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Abstract 

The control- and operation-system of a wind turbine must primarily ensure the fully 

automatic operation of wind turbines in a constantly changing environment (gusts, 

turbulence). In addition, economic efficiency charges the control-system to ensure that the 

highest possible efficiency is achieved, and the mechanical loads caused by disturbances 

are minimized. The reduction of loads in wind turbines becomes more important. 

According to the "internal model principle", the control quality or the potential for 

disturbance rejection is increased; the more information there is available on the character 

of the disturbance (turbulence). This principle is directly taken up by the observer-based 

Disturbance Accommodation Control (DAC).  

The ability of an observer to estimate non-measurable states from a set of measurements 

using a model of the plant suggests the idea of extending the model of the plant by a 

model of the disturbance. The states of the disturbance can thus also be reconstructed, 

and an easy-to-determine feedforward control can be implemented to counteract the 

disturbance. In this thesis DAC has to adjusted to suppress stochastic disturbances in wind 

turbines (NREL 5 MW). 
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1 Introduction  

Wind energy is one of the most growing renewable energy technologies in the world. The 

total worldwide installed capacity increased from 8 MW at 1980 till 18039 MW at 2000. 

In 2016 the installed capacity reached 500 GW. At the same year, the total worldwide 

electricity generated by wind energy was 900 TWh which means more than 4% of the 

global electricity demand. It is expected that the worldwide installed capacity will reach 

800 GW by the end of 2020 [1]. To cover the demand, the size and the rotor diameter 

increased over the last decades as you can see in figure 1.1. On the other hand, the 

increment in the size and the rotor diameter develops new challenges that need to be 

faced. One of those challenges is the increase in the blade mass and therefore the weight. 

Another one is the reduction in the natural frequencies.  

These loads can be reduced by implementing a control system that must primarily ensure 

the fully automatic operation of wind turbines in a constantly changing environment 

(gusts, turbulence). In addition, economic efficiency charges the control-system to ensure 

that the highest possible efficiency is achieved. 

 

 
Figure 1.1: Trend towards increasingly larger wind turbines [2] 

 

According to the "internal model principle", the control quality or the potential for 

disturbance rejection is increased; the more information about the disturbance is known. 

This principle is directly taken up by the observer-based Disturbance Accommodation 

Control. Disturbance Accommodation Control (DAC) is a new branch of modern control 
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theory that address the problems of dynamic modelling of uncertain disturbances which 

act on systems and designing feedback/feedforward controllers which achieve and 

maintain system performance specifications in the face of the disturbances [3]. It was 

developed by Johnson (1976) [3].  The theory was extended to wind turbine control by 

Balas (1998) [4]. He was the first who used it for the rejection of deterministic 

disturbances on the wind turbine [4]. He further elaborated and investigated the method 

in [5].  

The turbulence is a stochastic disturbance that cannot be easily measured, However the 

disturbance states can be estimated. The ability of an observer to estimate non-

measurable states from a set of measurements using a model of the plant suggests the 

idea of extending the model of the plant by a model of the disturbance. The states of the 

disturbance can thus also be reconstructed, and an easy-to-determine a feedforward 

controller that can be implemented to close the control loop, cf. [3]. This method was 

adapted for stochastic disturbances on a motor glider [6] and will be adjusted to suppress 

stochastic disturbances in wind turbines (NREL 5 MW reference turbine) in this thesis. 

The thesis is organized as follows: Chapter two discusses the modelling of wind turbine 

for controller design, the definition of NREL 5 MW baseline turbine and the development 

of a linear representation of the nonlinear wind turbine using the aeroelastic FAST tool. 

Chapter three illustrates the modelling of wind disturbance based on the Dryden wind 

turbulence model. Chapter four explains the state estimation based on the Discrete 

Kalman Filter and the design of the controller based on the disturbance accommodation 

control theory. In chapter five, the controller structure is implemented in a linear and 

nonlinear simulation environment. Chapter six shows a comparative study with a given 

classical load controller. Finally, Chapter seven contains a summary of this thesis.  
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2 Modelling of wind turbines for controller design 

A mathematical model of wind turbine gives the ability to understand the behavior of the 

wind turbine over its region of operation. A horizontal axis onshore wind turbine model 

can consist of a rotor model, a drive train model, a electrical generator model and a tower 

model.  

Nowadays, all described models can be implemented in various analytical tools such as 

FAST, SymDyn and DUWECS. All these tools can Linearize and simulate. The aero-elastic 

simulation tool FAST has been used in this study for modelling of NREL 5 MW Baseline 

turbine. The baseline turbine is modelled nonlinear in FAST but can be linearized for 

analysis or controller design purposes. The definition of NREL 5 MW Baseline turbine will 

be discussed in the following section. 

