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Abstract—In this paper a particle filter for absolute train local-
ization based on magnetic field measurements is proposed. The
filter utilizes distortions of the earth magnetic field introduced
by ferromagnetic infrastructure components along the railway
track. The distortions are characteristic for a certain part of the
track network and therefore are a source of position information.
The particle filter introduced in this paper incorporates a prior
created map of these distortions to estimate the train position.
This only requires low-cost passive magnetometers and a simple
movement model that accounts for the limited dynamics of a
train. The feasibility of the approach is demonstrated in an
evaluation with measurements collected on a train driving in
a rural area. Overall a position root mean square error below
four meters could be achieved, proving that the magnetic field is
a viable source of position information that is independent from
other localization systems like GNSS.

I. INTRODUCTION

Current railway systems lack the capability to continuously
localize the trains in the track network. For safe operation
therefore large distances between consecutive trains are re-
quired. This is becoming more and more of a problem because
the increasing amount of passenger requires a higher density
of trains on the tracks. Especially in urban areas this problem
cannot be solved by building new infrastructure like tracks
because of high costs and limited space. Further, building
tracks is time consuming and hence cannot fix the already
existing bottlenecks in the near future. One way to handle the
increasing amount of passengers that avoids the before men-
tioned issues of an infrastructure based approach is automa-
tion. For automation accurate and reliable train localization
is crucial and can be seen as one of the key technologies.
The research in this area is focusing on approaches with
global navigation satellite systems (GNSS) [[1]]. GNSS will be a
viable localization solution in many scenarios but there are also
environments like tunnels, train stations with closed roofs and
urban canyons in which GNSS signals are strongly degraded
or completely blocked. GNSS signals can also be jammed
easily due to the low signal power on the receiver antenna.
An alternative to GNSS is the approach that was introduced
with the European train control system (ETCS). In the ETCS
the train position is determined with a combination of an
odometer and radio beacons. The odometer is used to perform
dead reckoning in respect to the last radio beacon. The radio
beacons are placed in the middle of the track between the rails
at known positions. When a train passes a beacon the beacon
number is transmitted to the train. With the beacon number the
beacon position is obtained from a database. This is used to

bound the dead reckoning position error that otherwise would
accumulate unlimited over time. While this is in principle a
simple system able to provide accurate train positions, it is
also expensive to install and to maintain.

In this paper a different approach for train localization is
investigated that is completely independent from the before
mentioned ones and does not require special infrastructure
components. The approach is based on environmental features
along the railway track. More precisely, measurements of the
magnetic field are utilized to estimate the train position. This
is possible because in the vicinity of railway tracks many
ferromagnetic infrastructure components like poles, cables and
reinforced concrete can be found. These components introduce
distortions in the earth magnetic field that have fixed locations.
A measurement analysis showed that the distortions are also
stable over time. The magnetic field along a railway track
therefore contains position information that can be utilized
in a localization system. In [2] we showed that the magnetic
field has the potential to enable train localization and proposed
in [3] an approach for train localization based solely on
magnetometers and an inertial measurements unit (IMU).

In the literature the idea of magnetic field localization
is also considered for indoor environments. The authors in
e.g. [4], [S] use the magnetic field and a particle filter for
pedestrian localization. In indoor environments the magnetic
distortions are introduced by the metallic structures in the
building and magnetic fields generated by electronic devices.
In [6] a wheeled robot is localized inside a building with an
array of magnetometers and a wheel speed sensor. For roads
magnetic localization was investigated in [7]]. The authors use
a particle filter and a movement model to localize different
cars on the road. In this paper we adapt this approach to train
localization and propose a particle filter that only requires a
map of the magnetic field and magnetometer measurements.
This is in contrast to our prior work in [3], where we used a
magnetometer to stabilize the position estimate obtained from
an inertial navigation system (INS). The INS was used to mea-
sure the distance between magnetometer measurements. With
this distance information the magnetic field of the last couple
of hundred meters of track was calculated and compared to
the magnetic field in the prior created map to estimate the
train position. This has the advantage that the INS errors can
be corrected with a low complexity extended Kalman filter.
The downside of the approach is the complicated initialization
process of the INS and the requirement for an IMU. The



particle filter proposed here is simple to initialize and does
not require an IMU or other sensors measuring the kinematic
quantities of the train. In addition it is straightforward to
incorporate multiple magnetometers into the update step of
the filter.

