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Portable 3-D modeling using visual pose tracking
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A B S T R A C T

This work deals with the passive tracking of the pose of a close-range 3-D modeling device using its own
high-rate images in realtime, concurrently with customary 3-D modeling of the scene. This novel
development makes it possible to abandon using inconvenient, expensive external trackers, achieving a
portable and inexpensive solution. The approach comprises efficient tracking of natural features
following the Active Matching paradigm, a frugal use of interleaved feature-based stereo triangulation,
visual odometry using the robustified V-GPS algorithm, graph optimization by local bundle adjustment,
appearance-based relocalization using a bank of parallel three-point-perspective pose solvers on SURF
features, and online reconstruction of the scene in the form of textured triangle meshes to provide visual
feedback to the user. Ideally, objects are completely digitized by browsing around the scene; in the event
of closing the motion loop, a hybrid graph optimization takes place, which delivers highly accurate
motion history to refine the whole 3-D model within a second. The method has been implemented on the
DLR 3D-Modeler; demonstrations and abundant video material validate the approach. These types of
low-cost systems have the potential to enhance traditional 3-D modeling and conquer new markets
owing to their mobility, passivity, and accuracy.
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1. Introduction

3-D modeling already assumed a central role in areas like
industrial inspection and recognition, reverse engineering, cultural
heritage, medical imaging, computer graphics, and robotics. Other
areas like leisure gaming, human–computer interaction, robotics,
forensics, agriculture, and construction show a less direct
requirement for 3-D modeling, but are increasingly taking
advantage of it as a means to solve the visual perception problem.
Visual perception is the process by which visual sensory
information about the environment is received and interpreted;
it is believed that it is through the explicit formation of 3-D models
that a considerable number of the challenges on visual perception
will be eventually solved. This is, of course, subject to the
performance, flexibility, and cost of 3-D modeling devices.
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Several factors like object self-occlusion, object size, or limited
field of view make it impossible for a 3-D modeling system to
acquire a complete model in a single measurement step, especially
in close-range. Multiple views (or multiple sensors) are required to
merge data to a single model. The prevalent approach is to measure
the position and orientation (pose) of the sensor while acquiring
range data, thereby registering multiple views into the same frame
of reference. A range of tracking systems, robotic manipulators,
passive arms, turntables, CMMs, or electromagnetic devices are
deployed for this purpose. These options are inconvenient for three
reasons: First, they limit mobility; second, they require accurate
synchronization and extrinsic calibration (and cannot be rear-
ranged); third, they usually represent the largest and most
expensive part of the 3-D modeling system.

In this work we present an overview on the state of the art of
close-range 3-D modeling systems regarding their data registra-
tion concept. We then make the case for data registration by visual
pose tracking in realtime and go on describing their adaption for
close-range 3-D modeling devices, using the video captured by
their own cameras. Cameras are preferred sensors in many areas
because they are light, affordable, consume less energy, allow for a
very accurate parametrization of its operating model, and still they
gather a plethora of information (both radiometric and geometric)
within a single, rapid measurement. Further benefits exist:
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cameras are non-contact sensors, thus free-floating, and passive
since they do not need to project or exert action on the
environment. In addition, visual pose tracking becomes inherently
calibrated and synchronized with further image-based sensing.

Visual pose tracking is a hard problem because geometric
information becomes entangled in radiometric and perspective
geometric issues. Following distinct regions of interest in the
images in realtime (feature-based tracking) is a popular
technique to overcome this problem. This is especially demanding
in close-range because features move faster than in medium- or
long-range because they are also affected by camera translation.
We proposed two novel schemes for efficient feature tracking on
this type of devices: either leveraging an inertial measurement
unit (IMU) [1] or adopting the Active Matching paradigm in Ref. [2]
for more efficient tracking [3,4].

In the present case of cameras mounted on close-range
scanning devices, highest accuracy in visual pose tracking is
necessary as cameras feature small angular fields of view, which
call for the concatenation of relative measurements (dead
reckoning) so that errors readily accumulate. We propose
graph-based, nonlinear optimization (keyframe-based bundle
adjustment) on relative pose transformations and measurements,
parallel computing of front-end, back-end and other sub-tasks,
feature-based stereo vision, as well as loop closure detection for
error compensation. Even in the case that everything else fails,
appearance-based recognition of older features is provided so
that pose tracking can be resumed. These contributions have been
described in detail in Refs. [5,6].

Finally, since manual 3-D scanning requires visual feedback to
the user, a streaming surface reconstruction method is presented
that delivers realistic 3-D models in-the-loop during scanning as
well as refined models promptly after loop-closing corrections.

We implement these methods on the DLR 3D-Modeler [7],
creating the first 3-D scanner for close-range applications that
localizes itself passively from its own images in realtime, at a high
data rate. Systems of this type deliver more accurate results than
depth sensors using coded infrared light (e.g., Kinect, Xtion) by an
order of magnitude [8]. The DLR 3D-Modeler is a low-cost, hand-
held device for accurate geometric and radiometric reconstruction
of close-range objects in realtime that was originally tracked by
robotic manipulators or external infrared light trackers (Fig. 1).

The remainder of this article is as follows: An extended survey
on related 3-D modeling devices, their pose tracking techniques,
and more specifically visual pose tracking is delivered in Section 2.
In Section 3 we present the visual pose tracking algorithms
implemented in the DLR 3D-Modeler. We validate the approach
with experiments in Section 4 and supplementary videos.

2. State of the art

In this section we review 3-D modeling work with regard to
their 3-D data registration concept—provided the system meets
our requirements, i.e., is non-contact and light-weight. We focus
Fig. 1. The portable DLR 3D-Modeler used for cultural heritage preservation.
on mature, commercial systems and only mention research work
in the areas where commercial systems are missing. Lastly, we
elaborate on the real-time variants of visual pose tracking for
online 3-D data registration.

2.1. Data registration by scan alignment

Dense depth sensors that provide 2-D range images (i.e., 2.5-D
images) yield rich surfaces that allow for data registration by 3-D
matching, without the necessity for explicitly estimating sensor
motion. This is not possible, however, in the case of 1-D range
images (e.g., laser stripe triangulation).

3-D matching is computationally demanding because corre-
spondence search is on higher dimensionality compared to
traditional 2-D image registration. Additionally, data overlapping
is required, which has to be detected in advance out of raw depth
data and perhaps some motion priors. For these reasons, scan
alignment is often being performed off-line, in an interactive way.
The estimation involves an optimization in the form of the
minimization of a distance metric between scans (e.g., ICP [9]).
Different metrics and ICP modifications have been proposed for
improved robustness against noise and efficiency [10]. With the
recent advent of general-purpose computing on GPUs, real-time
implementations of ICP have been presented (e.g., sequential
multi-scale ICP on RGB-D data [11]). Other authors opt for
bootstrapping ICP by feature-based visual pose tracking, see Ref.
[12] and Section 2.4. Indeed, Coudrin et al. for the company
Noomeo SAS use visual pose tracking for initial estimation for
subsequent ICP optimization [10]. They are unable to use if for
online data registration because they use densely projected
patterns, which preclude concurrent visual tracking. They use
interleaved stereo frames where the projected pattern is switched
off, so that 3-D modeling and pose tracking are innerly
desynchronized. In the end, half of the images serve 3-D modeling
whereas the other serve as an initialization step for ICP.

2.2. Data registration by external pose tracking

3-D pointcloud registration is an over-determined problem
with as few as 6 degrees of freedom (DoF). It is common practice to
take data subsets to simplify the estimation problem. In addition,
its convergence is subject to a high degree of unpredictability as it
is strictly dependent on the particular surface geometry. We would
benefit from a registration method that is independent of the 3-D
data. It is well known that the sensor motion estimation problem
(6 DoF) yields that same solution, although represented in the
camera reference frame instead of in the object reference frame.

The use of traditional absolute positioning systems attached to
a 3-D sensor is arguably the most straightforward approach for
solving this problem. Due to their robustness and accuracy, the
systems listed below became widespread and are the dominant
(commercial) 3-D modeling devices in close-range:

� External, optical tracking systems are used by Northern Digital
Inc., Metris NV, and Steinbichler Optotechnik GmbH. These
systems detect and track artificial (e.g., infrared-reflecting)
markers attached to the 3-D sensor. They seem convenient to
hand-held operation due to the absence of a rigid contact to the
tracking sensor. On second sight, however, the user feels strongly
limited because of their small tolerance to sensor rotation owing
to visibility constraints. Furthermore, since the spatial distribu-
tion of the markers is limited, the accuracy of orientation
estimation is generally poor.