2.1 NREL 5 MW baseline wind turbine 

This study is based on NREL 5 MW baseline onshore Individual Pitch Control (IPC) wind 

turbine as a reference turbine.  NREL 5 MW baseline wind turbine has been developed by 

New and Renewable Energy Laboratory (NREL) to act as a reference model used for wind 

energy related studies and by wind turbine researches, however it has not been built. It 

has been designed based on the largest wind turbine prototypes in the world at that time; 

Multibrid M5000 and the REpower 5MW -each had a 5-MW rating. Because of 

unavailable detailed information about these machines at that time, available properties 

from other models used in WindPACT, RECOFF, and DOWEC projects have been gathered 

with Multibird M5000 and REpower 5 MW properties to extract the best available and 

most representative specifications [8]. 

NREL 5MW baseline turbine is a three-bladed upwind turbine with a variable-speed, 

active-pitch control system. Table 2.1 shows the baseline properties. 

Rated Power 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades  

Control Variable Speed, Individual Pitch  

Drivetrain High Speed, Multiple-Stage 

Gearbox 

Rotor, Hub Diameter 126 m, 3 m 
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Hub Height 90 m 

Cut-In, Rated, Cut-Out Wind 

Speed  

3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rated Tip Speed 80 m/s 

Rotor Mass 110,000 kg 

Nacelle Mass 240,000 kg 

Tower Mass 347,460 kg 

Table 2.1: NREL 5MW baseline wind Turbine properties [8] 

 

The relationships of the generator speed, rotor power, generator power, rotor thrust, and 

rotor torque are represented as a function of wind speed in figure 2.1.  

Figure 2.1 is divided into four different regions. Region 1½ is the startup region where the 

wind speed is a little bit higher than the cut in speed.  In this region, the generator speed 

is set to the lower limits which is defined to be in between 670 rpm and 30% above this 

value (or 871 rpm). Region 2 is a maximum power tracking control region where the 

generator torque is proportional to the square of the generator speed to maintain a 

constant (optimal) tip speed ratio.  Region 2½ is a linear transition between region 2 and 

region 3 with a torque slope corresponding to the slope of an induction machine. The 

generator-slip percentage in this region is taken to be 10%, according to the value used in 

the DOWEC study.  In region 3, the wind speed is above the rated speed. The generator 

speed is kept constant in this region so that the generator torque is inversely proportional 

to the generator speed [8]. 
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Figure 2.1: wind speed relationships of 5 MW baseline turbine [8] 

2.2 FAST  

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is an aeroelastic Computer-

Aided Engineering (CAE) tool for onshore and offshore horizontal axes wind turbines 

developed by New and Renewable Energy Laboratory (NREL) to simulate the nonlinear 

coupled dynamic response of wind turbines in the time domain. Wind turbines with two 

or three blades, up wind or downwind rotor, pitch or stall regulation, rigid or teetering 

hub, and lattice or tabular tower can be analyzed using FAST [9].  

The FAST Code is the result of combination of three distinct codes; the FAST2 Code for 

two-bladed HAWTs; the FAST3 Code for three-bladed HAWTs; and the AeroDyn 

subroutines for HAWTs with additional modification. The FAST Code have been modified 

since 2003 till now and additional features have been added. The ability of FAST to 

develop a linearized state space model used for control design was added in 2003. An 

interface between FAST and MATLAB Simulink has also been developed in 2004 which 

allows the user to implement a advanced turbine controls in Simulink environment. In 

2005, FAST got Germanischer Lloyd certificate [9].  

Three-bladed horizontal axes wind turbine with 24 degree of freedoms (DOFs) and two- 

bladed HAWT with 22 DOFs can be modelled using FAST.  The three-bladed HAWT  DOFs 

counts for  6 DOF for the platform translational (surge, sway, and heave) and rotational 
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(roll, pitch, and yaw) motions, 4 DOF for the tower flexibility; two are longitudinal modes, 

and two are lateral modes, 1 DOF for the Yaw motion of the nacelle, 2 DOF for the 

variations in generator speed and the drivetrain flexibility, 9 DOF for the blade flexibility;  3 

for the first flapwise bending mode of each blade, 3 for the second flapwise bending 

modes of each blade and 3 for the edgewise motion of each blade. 1 DOF for the rotor-

furl, and 1 DOF for the tail-furl. The two- bladed HAWT has the same DOFs as for the 

three-bladed but with the addition of 1 DOF for the blade teetering and only 6 DOF for 

the blade flexibility;  2 for the first flapwise bending mode of each blade, 2 for the second 

flapwise bending modes of each blade and 2 for the edgewise motion of each blade [9]. 