II. TRAIN LOCALIZATION WITH MAGNETIC FIELD
MEASUREMENTS

A. Train Position in Topological Coordinates

In train localization one is interested in finding the position
in respect to the track network. Hence the train position in this
paper is defined in topological coordinates. The topological
coordinates contain the along-track position s and the track
number Z € N. The along-track position is a real valued
variable on the interval [0, Lz] where Lz is the length of
track Z. In the rest of the paper the focus is on showing the
feasibility of the along-track localization and we will assume
that the track number is known in advance. This assumptions
is reasonable for railways because typically the sequence of
tracks {Z;}1.n the train will travel on is known in advance.
From that sequence and a map of the track network it is
straightforward to combine the different tracks to a virtual
track of length Zjvzl Lz,.

B. Magnetic Field in Railway Environments

Ferromagnetic material in the railway environment intro-
duces distortions in the local earth magnetic field. These
distortions are persistent in time and show a strong position
dependency. An example for the magnetic field on a 1 km long
railway track segment is shown in Fig.[Tl The magnetic field
B, in Fig.[I]is the magnetic field normalized to the undisturbed
earth magnetic field. The red and the blue lines are measure-
ments recorded on two runs on the same track segment. The
sensitivity axis of the magnetometer was facing downwards
during the measurements. In Fig.[T]it is clearly visible that the
magnetic field for both runs has a high similarity but it can also
be seen that a single magnetic field measurement contains only
ambiguous position information. To get a unique position a
sequence of measurements must be compared to the map. This
can be done either by collecting a batch of measurements like
in [3] or iteratively by updating a filter with each measurement
as soon it gets available [4], S]], [6], [[7]. Both approaches have
in common that a prior recorded map containing the magnetic
field and the corresponding topological position is required
and that the position estimation is based on a comparison of
the magnetometer measurements and the map.

II1. PARTICLE FILTER FOR ALONG-TRACK LOCALIZATION
A. System Model

For along-track position estimation we propose a low
dimensional state vector to model the train dynamics. In
particular the dynamic state of the train at the discrete time
step k is described with the vector

xP = [se 8" (1)

containing the along-track position s; and the train speed $j.
The evaluation is based on a triad of orthogonal magnetome-
ters. The magnetometer axes are facing downwards, parallel
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to the track and perpendicular to the track. The sign of the
measurements parallel and perpendicular to the track changes
when the orientation of the train on the track changes. In
addition to the kinematic state therefore also the orientation is
estimated. The orientation can take only two possible values
and is modeled as binary variable O € {—1,+1}. The overall
state vector estimated in the particle filter is therefore

xp =[x 0" )
The evolution of the dynamic state from the discrete time step
k — 1 to the next time step k£ is modeled by a white noise
acceleration model

1T
Xp = {0 1} xP L Fng (3)
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with the process noise ny ~ N(0, Q) and the time increment
T. The time discrete process noise covariance is
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where ¢ is the covariance of the white acceleration noise of
the continuous time model. Here ¢ is chosen to approximate
the dynamics of a train with an typical maximum acceleration
of 1m/s% A rule of thumb for choosing this parameter can
be found e.g. in [8 p. 263].

The orientation O of a train can only change when the train
is lifted up and turned by 180° or on a railway turntable which
is very untypical in normal operation. Thus the orientation is
assumed constant

Oky1 = Oy. 5)

The combination of (3) and (3) results in the overall system
model
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In (6) L, % and 0y, are n by m identity and zero matrices.



Algorithm 1: SIR Particle Filter for Along-track Localization

1: Initialize particle set {x{, w}1.n,
2: for all measurements do

3 for all particles do

4: ng_1~ N(O, Q)

5: x;, = Fx;_; +Gng_,

6 if st ¢ [0, L7] then

7

si = argmin (|si — s|)

s€[0,L7]
8: end if
9; Wi =wi_ ;- N (yk;map(s};, O,i),afnlgxg)
10: end for
11:  Normalize all weights wi = @} /> W}
12: Negr 1/2 wiz
13: if Neg < Nt then
14: Resample and assign equal weights
15: end if
16: end for

B. Measurement Model

The measurement model relates the along-track position to
the corresponding magnetic field

Yi = map(sy, Or) + Wi, (7

where wy, is the sensor noise and map(-, -) is the prior created
map of the magnetic field. As mentioned before, in this paper

a triad of magnetometers is used and hence map(-,-) is a
vector-valued function
map : R x {~1,+1} = R? (5,0) = m 3)

mapping s to the three dimensional magnetic field m. The
orientation O ensures that the sign of the field is adapted
correctly. In the measurements model we assume that the three
magnetometers have the same noise characteristics and that the
noise is uncorrelated wy, ~ N(0,02 I5y3).