� Passive arms are used by FARO Technologies Inc., KREON
Technologies, RSI GmbH, Metris NV, and ShapeGrabber Inc.
Passive arms, or even robotic manipulators, are inconvenient for
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manual operation. They are, however, the most accurate option
for pose tracking—subject to their accurate synchronization and
extrinsic calibration w.r.t. the sensor. Price and size are
prohibitive in many applications.

� Electromagnetic tracking systems are chosen by Polhemus Inc.
These devices resemble optical tracking in operation, but now it
is not required for the sensor to maintain a free line of sight to
any marker. Accuracy is dependent on the distance to the
electromagnetic emitter and its signal can be affected by metallic
structures.

� Turntables are used by Cyberware Inc. and Polygon Technology
GmbH. These allow for inexpensive systems, but are limited to
small, light objects and rarely allow for the generation of
complete models.

The above absolute positioning systems have in common that
they represent the bulkiest and most expensive part of the eventual
3-D modeling systems. Furthermore, they limit the system in
mobility and flexibility, and are subject to accurate external
calibration and synchronization. These strong limitations apply
especially in the realm of robotics, where sensors are precisely
meant to promote autonomy without imposing additional con-
straints.

2.3. Data registration by visual pose tracking

Since digital video cameras are already present in most close-
range 3-D modeling systems, the estimation of the sensor motion
from its own video footage is highly desirable to avoid using the
above-mentioned systems. Motion estimation is feasible because,
on a static scene, the camera motion is the only factor that accounts
for varying perspective projection of the 3-D scene onto 2-D
images. In addition, since visual pose tracking is in the camera
frame, an external calibration step of the tracking system w.r.t. the
camera is no longer required. Similarly, estimations become
inherently synchronized with further visual sensing. From this idea
two variants emerged:

� Low-rate visual pose tracking is used by Noomeo SAS in the
OptinumTM scanners as an initialization stage for the alignment
of dense range images.

� High-rate visual pose tracking is achieved by the Handyscan 3D
scanners of Creaform Inc. (also marketed as ZScanner1 by Z
Corporation) and recently by the rc_visard sensor of Roboception
GmbH.

The latter lie close to our goal of high-rate pose tracking from a
video stream. In the case of the Handyscan, however, the necessity
to adhere reflective markers to the objects is inconvenient. In fact,
in a number of applications it is prohibited or impossible. Being
one of the main motivations for using cameras the fact that they
are non-contact, free-floating sensors, i.e., effectively passive to the
scene, it is counterproductive to rely on adhesive markers.
Furthermore, their dependency on active infrared illumination
entails limitations. In 2017, the rc_visard 3-D sensor was
introduced by Roboception GmbH. It features high-rate visual
pose tracking similar to our approach in Ref. [1], leveraging low-
rate depth estimation by SGM stereo vision together with high-rate
feature tracking and IMU data. The sensor is designed to perceive
the environment of a robot in 3-D, which usually is at a lower level
of detail than 3-D modeling of single objects in close-range. To
generate depth data, the sensor uses the SGM stereo vision
algorithm, which delivers precise, relatively low-resolution
(640�480 pixels) data at low-rate (3 Hz) [13].

The DAVID-Laserscanner is a commercially available, very
simple scanner that works without an external tracking system
[14]. The pose of the laser projector is estimated from images of a
static camera that, at the same time, estimates projections depths
by triangulation. The approach is fundamentally limited to a single
view with potential, subsequent scan alignment.

For the remainder we concentrate on research work.
In Refs. [15,16] a self-referenced, hand-held cross-hair laser

stripe profiler was presented. Its stereo camera makes use of fixed
marker points, actively projected onto the scene, and localizes
itself continuously by stereo triangulation w.r.t. these points.
Actively projecting marker points onto a scene is inconvenient and,
furthermore, limits flexibility since the cameras must see the
markers the entire time. In addition, both laser profiler operation
and texturing are influenced by active illumination. The algorithm
seems to lack robustness, and efficiency considerations are not
reported. Similarly, in Ref. [17] a pattern projector is used for dense
multi-view stereo achieving high reconstruction precision of
untextured models. On this occasion, the projector is rigidly
attached to a stereo camera to achieve dense depth images of
untextured surfaces from correlation-based stereo including a
joint, multi-view optimization at low-rate. By algorithm design
choice, however, the projector precludes texturing and field
operation in sunlight.

Passive visual pose tracking approaches for 3-D modeling are
reported next.

The approach in Ref. [18] uses projective reconstruction jointly
with posterior self-calibration to estimate metric—yet unscaled—
motion in uncalibrated image sequences. After that, bundle
adjustment is used to refine the results. A similar approach in
Ref. [19] makes partial use of a previous camera calibration for
metric reconstruction. The approach is intended for dense stereo
vision applications and is not real-time. Accuracy analyses are
missing even though non-stochastic approaches to self-calibration
compromise accuracy.

It is worth mentioning the instant Scene Modeler iSM device by
MDA Ltd., Space Missions in Ref. [20]. The system produces 3-D
models from hand-held stereo vision by the registration of views
with scaled poses from visual pose tracking. In contrast with the
objectives in this work, the system aims at mid-range operation
using dense stereo vision. Stereo is computationally expensive and,
therefore, frame-rate is low, which in turn makes pose tracking
under unknown motion harder and essentially different from a
high-rate variant. The problem is solved using SIFT features—which
again are computationally expensive—as well as lower resolution
footage.

Strobl et al. presented in Ref. [1] the first hand-held 3-D
modeling device for close-range applications that localizes itself
passively from its own images in realtime, at a high data rate. In
that work, pose tracking was optionally supported by an on-board
IMU for more efficient feature tracking. In Ref. [4] the authors
present improved feature matching by Active Matching, see Ref.
[21], that achieves remarkable tracking resilience without the need
for inertial readings.

Finally, we mention a development by Newcombe and Davison
on 3-D modeling from dense images by concurrent simultaneous
localization and mapping (SLAM), so-termed DSLAM [22,23].
DSLAM aims at considering every single pixel of the video stream
for structure estimation and interleaved pose tracking, maximizing
information gathering and overall performance. It is hard to
explicitly do without distinct features (cf. Section 2.4-I.) as features
are, by definition, invariant under several aspects and can be better
discriminated. Consequently, the method is limited to confined
viewpoint areas and constant lighting conditions as it assumes
brightness constancy (surface smoothing priors are introduced to
partly relieve of this limitation). Still, viewpoint limitation is
certainly unsuitable for full-body 3-D modeling. The current
implementation is computationally very costly, leveraging on
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GP-GPUs for real-time performance. Despite all that, DSLAM
already reached improved performance concerning resilience to
erratic camera motion, pose tracking accuracy (albeit unproven in
experiments) and, most importantly, concerning its low hardware
requirements, namely a single camera and a commodity computer
featuring a GPU.

2.4. Visual pose tracking in realtime

Visual pose tracking is a hard problem because, in geometric
terms, images merely convey 2-D information that originally stems
from a higher dimensional space (e.g., 6 DoF of camera pose, full 3-
D geometry of the scene, and intrinsic camera geometry). It is often
just one among the latter parameters that we are interested in, yet
still have to infer them all from 2-D images. This dimensionality
reduction renders the problem often unsolvable using a single
image. It is by increasing the dimensionality of the gathered data
by more measurements that we can draw a distinction between
the original, unknown parameters themselves, and infer their
respective values. In doing so, we regularly exploit prior knowledge
(e.g., on the rigidity of the scene, on Euclidean geometry, and on
perspective projection).

In particular, there is a prevalent ambiguity in scene structure
and camera pose estimation: it is impossible to discriminate
between object size and camera range to that object. It is the
chicken-and-egg problem that characterizes research in SLAM:
motion estimation (localization) is straightforward on known 3-D
geometry, whereas 3-D geometry estimation (mapping) in turn
asks for known camera motion. As previously mentioned, tackling
the problem of SLAM is solved by integrating data in time, when
some parameters vary (e.g., camera motion, i.e., apparent
perspective distortion) to differentiate them from others (e.g.,
static scene geometry).