Here in this thesis, 10 DOFs are chosen to be modelled as shown in table 2.2.   

There are two different modes of operation supported by FAST, Simulation mode and 

Linearization mode. The simulation mode is used for the load analyses where the 

linearization mode is used to develop a linear model from the aeroelastic nonlinear wind 

turbine model. 

2.3 Linearization process using FAST  

The nonlinear description of the wind turbine can be linearized by FAST through two main 

steps, determination of an operating point and derivation about the selected operating 

point.  

2.3.1 Determination of an Operating point (OP) 

A trim point or an operating point is the point at which the system is in steady state where 

the system's state derivatives equal zero. Selecting this point is one of the most important 

steps in the linearization process as the linear representation of the nonlinear system is 

only valid for small perturbations from an operating point. It can be steady state operating 

point for operating turbine as in our case or static-equilibrium operating point for idling 

turbine. It is defined by selecting the system DOFs that need to be modelled and setting 

the initial conditions for control inputs and wind inputs. 

Trim conditions are defined as:  

-  18 m/s steady horizontal wind speed.  

- 5 MW rated power. 

- Region III 
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- 12,1 rpm as initial rotor speed. 

The result pitch angel is 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 14.92°  

The selected DOFs of the linear model are listed in table 2.2.  

System DOFs: - 

𝑥𝑥1 1st tower fore-aft bending mode          

𝑥𝑥2 Variable speed generator  

𝑥𝑥3 1st flapwise bending-mode of blade 1 

𝑥𝑥4 1st flapwise bending-mode of blade 2 

𝑥𝑥5 1st flapwise bending-mode of blade 3 

𝑥𝑥6 First time derivative of 1st tower fore-aft bending mode  

𝑥𝑥7 First time derivative of Variable speed generator 

𝑥𝑥8 First time derivative of 1st flapwise bending-mode of blade 

1 

𝑥𝑥9 First time derivative of 1st flapwise bending-mode of blade 

2 

𝑥𝑥10 First time derivative of 1st flapwise bending-mode of blade 

3 

Table 2.2: Linearized model DOFs 

System inputs: -  

𝑢𝑢1 Blade 1 pitch command 

𝑢𝑢2 Blade 2pitch command 

𝑢𝑢3 Blade 3 pitch command 

Table 2.3: Control inputs 

3.3.2 linearization 

Suppose that the system nonlinear differential equation can be written in the following 

form
 

𝑥̇𝑥 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑓𝑓�𝑥𝑥,𝑢𝑢�    , 𝑦𝑦 = 𝑔𝑔�𝑥𝑥,𝑢𝑢� (2-1) 

where 𝑥𝑥 is the vector of the system states, 𝑢𝑢  is the vector of the control inputs, and 𝑦𝑦 is 

the vector of the system outputs.     
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By applying the Taylor expansion on the nonlinear equation (2-1) and neglecting the 

higher order terms, we get   

𝑥̇𝑥 = 𝑓𝑓�𝑥𝑥,𝑢𝑢� ≈ 𝑓𝑓�𝑥𝑥|𝑜𝑜𝑜𝑜,𝑢𝑢|𝑜𝑜𝑜𝑜� +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 δ𝑥𝑥 +
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

|𝑜𝑜𝑜𝑜 δ𝑢𝑢 (2-2) 

𝑦𝑦 = 𝑔𝑔�𝑥𝑥,𝑢𝑢� ≈ 𝑔𝑔�𝑥𝑥|𝑜𝑜𝑜𝑜,𝑢𝑢|𝑜𝑜𝑜𝑜� +
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 δ𝑥𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑜𝑜𝑜𝑜 δ𝑢𝑢
 

(2-3) 

At steady state conditions  

𝑓𝑓�𝑥𝑥�𝑜𝑜𝑜𝑜, 𝑢𝑢�𝑜𝑜𝑜𝑜� = 0, 𝑔𝑔�𝑥𝑥�𝑜𝑜𝑜𝑜, 𝑢𝑢�𝑜𝑜𝑜𝑜� = 0      

 

The description of the trim point is as following   

 𝛿𝛿𝑥̇𝑥 ≈
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 𝛿𝛿𝑥𝑥 +
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

|𝑜𝑜𝑜𝑜 δ𝑢𝑢 (2-4) 

