN (λ) as

XN (λ) = Cr(λEr −Ar)−1Br + Dr.

Note thatXN (λ) is a proper TFM which has least McMillan degree (Varga, 2003a).
Moreover, the poles ofXN (λ) are freely assignable by appropriately choosing the
transformation matricesQ andZ to reduce the system pencilSG(λ).
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Remark.We can expressXN (λ) to have the same state, descriptor and output ma-

trices asX0(λ). If we denoteBr =
[

Br

O

]
, thenXN (λ) can be also expressed

as
XN (λ) = C(λE −A)−1Br + Dr (15)

This representation is evidently not minimal, since all generalized eigenvalues of the
pair (Areg, Ereg) are uncontrollable.

3.3 SelectingMf (λ)

In principle, this computation can be done simply by solvingq independent proper
right coprime factorization(RCF) problems for the single-input systems correspond-
ing to each ofq columns ofX0(λ). AssumingX0,i(λ) is thei-th column ofX0(λ),
we can compute the proper RCF

X0,i(λ) =
X̂0,i(λ)
mf,i(λ)

wheremf,i(λ) andX̂0,i are both proper and mutually coprime. The resulting scalar
transfer-functionmf,i(λ) and rational vector̂X0,i(λ) are thei-th diagonal element of
Mf (λ) and thei-th column ofX̂0(λ), respectively.

The transfer functionsmf,i(λ) can be chosen, for example, in the form

mf,i(λ) =
1

(λ + α)n∞,i
,

wheren∞,i is the number of infinity zeros ofX0,i(λ) andα is an arbitrary value,
representing a desired stability degree for the solution. It is possible to determine
n∞,i efficiently from the resulting Kronecker-like form of the system pencilSG(λ).
We can assume thatAreg − λEreg andB2 are partitioned conformably and have the
structure

Areg − λEreg =

[
Af − λEf Af,∞ − λEf,∞

O A∞ − λE∞

]
, B2 =

[
Bf

B∞

]

whereAf − λEf andA∞ − λE∞ contain the finite and infinite invariant zeros of
SG(λ). If we denoteb∞,i the i-th column ofB∞, thenn∞,i + 1 is just the order
of the controllable part of the pair(A∞ − λE∞, b∞,i). To computen∞,i we can
apply the generalized controllability staircase algorithm of Varga (1990) to the pair
(E∞ − λA∞, b∞,i) (note thatA∞ andE∞ are interchanged).
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After having determined a minimal state-space realization(AMf
−λI, BMf

, CMf
, 0)

for Mf (λ), it is necessary to compute a proper descriptor representation ofX̂0(λ) =
X0(λ)Mf (λ). This can be done in two steps: first, remove all uncontrollable infinite
eigenvalues from the state-space realization ofX0(λ)Mf (λ) applying the algorithm
of Varga (1990) and then remove the non-dynamic part applying standard techniques
(Vergheseet al., 1981). Both steps can be performed efficiently by exploiting the
inherited structure of the system matrices ofX0(λ) from the Kronecker-like structure
of SG(λ). Note that in the first step we also eliminate the uncontrollable infinite
eigenvalues originating from the common infinite poles and zeros ofG(λ) andF (λ).
We omit further details here because of lack of space.

3.4 Computation of a least order̂X(λ)

We assume that̂X0(λ) andXN (λ) are proper TFMs and possess state-space repre-
sentations sharing the same descriptor, state and output matrices

[
X̂0(λ) XN (λ)

]
=

[
Â− λÊ B̂ B̂r

Ĉ D̂ D̂r

]
(16)

with Ê non-singular. This can be easily achieved by performing all relevant trans-
formations employed to eliminate the non-proper part ofX0(λ)Mf (λ) also on the
non-minimal realization (15) ofXN (λ).

It was shown by Morse (1976) that computing a least order solutionX̂(λ) = X̂0(λ)+
XN (λ)Y (λ) by choosing an appropriate properY (λ) is equivalent to determine a
feedback matrixF̂r and a feedforward matrix̂Lr to cancel the maximum number of
unobservable and uncontrollable poles of

X̂(λ) =

[
Â + B̂rF̂r − λÊ B̂ + B̂rL̂r

Ĉ + D̂rF̂r D̂ + D̂rL̂r

]

It can be shown that if we start with a minimal realization of[ G(λ) F (λ) ], then we
can not produce any unobservable poles inX̂(λ) via state-feedback. Therefore, we
only need to determine the matriceŝFr and L̂r to cancel the maximum number of
uncontrollable poles.

Morse (1976) has shown that this problem can be solved as a minimal order dynamic
cover design problem. Consider the set

J = {V : Im B + AV ⊂ Im Br + V}
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whereA := Ê−1Â, B := Ê−1B̂, andBr := Ê−1B̂r. Let J ∗ denote the set of
subspaces inJ of least dimension. IfV ∈ J ∗, then a pair(F̂r, L̂r) can be determined
such that

(A + BrF̂r)V + Im (B + BrL̂r) ⊂ V
Thus, determining a minimal dimensionV is equivalent to a minimal order cover
design problem, and a conceptual approach to solve it has been indicated by Morse
(1976). The outcome of his method is, besidesV, the pair(F̂r, L̂r) which achieves a
maximal order reduction by forcing pole-zero cancellations. This approach has been
turned into a numerically reliable procedure by Varga (2003b). In this procedure
F̂r and L̂r are determined from a special controllability staircase form of the pair
(Â− λÊ, [ B̂r B̂ ]) obtained by using a numerically reliable method relying on both
orthogonal and non-orthogonal similarity transformations. An additional feature of
this procedure is that all uncontrollable eigenvalues of the pair(Â− λÊ, B̂), arising
from common poles or zeros ofG(λ) andF (λ) are also eliminated.