To make matters worse, many applications require estimations
in realtime (e.g., at 30 Hz). On the one hand, it is important to
realize that less applications require a complete optimized motion
history in realtime, but only a local solution—the full history can be
delivered delayed in time. On the other hand, parts of the solution
are really being required in realtime and, therefore, efficient
methods are in demand. Temporal priors (e.g., on the dynamics of
the system) can be used for improved performance. Next we
address three key aspects for designing real-time visual pose
tracking algorithms:

� The representation of the structure of the scene.
� The storage of the associative visual measurements.
� Approximate solutions for real-time performance.

I. The representation of the structure of the scene: Feature-Based
vs. Dense, Direct Tracking. A picture might well be worth a thousand
words, but not all visual information is created equal. Depending
on the task at hand, some image regions convey more information
than others [24–26]. Visual information can be reduced to regions
of interest (points or corners, edges) that still allow for highly
accurate inference. These features represent the Merkwelt neces-
sary for pose tracking. As most of these regions of interest can be
described in very concise, parametric ways, methods following this
paradigm ought to be more efficient than dense methods, which
compute pixelwise directly from dense, raw image data.4 Further-
more, these regions are more invariant to viewpoint location (e.g.,
light reflection) and varying lighting conditions, which allows wide
baseline matching for increased accuracy. Lastly, estimation on
4 This conventional view is much-debated since the introduction of GP-GPUs.
these separate regions is largely uncorrelated, i.e., statistical
independence holds (unlike when using dense methods) and,
therefore, optimal estimation using maximum likelihood methods
is still justified. Admittedly, the feature-based estimation paradigm
entails limitations on its own, like the feature selection, scene
understanding, and data association issues. In general, feature-
based methods are being preferred when designing visual pose
tracking algorithms.

Feature-based methods utilize interest operators to detect
salient/distinct regions of the images, i.e., fiducial points or
features at repeatable, stable locations despite change of
viewpoint. Salient regions arise either from texture or from
geometry (e.g., object corners). In general, features from (planar)
texture are preferred since corner projections are not invariant to
viewpoint location due to self-occlusion. Well-known detectors
are: Harris–Stephens [27] or Shi–Tomasi [28], the Laplacians LoG,
DoG or DoB [29], MSER [30], SUSAN [31], SURF [32], and FAST [33].
Additionally, an operator for invariant description of these features
is needed to be able to discriminate features against each other.
Well-known descriptors are: planar, oriented patches [34], SIFT
[35], GLOH [36], HOG [37], SURF [32], CenSurE [38], BRIEF [39],
BRISK [40], ORB [41], FREAK [42], and KAZE [43]. In the case of
repetitive patterns, context-aware, dense descriptors would be
beneficial; this has been recently achieved leveraging convnets in
the context of deep learning [44]. We speak of feature tracking
when these descriptions are being matched in time, either starting
from the anonymous output of a feature detector or based on
camera/feature motion priors. In the former case, a current
description is compared with a database of past descriptions,
whereas in the latter case the current description is compared
with a subset of that database (potentially just one description)
within a reduced area of the image [45,46,4]. Of course, the
matching method is descriptor-specific (e.g., normalized cross-
correlation for planar patches or Hamming distances for BRIEF
descriptors).

Setting an optimal framework for detection, description and
matching of features is subject to trade-offs: a general descriptor is
expected so that it is invariant to change of viewpoint or
illuminance; at the same time, feature descriptions have to be
distinctive and, therefore, specific to particular features.

Dense methods potentially are more accurate and locally robust
than feature-based methods because their representations (whole
images) are more informative than just features. They are,
however, less invariant to change of viewpoint or illuminance,
and therefore are being complemented with simplifying assump-
tions like brightness constancy [23,47,12]. In any case, the
implementation of dense methods on current hardware is
demanding both on computational and electric power, which
keeps them away from cheaper, mobile implementations.

II. The storage of the associative visual measurements: visual
odometry vs. visual SLAM. Both visual odometry (VO) by dead
reckoning and visual SLAM (V-SLAM) incrementally estimate
camera motion from video streams in realtime. For that purpose
VO exclusively uses the last subsequent images—potentially more
than two,5 but then critically the total number of images
considered is limited. If an image gets outside this scope, its
associated information will not be explicitly used for motion
estimation anymore [48–50]. On the other hand, V-SLAM may
accumulate all information from past images, representing it either
in the form of a graph of camera motions and measurements or in
the form of a map, continuously updating them using present
5 Using two frames for sequential motion estimation is subject to scale drift. It is
by using at least three frames of matched features that estimations anchor in the
original scale.



Fig. 2. Graph on the measurements used for pose estimation at C4 by SLAM (a) and
VO (b).
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visual information (Fig. 2). VO does not maintain these types of
representations of the environment.

Considering older information is convenient in two respects:
First, the relative pose estimation accuracy is essentially
improved. Since the graph or the map relates to older camera
stations, relative pose estimations w.r.t. that older stations will
be more accurate than performing repeated, relative pose
estimation over unrelated frames. In addition, virtual parallax
is bigger, therefore relative pose estimation more accurate on
the assumption of constant image noise level. Second, the very
existence of a map or a graph makes it possible to find older
features again (loop closing), based either on their relative
locations w.r.t. the camera or merely on visual descriptions; this
is critical to further increase pose estimation accuracy. Indeed, it
is only through closing loops that consistent graphs and drift-
free camera motion estimation can be achieved in the presence
of noise.6 A downside to maintaining a map also exists: it is
computationally expensive, as complex calculations are involved
to obtain statistically optimal estimations. In addition, consider-
able amount of memory is used.

When performing VO the data quantity is limited to recent
camera frames, which renders the estimation problem tractable.
Still, some tricks are used to boost performance and ensure
robustness against outliers. For instance, it is common practice to
compute minimal relative motion solutions from either 3 [51–54],
5 [55], 6, 7 or 8 [56] feature points (depending on our knowledge of
the structure and the camera), which are rapidly computed in
closed-form, to obtain ballpark motion estimates. Coarser resolu-
tion can be also used. After that, the best solution may bootstrap a
least squares optimizer minimizing reprojection errors (iterative
refinement), potentially using more than two images (sliding
window optimization yields optimal motion estimation [48,57,58]).
Scene structure is usually unknown, and consequently feature
matching may be erroneous. In order to detect outliers, the latter
minimal solutions to the relative motion problem are often within
a geometric hypothesize-and-test framework like RANSAC
[59,60,50]. The final least squares solution may also concern a
robustified residual function.

From an operational point of view, the essential difference
between VO and V-SLAM can be summarized as follows: Whereas
VO estimates camera motion from feature correspondences
between selected images, V-SLAM estimates camera motion from
a conceptual matching between current image features and a
representation of the accumulated system state, which in turn
stems from past feature tracking. It is generally acknowledged that
hybrid solutions, running both processes potentially at different
rates, are most effective as they complement one another [61–65].

III. Approximate solutions for real-time performance: the back-end
of SLAM. The SLAM problem can be divided in two tasks: front-end
and back-end. The motivation for this division is the unfeasibility of
achieving overall optimal estimation in realtime. Front-end
6 VO systems may leverage IMU or GPS devices fusing data to overcome this
problem.
calculations deal with image processing and the arrangement of
input data, and should run in realtime. Note that the arrangement
of data includes the solution to the data association problem and
that local pose tracking (or VO) in realtime may be of necessity to
that end. On the other hand, back-end calculations concern the
consistent representation of the data arranged by the front-end in
the form of a graph of associated measurements or of a map. As the
map grows and becomes interconnected, the complexity of this
sub-task naturally grows—eventually becoming the bottleneck to
optimally solving SLAM. Consequently, back-end methods domi-
nated research on SLAM for the last decade, with methods that
compute approximate solutions in realtime being preferred.
Recently, however, a pertinent observation led to a different type
of algorithms delivering far more accurate results: “Global
geometric representation is rarely being required in realtime” [61].
More accurate estimations can be readily delivered at a lower rate,
paving the way to a plethora of methods trading off efficiency
against accuracy.

As a consequence of V-SLAM being preceded by SLAM, initial
research adapted existing techniques (mainly using 2-D lidars)
to visual input data, without actually realizing the two main
challenges of V-SLAM: First, digital cameras feature a narrower
field of view than 2-D scanners, which makes triangulation
harder and the time window for feature tracking shorter; many
noisy local relative estimations will now have to concatenate for
dead reckoning motion estimation. Second, visual data spreads
now in 3-D, stacking up larger amounts of data than former
SLAM methods in 2-D. In fact, the first, best-known approach to
V-SLAM by Davison in Ref. [66] used an Extended Kalman Filter
(EKF), which delivered good, fast results if the map size was kept
small concerning both, the number of features and the overall
number of measurements. Early adopters rapidly noted this
limitation, along with inconsistency in the estimations due to
linearization errors and potential inadequacy of the Gaussian
error models [67]. The preferred measure to ameliorate effects
has been the decomposition of maps into submaps that become
strictly uncorrelated from one another [68–70], which is at the
cost of map accuracy.