C. Filter Algorithm

The measurement model contains nonlinearities intro-
duced by the magnetic field. To handle this nonlinearities a
particle filter is applied. The particle filter approximates the
posterior probability density function (pdf) p(xo.x|yo.x) of
the state history xg.; from time step 0 to k conditioned on
the whole measurement history yg.;, with a set of weighted
particles {x{.,,w; }1:n,, Where x{, is the state vector and
wj, the weight of the ¢-th particle. For a set of IV, particles
the posterior pdf can be written as

Zwké

x4, (onk)

P(Xo0:k[yo:k) (x0:k) 9

with the Dirac measures o

1, Xok =Xy,
Oxi (x0) = {0, X0:k 7 X

The weighted set for each time step % is calculated sequen-

(10)

tially with a sampling importance resampling (SIR) filter that
can be found e.g. in [9]]. Algorithm 1 shows the pseudocode of
the SIR filter. In the initialization phase the particles are split
into two subsets with the same cardinality. The first subset
contains all particles with an orientation @ = +1 and the
second all particle with O = —1. After the orientation is
initialized the position and speed of the particles is set. The
initial positions are the same for both subsets and are placed
equidistant in the interval 50 m around the true along-track
position. The initial speed is drawn from a uniform distribution
centered at the true speed £2.5m/s. The weights are all set
to 1/N,.

After the filter is initialized, an iteration is performed for
each measurement. A single iteration contains two steps, the
prediction step (line 4-8) and the update step (line 9 and 11).
In the prediction step the state of the particles at time k is
calculated based on samples of the system noise and the state
at k — 1. The condition in line 6 ensures that the along-track
position is always valid and within the interval [0, L] defined
by the track. When the position is not in this interval, the
position is set to the closest valid value. This is followed by
the update step that adjusts the particle weights. In the context
of importance sampling the weight update is [9]

plynlxi)p(xg %)
q(xXk /%1 V)

where q(-) is the importance density. In the case of the

SIR filter the importance density is chosen to be the prior

p(xi|x: ), reducing the weight update to a multiplication of
the old weight with the likelihood

p(yxlxi) = N (yi; map(sy, Op), 07 Isxa)
defined by the measurement model (7). The weights @} are
only proportional to the true weights and hence have to be
normalized (line 11) to ensure that the sum over all weights
is one. In contrast to e.g. a Kalman filter, the update step of
a particle filter has no feedback mechanism. Without further
action the particle cloud will spread according to the system
model (6) and the filter will diverge over time. This effect is
also known as particle depletion [10]]. The depletion is tackled
by resampling when the effective number of particles

1
NP

> wy
1=1

falls below a threshold Nt. For resampling the systematic
resampling algorithm, see e.g. [9], is used. In the resampling
step it is assumed that the new particles are samples from
the true posterior and hence equal weights are assigned to all
particles.

~% 0

Wy = Wg_1

(1)

12)

Negr = (13)

D. Filter Output

In the evaluation of the SIR filter in respect to the localiza-
tion accuracy a single estimate for the state vector is required.
For this purpose the estimate minimizing the Bayesian mean
square error (MMSE) [[11] is calculated

iO:k = E[Xo:k‘yo:k] = /XO:kp(XO:k|y0:k)dX0:k:~ (14)



By inserting (9) into (I4) the MMSE estimate becomes
N,

Kok ~ /XOkaka (x0.1)dXo.1; = Zwkka (15)

The MMSE estimate is therefore the weighted sum over all
particles.

IV. EVALUATION

The feasibility of the proposed localization system is evalu-
ated based on a dataset recorded with a diesel train running on
the track network of the Harzer Schmalspurbahnen, a regional
train provider in northern Germany. In the evaluation we used
the same dataset as in [3] that consists of three different
tracks with a total length of roughly 13km and a duration
of 32min. The maximum speed of the diesel train during the
measurements was 40 km/h.

A. Measurement Setup

For the measurements a Xsens MTi-G-700 IMU containing
also a triad of magnetometers was mounted on the floor of
the train cabin. The magnetic field was recorded with 100 Hz.
The ground truth, for the map creation and for evaluating
the positioning error of the magnetic field based approach,
is obtained with a u-blox LEA-M8T GNSS receiver at a rate
of 1Hz. The magnetic field map is based on a second set
of measurements recorded during a different run on the same
tracks. To create the map each magnetometer measurement
is first stored with the corresponding along-track position
obtained from the GNSS receiver. In an second step the
measurements are linearly interpolated on equidistant grid with
a spacing of 0.1m. The time difference between recording
the map data and the data used for localization depends on
the track and was between a couple of minutes and 32 h. The
particle filter uses 2000 particles and is updated at a rate of
10 Hz.