3.5 SelectingMs(λ)

The computation ofMs(λ) can be done simply by solvingq stable RCF problems for
the single-input systems corresponding to each columnX̂i(λ) of X̂(λ)

X̂i(λ) =
Xi(λ)
ms,i(λ)

One distinctive feature of these single-input factorization problems is that eachX̂i(λ),
has generally an uncontrollable descriptor realization. This aspect is handled auto-
matically when employing the Algorithm GRCF-P of (Varga, 1998). Since each of
resultingms,i(λ) has least McMillan degree, the resulting diagonal matrixMs(λ)
has least McMillan degree as well.

4. EXAMPLES

Example 1. Consider the following simple continuous-time example taken from
(Frisk, 2000):

Gp(s) =




1
s + 1

1
(s + 1)2


, Gf (s) =

[
0
1

]
, Gd = 0
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A minimal order left-inverse ofGf (s) is Q(s) = [ 0 1 ], which is proper and stable.
According to Ding and Frank (1990), a residual generator can be determined in the
observer-like form

r(s) = Q(s)(y(s)−Gp(s)u(s)).

This leads to a second order stable and proper detector

R(s) = Q(s)[ I −Gp(s) ] =
[

0 1 − 1
(s + 1)2

]

which is however not of least possible order.

We apply now the proposed approach to compute a least order detector. For this
simple model we will explicitly manipulate rational matrices instead of state space
matrices. The TFMs defining the equation (4) are given by

G(s) =




0 1 0
1

s + 1
1

(s + 1)2
1


 , F =

[
1
0

]

A particular solutionX0(s) of the equationG(s)X(s) = F and a rational nullspace
basisXN (s) of G(s) are

X0(s) =




0
1

− 1
(s + 1)2


 , XN (s) =




−1
0
1

s + 1




Note thatXT
0 (s) is the second order detector determined previously. If we choose

Y (s) =
1

s + 1
, then we obtain a first order stable and proper detector

R(s) = (X0(s) + XN (s)Y (s))T =
[
− 1

s + 1
1 0

]

having the least possible McMillan degree.

Example 2.This example is the descriptor system described in (Hou, 2000) corre-
sponding to a linearized three-links planar manipulator model. This model has state
vector dimensionn = 11, command input vector dimensionm = 3, fault vector
dimensionq = 2, no disturbance input, and output vector dimensionp = 4 . This
model is not minimal and a minimal realization has order 5 and isproper.

The method proposed by Hou (2000) is essentially equivalent to design two inde-
pendent FDI filters. By considering the fault input 1 as fault and fault input 2 as
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disturbance, a 4-th order FDI filterR1(s) has been designed by Hou (2000). Simi-
larly, by considering fault input 2 as fault and fault input 1 as disturbance, he obtained
a 4-th order FDI filterR2(s). In this way, a FDI filter of order 8 has been determined
by stacking the two designed filters

R(s) =

[
R1(s)
R2(s)

]

By using the new approach proposed in this paper we can determine a residual gen-
erator which has a least order equal to 2. In the rational system (4) to be solvedG(s)
is 5 × 7 andF (s) is 5 × 2, thusR(s) = XT (s) will be a 2 × 7 matrix. A par-
ticular solutionX0(s) has been determined having a state space realization of order
10, with the pair(A, E) having 3 finite and 7 infinite generalized eigenvalues. The
nullspace basisXN (s) is 7× 2 and has dynamical order 3. WithMf (s) of the form
Mf (s) = 1

s+1I2, we can eliminate all infinite poles ofX0(s) and the resulting proper

solutionX̂0(s) = X0(s)Mf (s) has order 5. After performing the minimum cover
design, we get a stable solutionX(s) = X̂(s) of order 2 with both eigenvalues stable
and equal to -1. For reference purposes we give the resulting 2-nd order FDI filter

R(s) =



−0.01042s + 0.04455

s + 1
0.03462
s + 1

−0.03899s + 1.936
s + 1

1
s + 1

s

s + 1
0

· · ·
−0.02753s + 1.377

s + 1
0

0.03899
s + 1

0.02753
s + 1

0 − 1
s + 1

0 0




5. CONCLUSIONS

We proposed numerically reliable approaches to solve several basic computational
problems encountered in the design of FDI filters, namely: (1) the solution of linear
rational equations; (2) the computation of rational nullspace bases of rational matri-
ces; (3) the reduction of the dynamical orders of the solutions by employing minimal
dynamic cover design techniques; and (4) the computation of stable and proper ra-
tional factorizations with diagonal denominators. Each of these computations can be
performed using numerically stable or numerically reliable algorithms. Using such
algorithms, the FDI problem can be solved in the most general setting. Our approach
provides, for the first time, a satisfactory numerical solution to this problem. Note

14



that least order residual generator design algorithms have been already proposed to
solve the simpler fault detection problem (i.e., without isolation) by Frisk and Nyberg
(2001) using a polynomial basis approach, and by Varga (2003a) using state space
computational techniques.

For the implementation of the proposed residual generator design approach, all nec-
essary basic numerical software is available in theDESCRIPTORSYSTEMS Tool-
box for MATLAB (Varga, 2000), as for example, the computation of Kronecker-like
staircase forms, computation of standard and special controllability forms (required
in minimum cover design), computation of poles and zeros of descriptor systems,
determination of minimal realizations, stable coprime factorization, etc. The basic
computational tools in this toolbox are several functionally richMEX-functions, rep-
resentingMATLAB interfaces to powerful and numerically robust Fortran subroutines
partly available in the control and systems library SLICOT (Benneret al., 1999).
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