The second major method for back-end estimation in V-SLAM is
the particle filter (PF) or sequential Monte Carlo method [71]. A PF
aims at more accurate and consistent estimations by representing
estimation distributions as well as model noise by sets of particles.
The size of the map that is manageable is, however, still limited as
the number of required particles grows exponentially with the
number of features and their dimensions. A variant of the PF was
proposed called Rao-Blackwellized PF (e.g., FastSLAM) [72,73]. The
authors observe that feature measurements are uncorrelated if
they are conditioned to a particular path estimate of the camera.
Consequently, feature maps can be efficiently computed using
sparse EKFs associated to their respective pose particles. The
principal drawback of PFs and its variants is the resampling step,
which is introduced to eliminate improbable particles, keeping
computational costs low; regrettably, the resampling step causes
the lost of essential, small correlation densities (depletion
problem) and consequently a loss of accuracy as well as eventual
inconsistency.

As mentioned before, the two main drawbacks of exclusively
using filtering methods (EKF, PF) for the back-end of V-SLAM are
both their computational cost when dealing with a large number
of features (map size) as well as their limited potential accuracy
and inconsistency. This limitation is inherent to filtering
approaches for the following reason: Filtering is about main-
taining a compact state-space estimation of currently useful
parameters by marginalizing out past estimations (e.g., past
camera locations) so that less computations and memory are
required. In doing so, artificial correlations between parameters



58 K.H. Strobl et al. / Computers in Industry 99 (2018) 53–68
(e.g., estimated feature positions) have to be produced since their
current position estimations depend on common past camera
locations that now have been removed from memory. Note that
these correlations were non-existent at the moment of measure-
ment, see Fig. 3(b). Even though these correlations can be rapidly
processed if the number of features is low, the complexity of the
algebra of non-sparse matrices (full of correlations) is cubic in the
number of features, which rapidly renders filtering approaches
ineffective since cameras gather many more features than 2-D
scanners. This could be avoided if the original measuring
locations were still being considered, leading to a sparse graph
of constraints. It is precisely the algebra of sparse matrices that is
fast to solve after all.

From this, a different paradigm for the back-end of V-SLAM
arose: graph-based nonlinear optimization in near-realtime. The
authors of the seminal work PTAM in Ref. [61] utilize the well-
known optimal algorithm for concurrent estimation of scene
structure and camera motion called bundle adjustment (BA) [74].
The basic idea was first formulated by Lu and Milios in Ref. [75], by
which all motion data and measurements can be represented as a
stochastic graph of nodes and edges (in V-SLAM: camera and
feature locations and measurements, respectively). The goal is to
find an optimal spatial configuration of the nodes that agrees with
the constraints provided by the edges, by means of probabilistic
inference (e.g., a nonlinear optimization). BA is known to be
unsuitable for real-time estimation. However, the novel nature of
off-the-shelf hardware featuring multiple cores for parallel
computing gives the opportunity to perform BA in a real-time
context: By computationally separating front-end and back-end
calculations, BA can readily perform at lower rate without affecting
local tracking performance at the front-end. It turns out that BA is
less affected by both of the limitations of the aforementioned
filtering methods. Still, its complexity linearly increases with the
number of measurements and is cubic with the number of frames,
which can quickly become prohibitive. It has been shown that, in
the context of real-time SLAM, gathering many features per frame
is preferable to processing many frames with less features, close in
time [76]. Therefore, the authors proposed a variant of BA called
keyframe-based BA (kBA) [61,58], which selects, in a heuristic way,
the most informative frames to consider, see Fig. 3(c). If the
number of keyframes is low, its complexity is effectively quadratic
in the number of frames.

Regrettably, static, regularly-spaced keyframes do not sort well
with the heterogeneous nature of V-SLAM in mobile systems. In
the spirit of kBA, more flexible approaches arose that focus
resources on different parts of the state space. Since there are many
more features than frames, pose-to-pose graph-based optimiza-
tions like FrameSLAM perform well in large-scale by marginalizing
out feature locations [62,77]. Marginalization may come at a cost of
lower estimation accuracy if the optimized poses deviate too much
from their initial estimations where marginalization took place. By
formulating the problem in terms of relative transformations, the
authors alleviate these effects. Another successful approach, called
RSLAM, avoids computation by sticking with a topological
representation of the localization problem [78], leaving metric
Fig. 3. Filtering approaches (b), motivated by the Markov property, marginalize out
past measurements (a) producing artificial correlations; keyframe-based
approaches (c) avoid doing so discarding frames with lower information content. 
reconstruction aside. By using a continuous, relative representa-
tion of the camera trajectory, BA computation becomes largely
sparse (see RBA in Ref. [79]), which is especially efficient when
closing large loops. In general, V-SLAM for mobile systems is a
broad area where engineers ought to set up a task-oriented, hybrid
algorithm combining different methods featuring local metric
accuracy in realtime and robust loop closing on a topological
representation [65,80,81]. It is worth mentioning that filtering
methods are not out of the race as they are believed to have a niche
in systems with low resources and smaller map size. They can also
take part in hybrid algorithms during Euclidean feature initializa-
tion or local tracking within the front-end, where by the way their
explicit covariances can be of use to improved feature matching as
in Ref. [21].

3. Visual pose tracking with the DLR 3D-Modeler

In this section we present novel methods required for visual
pose tracking of the DLR 3D-Modeler from its own images, in
realtime. By doing this, concurrent 3-D data acquisition and
registration is possible without the need for external reference
systems, which implies a remarkable improvement in flexibility
and cost of the system. Taking the multisensory capabilities of the
DLR 3D-Modeler into account, the methods have been specially
tailored not to actively affect the scene nor, by implication, other 3-
D sensors, cf. Fig. 4. The computational complexity of the
algorithms has to be especially low for unrestricted concurrent
operation of the other 3-D sensors on the same hardware.

First, in Section 3.1 we motivate the design of our light-weight
pose tracking system as in the diagram in Fig. 5. After that, the
auxiliary method of feature-based stereo vision is presented in
Section 3.2, which increases the efficiency and accuracy of the
overall approach and is separate from dense SGM matching (which
is still used as a depth sensor, at low rate). Third, we address the
front-end of our SLAM system, starting with the efficient tracking
of features in real-time in Section 3.3 and the local motion
estimation in Section 3.4. Then, appearance-based relocalization is
presented in Section 3.5, which enables loop closing as explained
in Section 3.6. Last, real-time surface reconstruction out of depth
data in the global reference frame, by a textured triangle mesh, will
be explained in Section 3.7. Note that the methods in Sections 3.3,
3.4 (in part) and 3.6 have been already published and, therefore,
will only be summarized.

3.1. Motivation

Three major requirements have to be satisfied to enable a
mobile 3-D modeling device by visual pose tracking as introduced
in Section 1: (1) real-time capability for the methods to supply
Fig. 4. The DLR 3D-Modeler and its components.



Fig. 5. Block diagram for visual pose tracking using four processes. The feature sets database serves them storing data.
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motion estimation, (2) high positioning accuracy as required for 3-D
modeling (compared to robotic manipulators or tracking systems
plus their corresponding extrinsic calibrations),7 and (3) time-
invariant estimations, i.e., repeated scans of the same area must
show constant (high) accuracy irrespective of the scanning time.