B. Results

In Table the root mean square error (RMSE) of the
along-track position is shown. The error ¢ is the difference be-
tween the particle filter MMSE estimate §j, and the along-track
position s, from the GNSS receiver. The GNSS along-track
position is obtained from an orthogonal projection of the
GNSS position on the map. The RMSE is defined by the
equation

N

AR 1 &
£= NZ(S’C —s;)2 = NZE%

k=1 k=1
In addition to the RMSE Tablelll shows the maximum
magnitude and the 95% and 99% quantile of the position error.
The RMSE of the proposed particle filter approach is close
to the performance of a simple single frequency GNSS receiver
and almost identical to the RMSE of our prior work in [3]].
The approach in [3] was evaluated with the same dataset
and is based on an IMU that was stabilized with position
estimates obtained from the cross-correlation of the magnetic
field map and the current magnetometer measurements. Even
though the difference in the RMSE of the particle filter

(16)

TABLE I
RMSE &, MAXIMUM VALUE eyax, 95% QUANTILE qg9s AND 99%
QUANTILE gg99 OF THE ALONG-TRACK POSITION ERROR |¢|

€lm]  ggs[m]  ggo[m]  Emax[m]
Track 1 545 10.82 28.72 31.68
Track 2 3.68 4.07 17.46 43.48
Track 3 1.87 2.86 3.33 4.06
Overall 3.84 5.11 19.54 43.48
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Fig. 2. CDF of the absolute along-track position error for the different tracks
and the overall dataset.

and the IMU aided approach is negligible, the use of the
IMU reduced the maximum position error below 20m. A
comparison of the different tracks shows that the accuracy that
can be reached strongly depends on the track and therefore
on the magnetic field. If only the RMSE is considered the
performance on the different tracks is comparable. A bigger
difference can be seen when the quantiles and the maximum
error is compared. The maximum error of Track 3 is an
order of magnitude smaller then for the other tracks. The
same is observed for the 99% quantiles. This can be seen
also from the cumulative distribution function (CDF) in Fig.[2}
The particle filter position estimate for Track 1 and 2 shows
large correlated errors for a duration of multiple seconds. This
results in a CDF that only slowly converges to one. The large
correlated errors are due to the magnetic field on the tracks.
When the magnetic field along the track has no or only small
variation no information can be gained from the magnetometer
measurements. For localization it is crucial that the magnetic
field shows measurable variations when the position changes.
When this is not the case the particles are starting to spread
according to the system model and the weights of the particles
are not adapted properly. In Fig.[3] the measured magnetic
field, the train speed from GNSS and the along-track error of
Track 2 is shown. The figure contains the 50 s of data when the
maximum error was observed. From Fig.[3|(a) it is getting clear
that magnetic field for this part of the track shows only small
variations. This results in an quadratically increasing error on
the position estimate Fig.[3](c). When the magnetic field shows
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Fig. 3. (a) Measurements of the magnetometer triad. The x- and y-axis
of the triad are parallel and perpendicular to the track and the z-axis is
facing downwards. (b) Train speed $ during the measurements. (c) Along-
track estimation error of the particle filter.

only a weak dependency on the position, the error of the filter
starts to become dependent on the change of the train speed.
Assuming the train speed was estimated correctly before the
magnetic field starts to show no variations at 490 s, the position
estimate will still be maintained for a certain time as long
as the speed of the train is constant. But as can be seen in
Fig.[3| (b), already small changes in the speed leads to an error
growing quadratically with time. This error growth can be
reduced by incorporating additional sensors that measure the
train acceleration or speed. Depending on the sensor quality
and type this has the potential to largely improve the position
accuracy whenever the magnetic field does not exhibit strong
variations. Another option to reduce the positioning errors is
to manually introduce position dependent variations into the
magnetic field. This could be achieved by placing permanent
magnets along the track or by magnetizing the rails. The
orientation was estimated properly for the different tracks.
After a few filter iterations and resampling the orientation for
all particles was set to the correct value. For the train speed a
RMSE of 0.42m/s was achieved. Comparable to the position
estimate the quality of the speed estimates strongly depends
on the variation of the magnetic field.

V. CONCLUSION

In this paper we proposed a SIR particle filter for train
localization that requires only a map of the magnetic field
and magnetometer measurements. The evaluation of the filter
showed the feasibility of the approach and that the achievable
along-track position RMSE is comparable to the error of a
simple single frequency GNSS receiver. In addition to the
position the orientation of the train in respect to the track
was estimated correctly throughout the evaluation. This largely
simplifies the filter initialization, i.e. a course train position and
speed estimate is sufficient. For the speed estimate an RMSE
below 0.5 m/s was achieved. The position and speed accuracy
was mainly limited by the magnetic field that, for some short
parts of the evaluated tracks, exhibits only a weak dependency
on the position. This results in an error growing rapidly over
time. This can be tackled easily by incorporating additional
sensors like an IMU or wheel speed sensors into the particle
filter prediction or update step.
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