In the light of these requirements, three major consequences
follow: First, real-time capability implies both, that motion
estimations should be regularly performed within 40 ms (25 Hz)
and that this should hold all the time, i.e., irrespective of the
motion history; we support this requirement on efficiency by the
choice of a feature-based approach on naturally salient, local
regions of the images—refer to Section 2.4-I. Furthermore, the
requirement on constant efficiency irrespective of motion history
merges with the requirement on time-invariant precision, yielding
the choice of a non-filtering approach for sequential pose tracking
as explained in Section 2.4-III. Stochastic filters use system
knowledge (e.g., image processing noise or uncertainty in the
motion model) to increasing overall precision, which is important.
We choose, however, to circumvent this option by using highly
accurate 3-D position estimation of features on the scanning area
by feature-based stereo vision, which enables an accurate non-
filtering approach (dense 3-D modeling is left apart for concurrent
operation of the other sensors). The hereby achieved efficiency
sorts well with the present paradigm of multithreaded, efficient
computing.
7 Typical accuracies for robotic manipulators are su< 0.1� and sp� 0.5 mm; for
IR tracking systems su� 0.25� and sp> 0.5 mm. The accuracy of the IR tracking
system in orientation depends on the constellation of markers and is very limited.
The above rationale is depicted in Fig. 6 and leads to the
development of a feature-based, non-filtering pose tracking
algorithm that requires occasional stereo initialization of natural
features and monocular tracking of these features over time.
Monocular tracking yields the 2-D motion of salient features in the
image stream. Since stereo vision already provides the depth of
these features, their projected 2-D motion is now solely dependent
on perspective projection, i.e., on the 6-DoF camera motion. This is
estimated using an especially efficient solution to the relative pose
estimation problem: the Visual-GPS method first presented in Ref.
[82], refer to Figs. 7 and 12. Lastly, feature initialization, loop
closing, and global graph optimization (Section 3.6) are governed
by a data management scheme addressed in Section 3.4.2, cf. Fig. 5.

Note our accordance with the latest graph-based optimization
paradigm in SLAM of reducing DoF in high-rate pose tracking for
better performance, see Section 2.4-III. For instance, PTAM reduced
the DoF of the general SLAM problem from 6+3�M (M is the number
of features) to 6 in PTAM (for local pose tracking), estimating
further DoF (mapping) and the global posegraph in a concurrent
Fig. 6. Requirements (rectangles), implications (arrows), and consequences
(rounded rectangles).



Fig. 8. A KLT feature tracker with big search area due to large expected
displacements. Two levels of the pyramidal representation of the image are shown.

Fig. 7. Feature-based stereo vision and monocular tracking serve Visual-GPS, which
in turn yields pose estimations.

Fig. 9. Feature displacement in two consecutive images. The feature moves from
{411, 309} to {447, 291} a distance of 40.2 pixels within 40 ms. 37 pixels are due to
rotation, whereas 17 pixels stem from translation; some pixels cancel out.
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thread, at lower rate, from selected keyframes. In our case mapping
also relies on keyframes, but substitutes repeated BA by accurate,
feature-based stereo vision. The latter is computationally cheaper
and contributes absolute scaling—a prerequisite in 3-D modeling.
Of course, in the event of loop closures, global structure will still be
optimized by graph-based nonlinear optimization techniques, see
Section 3.6.

3.2. Accurate structure estimation by stereo vision

The above-mentioned accurate estimation of the sparse scene
structure is a grounding pillar of our approach, as it increases both
efficiency and the accuracy of local pose tracking. In addition, it
anchors the metric scale as required for 3-D modeling, in a passive
way (e.g., without the inclusion of artificial landmarks in the scene).

Conventional, sparse feature-based stereo matching relies on
computationally expensive Harris affine and DoG feature detectors
that deal with affine transformations [29]. In our case of parallel
cameras on a short baseline, however, affine distortion can be
neglected, which leads to the same assumptions of Shi and Tomasi
[28]: Good features to track are extracted from the main camera
image. Next, a larger number of features are extracted from the
second image. Correspondence search is restricted to a few
locations within the epipolar band, which is also limited in disparity
to obtain useful features on the near scene. Gradient descent
optimizationyields sub-pixel accurate feature matching; the match
with the smallest difference in gradient patches is chosen. Feature
triangulation is then performed by linear least squares and
subsequently tested for consistency. The expected accuracy levels
by stereo vision in our application are detailed in Ref. [1].

Note that it is not a requirement that this feature initialization
process be in realtime; we opt for a separate computing thread
while concurrently tracking already initialized features in the
former thread (in 2-D, monocular) so that local pose tracking is not
interrupted. Of course, at the very first initialization step no
features are available and 6-DoF pose cannot be delivered in
realtime. Here the potential features are monocularly tracked until
their stereo correspondences are found and triangulated, which
subsequently (seamlessly) bootstraps the regular feature and pose
tracking algorithm presented next.

3.3. Efficient monocular tracking of features

Our pose tracking algorithm basically compares an accurately
estimated set of 3-D features (result of last section) with their
current monocular projections—with due regard to correct feature-
to-projection correspondences. In order to correctly establish
correspondences, two approaches are possible: global feature
tracking searches for their appearance (e.g., a 2-D descriptor patch)
within the whole image, whereas local, sequential feature tracking
looks for them locally, in particular spots of the image after
tracking them ever since their 3-D stereo initialization. In this
section we opt for the latter option, which is on the premise that
features slightly move in successive images, which holds if the
camera motion is moderate.

Sequential feature tracking is a predictive feature search
method that exploits probabilistic priors on their expected image
projections in order to know where to focus processing resources
in each image. These prior distributions ultimately depend on the
3-D location of the features and on the camera motion. Camera
motion can be estimated from past measurements and further
predicted (e.g., using a motion model). 3-D structure, camera past
motion estimation as well as its present motion model may
however differ from reality to some extent, translating into “gated”
image regions where each feature is expected to lie according to
priors, see Fig. 8. The feature tracker seeks feature appearance
matches within these bounded regions, hereby delivering tempo-
ral image displacements of features—keeping track of correct data
association.

Close-range feature tracking is arguably twice as hard as its
long-range counterpart. At close range, camera translation and
rotation between subsequent camera frames cause feature
projection displacements of similar size; at long range, however,
the feature projection displacements due to camera translation can
be neglected, and only the rotational ones have to be considered
(these are independent of the feature distance to the camera).
Worst-case interframe camera motions (at 25 Hz) amount to up to
3� and 2 cm (75�/s and 0.5 m/s speeds). At close range, feature
displacements may add up to long distances (e.g., search areas of
100 � 100 pixels) that are beyond the real-time capabilities of
standard feature trackers.

In Refs. [1,3] we presented an efficient feature tracking
algorithm based on the KLT feature tracker [83]. The original
implementation was extended in many ways, regarding the
efficient processing of local image regions, coarse-to-fine feature
matching by a pyramidal implementation, and the use of the latest
instructions of modern processors. In addition, several optical flow
prediction schemes were proposed, implemented, and evaluated.
The top-performing method concerns the use of the IMU attached
to the DLR 3D-Modeler (accurate calibration and synchronization
are needed [84,85]). In detail, the IMU dictates the prediction of the
rotational motion of the camera between camera frames, whereas
translational motion is extrapolated from the last state estima-
tions, see Fig. 9. The motivation for this approach is the fact that



Fig. 10. Traditional methods (b) take priors on feature projections once, where
image projections are most uncertain. Active Matching (a) recursively updates the
state after single feature matching so that feature projection priors can be more
accurately estimated before a matching attempt starts.
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translation extrapolation is more accurate than the rotational one
due to the mass of the hand-held 3-D modeling device: It is easier
for the user to rotate the device with a facile twist movement than
to linearly accelerate it. This contribution received the best paper
finalist award at the IROS conference in 2009.

In Ref. [4] we presented a more advanced feature tracking
algorithm that coped with bigger search areas and, consequently,
allowed successful feature tracking in realtime without the need for
an IMU. The method relies on the Active Matching (AM) paradigm,
which follows from the crucial observation that feature matching
does not necessarily have to be a monolithic 2-D process, but might
as well incur higher level estimations during operation, see Refs.
[2,21,46] and Fig. 10. In short, AM is putting feature matching into
the loop of SLAM, performing feature by feature matching search
while updating the system state as well as predicting measure-
ment projections after every single feature matching process. The
method yields a built-in global consensus for data association, less
computation through smaller image processing areas as well as
guided search, and, consequently, more accurate estimations.

In detail, we extended the traditional AM method by leveraging
the accurate knowledge of the scene structure by feature-based
stereo vision explained in Section 3.2. This led to a non-stochastic
formulation of AM that is more efficient than the original one. The
novel approach allows a very accurate prior rotation estimation
from a minimal set of 2 features, see Fig. 11.

3.4. Real-time pose tracking from features flow

Real-time pose tracking of the DLR 3D-Modeler is required both,
for online 3-D mesh generation and to support efficient feature
tracking in the first place. Real-time estimations can be eventually
refined in the case of loop features, refer to Section 3.6. The inputs
for real-time pose tracking are the feature tracking results from the
last section, together with their accurate 3-D geometry as
Fig.11. Top: Pictorial schematic on image projections; two active features p and q as
well as the subsequent estimation steps on a further feature v are detailed. After
exhaustive search of p and q, v and the rest of features can be readily
tracked in a standard way. Bottom: Evolution of state estimation in time
regarding the image processing stages. 
explained in Section 3.2. Assuming a rigid set of 3-D points and
a static camera geometry, the feature projections flow is solely
caused by varying perspective projection, i.e., by varying pose of
the camera w.r.t. the scene. In this context, pose tracking basically
works out valid camera poses that match the measured feature
displacements (optical flow), see Fig. 12.

3.4.1. The robust visual-GPS
Visual-GPS (V-GPS) is an algorithm that solves the relative

orientation problem iteratively, but efficiently [82]. After the
determination of the orientation, the translation can be also
estimated. The method assumes a set of known 3-D points 0pi ; 8 i 2
N1; i � M related to the initial camera reference frame S0, which
we obtain by feature-based stereo vision as in Section 3.2. The
exterior orientation problem for the following monocular camera
pose S T w.r.t. the reference set of points is now equivalent to the
original relative pose estimation problem—provided the corre-
spondences between the points pi and their projections are known.

In order to solve the exterior orientation problem of ST w.r.t. the
set of points 0pi , an additional, tentative 3-D model T p̂i is generated
at the current frame ST using both, the current 2-D projections of pi

as well as approximated ranges to that points (from preceding
estimations). The problem now reduces to solving the absolute
orientation problem between these two 3-D sets of points 0pi and

T p̂ i, which is an approximate, orthogonal Procrustean problem that
can be solved in closed form using the singular value decomposi-
tion (SVD). As relative translation and rotation are estimated
separately, we first set the origins of the sets to their respective
centers of mass without modifying their orientations, which yields

0p
0
i and T p̂ i

0. The relative rotation between the sets corresponds to
the wanted relative rotation between camera reference frames S0
and S T and can be optimized (*) by maximizing the trace of the
inertia matrix of the matched set:

TR
� ¼ arg max

R
traceðTRt

TMÞ; M ¼
XM

i¼1
T p̂i

0
0p

0
i 0t: ð1Þ

Let (U, s, V) be the SVD of M, that is UsVt = M, then: TR
� ¼ UVt

and the optimal translation Tt
� is found by subtracting the center of

mass:

Tt
� ¼ 1

M

XM

i¼1
T p̂ i 	 TR

� 1
M

XM

i¼1
0pi : ð2Þ

Since the tentative 3-D pointset T p̂i may differ from the actual

0pi , the final solution is found iteratively, by concurrently
optimizing the ranges of the tentative model. The algorithm
normally terminates whenever sufficient consistency with the
original set of points 0pi is achieved or, as we choose, by a threshold
on absolute orientation correction. The method is sequentially
applied to future monocular frames with a sufficient amount of
tracked points pi, see Section 3.4.2.

Outliers may occur, either in the generation of the 3-D set of
points or in their 2-D monocular tracking. In order to cancel them,
we make novel use of a redescending M-estimator on the residual
Euclidean distances between matched 3-D points. We use the
biweight function of Tukey because of its continuous derivatives
and its handy weights. The contribution of each point to the inertia
Fig. 12. Structure, camera geometry, and camera motion determine optical flow.
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matrix of the matched set of points is now weighted with:

wi / ð1 	 Ri�RiÞ2 if jRij < 1
wi ¼ 0 if jRij 
 1

ð3Þ

where Ri ¼ ðTR 0pi 	 T p̂ iÞ=s is the estimated normalized matching
residual for object point i before performing the SVD, and s is the
scale of the inlier noise. The robustified inertia matrix

MR ¼
XM

i¼1

wi T p̂i
0
0p

0t
i ð4Þ

substitutes M in Eq. (1). This robustified method (RVGPS) does not
only neutralize the effects of outliers, but also signalizes them to be
removed from memory to prevent further damage.

3.4.2. Local pose tracking using RVGPS
Following the concept in Section 3.1, for reasons of efficiency we

adopt a frugal policy when taking advantage of stereo vision.
Consequently, separate sets of 3-D points are used to represent the
3-D structure used for localization. A particular set is triangulated
once and then used for local, monocular pose tracking thereafter,
until a new set of points takes over. It is only when closing loops
that we reutilize past sets of points, see Section 3.6. Our approach
is similar to VO in Ref. [57], whereas we use AM instead of RANSAC,
V-GPS instead of the 3-point algorithm, and more precise feature
matching.

Fig. 13 depicts the standard operation of local pose tracking.
Note that during handover frames two sets of points are tracked in
parallel in order to accumulate the feature displacement informa-
tion that is needed for successful feature tracking on the most
recent set.

Of course, individual feature losses will happen, and features
regularly get out of sight and void areas take their place. We treat
short- and long-term losses separately: Short-term losses are
features that are lost by tracking but maintain several fellow points
of the 3-D set in track so that camera pose can still be estimated.
Monocular tracking will repeatedly try to recover these features
with the aid of the current pose—unless RVGPS marked them as
invalid. Long-term losses are features that are deliberately
abandoned because their associated 3-D set of points becomes
inadequate to the current vantage point. In this event, either an
existing, inactive set of features is retrieved, or a new set of 3-D
features is generated.

3.4.3. Local pose tracking using kBA
While RVGPS provides a robust relative motion estimation in

realtime, it still seems advisable to perform optimal motion and
structure estimation by minimization of reprojection errors (i.e., BA)
at handover stereo keyframes to increase dead reckoning accuracy.
This is especially so in the case of 3-D modeling where, as a general
rule, new areas are explored and loop-closing events are rare. In
Fig. 13. Local pose tracking: Stereo vision is used in keyframes #1 and #2;
monocular tracking elsewhere. 
Section 3.6 we shall present a more complete optimization in the
event of final loop closing (e.g., after scanning all around an object).

In Ref. [5] we introduced a hybrid kBA formulation in the
context of our alternate monocular/stereo pose tracking scheme
presented in the last section. The implementation is based on the
state-of-the-art approaches in Refs. [61,58,76] but it is extended to
use both stereo and monocular frames, which serves to anchor
global scale. Since in our approach all 3-D features are measured
locally, the global optimization of the covered dead reckoning
motion can be exactly decomposed into independent sub-
optimizations concerning exclusively one reference frame along
with its feature set, which is especially efficient—we achieve 2 to
5 ms with a regular CPU, which is roughly twice as long as RVGPS.

In a nutshell, the novel formulation minimizes the sum of
squared reprojection residuals as follows:

V̂$ ¼ arg min
XM

i¼1

jjl ~mi 	 lm̂iðlp̂ iÞjj2
�

þjjr ~mi 	 rm̂ iðlTr; lp̂iÞjj2

þjjf ~mi 	 f m̂ iðlT̂ f ; lp̂ iÞjj2Þ ð5Þ

where the optimized ($) parameters V$ include the 3-D
coordinates lpi ¼ ½lxi; lyi; lzi� t; 8i 2 N1; i � M of the current set of
M features w.r.t. the left camera at the current keyframe, as well as
the inter-keyframe transformation lT

f of the left camera frame
between the current and the upcoming keyframe. The residual is
composed of estimated ð̂ Þ reprojections lm̂ i ¼ projðlp̂ iÞ and

rm̂ i ¼ projðrT l
lp̂ iÞ onto the left and the right frames at the initial

keyframe, respectively, as well as their last, final feature

projections f m̂ i ¼ projðf T̂ l
lp̂ iÞ at the left frame, see Fig. 14. These

estimations are subtracted from the actual measurements l
~mi, r ~m i

and f
~m i. The transformation rT

l stems from the epipolar geometry
of the stereo camera by camera calibration [86].

The hybrid optimization utilizes the nonlinear least squares
optimization function dlevmar_der() [87], which implements
the Levenberg–Marquardt method. We provide all analytic
Jacobians for improved performance that include perspective
projection, distortion, and rigid-body transformations with
differential perturbations of Euler angles for the unknown inter-
keyframe transformation lT

f , see Ref. [5]. In addition, the residual
function has been robustified.

This method yields sub-millimetric corrections w.r.t. RVGPS for
every keyframe or feature set. On balance, it seems that this
optimal method does not substantially improve the already very
accurate dead reckoning motion estimation.

3.5. Appearance-based relocalization

Whenever saccadic motion precludes sequential, seamless
tracking, the user browses distant background beyond the reach
Fig. 14. Local, hybrid bundle adjustment on a particular feature set.



Fig. 16. Skeleton of stereo keyframes 1.. N when browsing around an object. During
monocular tracking of feature set #N, feature set #1 can be retrieved at images

l;rI
Nþ1. Depending on the distance traveled, loop closing occurs either by

monocular tracking of KLT features (Section 3.3) or with the help of stereo
SURF features (Section 3.5).
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of stereo vision, or the cameras return to a known area that has not
been tracked for a long time (loop closing), pose tracking accuracy
gets too low for consistent feature tracking to be warranted
anymore. Due to the richness of visual data, however, cameras are
ideally suited for recognizing similarity to known features;
appearance-based relocalization can then help to resume scanning
on the original reference frame.

As mentioned in Section 2.4-I, there exist operators, called
descriptors, that concern about the visual appearance of features,
in order to be distinctive between features and invariant to
viewpoint pose. In this work, we choose the performant SURF
features in its original implementation [32], on stereo images. By
using stereo images, the 3-D position of the features w.r.t. the
camera leftT SURF can be triangulated at the same frame during
stereo initialization of the KLT feature set, where we obtained
leftT KLT, see Section 3.2 and Fig. 15. By doing so, whenever 3 or
more of these SURF features (and consequently nowT SURF) are
found again, the location of the stereo camera w.r.t. the original KLT
feature set can be estimated as follows:

nowT̂
KLT ¼ nowT

SURFðleftTSURFÞ	1
leftT

KLT. This estimation is far less
accurate than sequential pose tracking using RVGPS. We opt for
using interleaved, monocular three point perspective (P3P) pose
estimation on the KLT features to increase accuracy [51]. Feature
matching is now on extended search regions due to inaccurate
SURF-based pose estimation, thus requires exhaustive template
matching similar to active features in Section 3.3. In the end,
regular KLT tracking takes on sequential pose tracking on the
original reference frame, taking scaling and the affine distortion of
the features’ templates into account.

3.6. Global graph optimization using kBA on loop closures

Loop closure events occur whenever former scene features are
revisited. These events present the opportunity to greatly increase
present and past pose tracking accuracy. We distinguish between
two types of loop closures: local and global, large-scale. The latter
have to be triggered independently from motion estimation
precisely because their main goal is to correct inaccurate motion
estimation in the first place. Global, large-scale loop closing resorts
instead to appearance-based relocalization, see Sections 2.4-I. and
3.5.

In the absence of loop closures, current measurements
(projections) only depend on their initial stereo keyframe and
on the current relative pose w.r.t. that frame. When closing the
loop, however, current projections also depend on the camera
motion history ever since their initial stereo keyframe, see Fig. 16.

In Ref. [5] we introduced a novel formulation to optimize all
relative poses and points involved in a large-scale loop closure. The
formulation concatenates Eq. (5) for the whole skeleton of relative
keyframes involved, adding a final loop closure term that relates
current projections with the expected projections taking the whole
motion history into account:
Fig. 15. SURF features are detected in stereo and triangulated to obtain nowT
SURF.

This robust estimation is used as an initialization for the more accurate

nowT
KLT estimation using the P3P algorithm; this estimation will eventually

support monocular 2-D tracking of known KLT features as in Section 3.3.
V̂$ ¼ arg min
XN
s¼c

XMs

i¼1

jjl ~m i
s 	 lm̂i

sðlp̂ i
sÞjj2

�

þjjr ~m i
s 	 rm̂i

sðlTr; lp̂i
sÞjj2þjjf ~mi

s 	 f m̂i
sðlsT̂

ls fs; lp̂i
sÞjj2Þ

þ
X
i2R

jjl~r ic 	 lr̂ i
cðlcT̂

lc fc; . . . ; lNT̂
lN fN; lp̂i

cÞjj2 ð6Þ

where the parameters to be optimized V$ = [Vc.. VN] include all
history of 3-D features between the older feature set # c being
found again (R in the subset of actually tracked features), and the
last tracked feature set # N (i.e., N	c+1 feature sets in total), as well
as the N	c relative, inter-keyframe transformations between their
respectives keyframes and the final local pose. In total, this

amounts to
PN

s¼cð3�Ms þ 6Þ parameters, compared to 3�Ms+6 in
Eq. (5).

Again, we are optimizing over differential perturbations of non-
privileged, relative transformations to avoid local minima [77].
Consequently, feature locations and camera motions are both
locally Euclidean, but globally topological; the global Euclidean
representation will be performed at a lower rate, as needed for
dense surface reconstruction, see Section 3.7.

In matrix form, the number of equations amounts toPN
s¼cð2�3�MsÞ þ 2�sizeðR Þ, compared to just 2�3�Ms in the case of

local kBA for dead reckoning in Eq. (5). Optimization processes
with system equations of this magnitude clearly benefit from
sparse optimization methods if their Jacobians are sparse. We
utilize the nonlinear, least squares sparse optimization function
sparselm_dercrs() [88], as well as supernodal sparse Cholesky
factorization by CHOLMOD [89] and graph partitioning by METIS
[90] to observe both primary and secondary sparsity structures of
the Jacobian [91]. We provide the full analytic Jacobian in CRS
format for improved performance. Common derivative compo-
nents are being stored instead of recalculated. By way of example,
using the sparse variant improves timekeeping from 94 s (standard
BA with full analytic Jacobian) to between 750 ms and 1.4 s. Not
providing analytic Jacobians proves slower by a factor of 2 or 3.
Global BA is performed in a separate computing thread not to
disrupt concurrent real-time pose tracking and 3-D modeling. In
Section 4 we show loop-closing experiments where global BA
compensates for substantial dead reckoning errors of several cm to
reach consistent topology of the map.

3.7. Streaming surface reconstruction

We implemented a streaming surface reconstruction method
that delivers realistic 3-D models online, concurrently with range
data acquisition and pose tracking, in realtime [92]. Since it is



Fig. 17. 3-D modeling pipeline including range and pose data fusion, online surface
mesh reconstruction, and 3-D rendering.

Fig. 18. The DLR 3D-Modeler mobile concept with visual feedback.
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online, it serves as a visual feedback for manual scanning by the
user, see Figs. 17 and 18 .

In detail, the real-time method iteratively generates a dense and
homogeneous triangle mesh in Euclidean space by inserting
sample points from data streams and motion readings (e.g., from
visual pose tracking). The surface model is refined locally around
each new sample. A dynamic spatial data structure using an
extendable octree ensures prompt access to growing pointsets as
well as continuously updated meshes without restrictions to
object size or number of sample points. The generated model can
then be accessed at any time (e.g., for visualization or live image
stream registration, see Fig. 19).

4. Experimental validation

In this section we first describe in detail the inner operation of
the proposed visual pose tracking method on a challenging
sequence. Second, the accuracy of the approach is addressed by
assessing the consistency of loop closures as well as by predefined
Fig. 19. Online visualization by augmented triangle mesh (a) or surface model (b),
leading to a textured 3-D model (c).
motions in concert with a rigidly-attached robotic manipulator
that acts as ground truth. Third, the computational efficiency is
evaluated. For a descriptive demonstration of the system please
refer to former videos in http://goo.gl/PjDeox.

4.1. Operation

We illustrate the operation of the proposed methods by
following the algorithm's performance on a challenging sequence.
The reader can retrieve the processed sequence from http://goo.gl/
3n47yj (real time) and http://goo.gl/YC1p4B (slow motion).

The sequence is composed of 625 images acquired at 25 Hz for a
period of time of 25 s. The hand-held 3D-Modeler targets a 40 cm
tall sculpture at a range of approx. 35 cm, scanning up and down
three times. Both the distance to the sculpture and the rough view
direction are maintained. During scanning, however, the camera
suffers from very strong, saccadic movements, which create an
optical flow the size of 40 pixels. The IMU readings state maximal
orientation changes of 2.5� and translations of up to 1 cm between
images (i.e., 62�/s and 0.25 m/s).

The first feature tracking method presented in Section 3.3
(using the IMU) sequentially localizes the camera w.r.t. eight
different sets of points in realtime. The sequence is initialized by a
set of 3-D points Set#1, which is composed of 25 points and this is
also the average number of features in the following sets. Fig. 20(a)
shows Set#1. The camera moves downwards, see Fig. 20(b), and
five further sets of points are initialized, one after another. Then the
camera reaches its lowest position and starts moving back to the
top. Here the algorithm does not create new sets of points but
detects former ones following the policies in Section 3.4.2, see
Fig. 20(c), and leaps onto them. Fig. 20(d) traces these changes
during the entire sequence; note two additional sets at images
number #298 (Set#7) and #349 (Set#8). In the end, the camera
returns to the initial area where the algorithm refers back to Set#1.

The behavior defined by the policies in Section 3.4.2 yields
successful tracking all the time. It seamlessly leaps from current
reference sets onto former ones (local loop closure), which implies
bias-free round-scanning, i.e., the positioning accuracy at the end
of the sequence equals the accuracy at the beginning.

The second feature tracking method presented in Section 3.3
(non-stochastic active matching) does a similar job without the
help of an IMU, refer to http://goo.gl/HVnVsr (real time) and http://
goo.gl/2rqmeC (slow motion). Fig. 21 displays a typical frame
highlighting both active features, the validation set, as well as
remaining features.
Fig. 20. (a) Image #8 tracking Set#1. (b) Image #26 after generation of Set#2,
changing reference. (c) Image #118 retrieving Set#4. (d) Reference sets history in
the sequence.



Fig. 21. Image frame including two active features, three validation features, and
current and past regular features.
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4.2. Positioning accuracy

Loop closing is the most natural option for assessing pose
tracking accuracy, as pose estimation is possible w.r.t. both,
original (say Set#1) and present features, immediately after
detection of the closure. Subject to the original and the current
vantage points w.r.t. the original features (Set#1), pose estimation
w.r.t. these features is truly very accurate, which virtually acts as
ground truth to long-range dead reckoning estimations on the
current set. In addition, calibration and synchronization errors w.r.
t. an external, ground-truth positioning system are avoided.

Fig. 22 depicts a complete scanning procedure around a 50 cm
tall sculpture. A natural browsing procedure asks for prolonged
scanning sweeps and is characterized by the absence of loop
closure events (neither local nor global). The video at http://goo.gl/
tqf4vB shows 4 sweeps featuring a roll angle of 90� between them,
a total length of 320 cm and an accumulated rotation of 360�,
which certainly bring about dead reckoning errors higher than the
tolerated for accurate 3-D modeling. In this event, we close the
motion loop as explained in Section 3.6, which corrects current and
former pose estimation within a second, and subsequently the
whole mesh of the 3-D model as well.

Dead reckoning errors accumulate to an extent that precludes
seamless KLT tracking when trying to retrieve the two first feature
sets (face and chest) based on the expected camera pose at loop
Fig. 22. The hand-guided DLR 3D-Modeler browsing all around the sculpture.
closure. This can be seen in the video by the drift of the white
circles corresponding to the initial features. 44 feature sets are
initialized by feature-based stereo vision in total. Appearance-
based relocalization is triggered in the background on a sensible
basis (based on the camera pose and the structure of features). It
eventually detects loop closing based on SURF features, but the
positioning accuracy is insufficient for KLT tracking (even with
Active Matching). It is only by the inclusion of the intermediate
stage concerning P3P pose estimation on KLT features with larger
search regions (Section 3.5) that we achieve the required pose
accuracy for seamless KLT tracking of 55 features pertaining to the
feature set #1. Note that, since these computations are triggered in
parallel threads, local pose tracking is warranted without
interruption. After that, pose refinement by global, hybrid BA as
explained in Section 3.6 takes place. After successful local pose
refinement by P3P pose estimation, the AM implementation of the
extended KLT tracker takes over, cf. Fig. 23. These 55 features in
turn trigger the global, hybrid BA process explained in Section 3.6
in a separate computing thread, updating all 43 relative trans-

formations lsT
ls fs; 8s 2 N1; i < 44 along with the 3-D pose of all

1816 features ps
i ; 8i 2 N1; i � Ms. Using a dated notebook equipped

with an Intel1 CoreTM 2 Duo P8700 processor, the robustified
nonlinear optimization takes 870 ms. The parameters vector
amounts to 5,769 values and the size of the residuals vector is
11,090.

The final pose correction after 320 cm of dead reckoning
estimation amounts to 2.5 cm and 6.5�. The appearance-based
relocalization stage on SURF features misses the point by 7.5 mm
and 1.5�. After KLT relocalization, however, the global localization
error is equivalent to local tracking noise (virtually zero). Figs. 24
and 25 show typical corrections of the resulting 3-D pointcloud
and mesh after successful loop closure.

Note that the LSP depth sensor is active during the sequence. A
second process segments laser stripe projections and subsequently
triangulates range data [93]. A third process performs online
meshing of 3-D data on live video footage (Section 3.7).

A further experiment has been performed to compare pose
tracking accuracy by dead reckoning (RVGPS) with an external
positioning system: the KR16 KUKA robotic manipulator featuring
�0.1 mm and less than 0.1� accuracy. The DLR 3D-Modeler was
attached to the TCP of the manipulator. An extrinsic calibration was
Fig. 23. Parallel tracking of feature set #43 (yellow) and loop-closing set #1 (green)
at the loop-closing image frame #24521. Parallel tracking is needed to build up
optical flow information. Successful matching is shown in red for both sets.
Throughout the whole video, the white features show the two first feature sets as an
aid to visualize dead reckoning error drift (note that the feature sets include
outliers). Please find the high-resolution sequence at:http://goo.gl/tqf4vB.



Fig. 25. Mesh correction after successful loop closure.

Fig. 26. Translation (upper) and rotation (lower) errors w.r.t. a robotic manipulator
using RVGPS (blue) or V-GPS (pink).

Table 1
Computing times on an Intel Core 2 Duo P8700 processor notebook.

Task Time (ms) #feat.

Feature-based stereo triangulation (Section 3.2) �300 50
2-D feature tracking using an IMU [1] �18 25
2-D feature tracking using AM [4] 12.8 (3+1.2+0.6+8) 50
Robustified V-GPS estimation (Section 3.4.1) 3 50
Local BA (Section 3.4.3) 6
Appearance-based relocalization (Section 3.5) �600
Global BA (48 stereo keyframes, Section 3.6) 650 2100
Visualization 3

Fig. 24. Pointcloud correction after successful loop closure.
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performed [84,86]. As a consequence of potential calibration errors
of ground truth data, the accuracy results of this experiment
should be considered a worst case.

In detail, a robot motion around an object is performed, total
length of 125 cm and 55�, featuring 710 stereo frames. The images
are synchronized with the robot's motion [94]. Fig. 26 shows
residual errors in translation and rotation. Motion estimation by
the original formulation of V-GPS is shown to realize the
significance of the robustified variant RVGPS introduced in
Section 3.4.1. Pose tracking error by dead reckoning increases up
to 3 mm and 0.4� at the turning point; on its way back, the error is
removed by retrieval of former sets of points. These results
featuring less than 1% distance error match former VO results, cf.
Refs. [48,49].

4.3. Performance

The typical processing times for visual pose tracking on the DLR
3D-Modeler are listed in Table 1. Note that these computations are
in parallel to LSP triangulation [93] and surface reconstruction in
Section 3.7.

5. Conclusion

In this work we provide a state-of-the-art overview on static
and portable 3-D scanners and describe the algorithms that
instantiated the first 3-D modeling device for close-range
applications that localizes itself passively from its own images
in realtime, at a high data rate. This is an important contribution to
increasing the flexibility of these types of devices, by doing without
the external positioning systems that constrain existing scanners
in terms of size, mobility, and cost, hereby making portable 3-D
modeling outdoors possible.

A comprehensive review of 3-D modeling systems points out
the lack of devices that are able to passively localize themselves at
a high data rate. We implement a visual pose tracking algorithm
tailored to 3-D modeling by carefully engineering its key
processes: relative motion is delivered at a high data rate from
feature tracking on a monocular image stream using a robustified
V-GPS algorithm characterized by its efficiency and accuracy;
feature tracking is based upon an accelerated KLT feature tracker,
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cast into the Active Matching paradigm for improved perfor-
mance in close-range (close-range feature tracking is twice as
hard as in long range); in order to detach feature set structure
estimation from high-rate tracking at the front-end, feature-
based stereo vision is frugally triggered at keyframe instants to
compute accurate, sparse 3-D geometry and absolute scale; in
case of interrupted pose tracking, contingent appearance-based
relocalization on known SURF features is provided, together with
a rapid pose refinement using a bank of parallel three-point-
perspective pose solvers; finally, loop closures are utilized to
increase accuracy performing pose-graph optimization in the
form of a sparse, keyframe-based bundle adjustment by
minimization of the reprojection errors in a hybrid set of stereo
and monocular frames. In addition, real-time reconstruction and
texturing of the 3-D model's surface provides visual feedback
during acquisition. Extended validation experiments with videos
are delivered.
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