 𝛿𝛿𝑦𝑦 ≈
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

 δ𝑥𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

 |𝑜𝑜𝑜𝑜δ𝑢𝑢
 

(2-5) 

These two equations can be written in other two forms as  

𝛿𝛿𝑥̇𝑥 = 𝐴𝐴�𝛿𝛿𝑥𝑥 + 𝐵𝐵� 𝛿𝛿𝑢𝑢 (2-6) 

𝛿𝛿𝑦𝑦 = 𝐶𝐶� 𝛿𝛿𝑥𝑥 + 𝐷𝐷�  𝛿𝛿𝑢𝑢
 

(2-7) 

The matrices 𝐴𝐴�, 𝐵𝐵�, 𝐶𝐶�, 𝐷𝐷�  in the last two equations are defined as   

𝐴𝐴� =
𝜕𝜕𝑓𝑓

𝜕𝜕𝑥𝑥
|𝑜𝑜𝑜𝑜,    𝐵𝐵� =

𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢
|𝑜𝑜𝑜𝑜, 𝐶𝐶� =

𝜕𝜕𝑔𝑔

𝜕𝜕𝑥𝑥
|𝑜𝑜𝑜𝑜, 𝐷𝐷� =  

𝜕𝜕𝑔𝑔

𝜕𝜕𝑢𝑢
|𝑜𝑜𝑜𝑜 . 

where 𝐴𝐴� is the state matrix, 𝐵𝐵� is the input matrix, 𝐶𝐶� is the output matrix and 𝐷𝐷� is the input-

transmission matrix. 

FAST applies the same principle for the following nonlinear equation of motion to get the 

linear representation from the nonlinear wind turbine model. 

𝑀𝑀� (𝑞𝑞,𝑢𝑢, 𝑡𝑡)𝑞𝑞 ̈ + 𝑓𝑓 �𝑞𝑞, 𝑞̇𝑞,𝑢𝑢, 𝑧𝑧, 𝑡𝑡� = 0 (2-8) 

where 𝑀𝑀�  is the mass matrix. 𝑓𝑓 is the vector of the nonlinear forcing function, 𝑞𝑞, 𝑞̇𝑞, 𝑞𝑞 ̈ are 

the vectors of the displacements, velocities and accelerations DOFs.  u  is the vector of 

control inputs, 𝑧𝑧 is the vector of the wind disturbances input and 𝑡𝑡 is the time [9]. 

The operating points are defined as 
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𝑞𝑞 = 𝑞𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞𝑞 ,     𝑞̇𝑞 = 𝑞̇𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞̇𝑞,      𝑞̈𝑞 =  𝑞̈𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞̈𝑞,     𝑢𝑢 = 𝑢𝑢|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑢𝑢,    

   𝑧𝑧 = 𝑧𝑧|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑧𝑧 

by substituting these expressions into the equation of motion and applying Taylor 

expansion as it’s mentioned before, we get the following linear equation 

 

𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�  𝑢𝑢 + 𝐸𝐸�𝑧𝑧 (2-9) 

𝑦𝑦 = 𝐶𝐶� 𝑥𝑥 + 𝐷𝐷�  𝑢𝑢 + 𝐹𝐹�𝑧𝑧 (2-10) 

 

The matrices 𝐴𝐴�, 𝐵𝐵�, 𝐶𝐶�, 𝐷𝐷�  into equations (2-9) and (2-10) are defined as 

𝐴𝐴� =  �
0 𝐼𝐼

−𝑀𝑀�−1𝐺𝐺� −𝑀𝑀�−1𝐶𝐶��,     𝐵𝐵� = �
0

𝑀𝑀�−1𝐿𝐿��,       𝐸𝐸� = �
0

𝑀𝑀�−1𝐹𝐹𝑑𝑑����,      𝐶𝐶� = �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷������� 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�������, 

𝐿𝐿� = �𝜕𝜕𝑀𝑀�
𝜕𝜕𝑢𝑢
𝑞̈𝑞 +

𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
� |𝑜𝑜𝑜𝑜 . 

 

where  

𝑀𝑀� : mass matrix; 𝑀𝑀� = 𝑀𝑀|𝑜𝑜𝑜𝑜 , 

𝐶𝐶�: damping / gyroscopic matrix; 𝐶𝐶� = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞

|𝑜𝑜𝑜𝑜 , 

𝐺𝐺�: stiffness matrix; 𝐺𝐺� = �
𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
𝑞̈𝑞 +

𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
� |𝑜𝑜𝑜𝑜 , 

𝐸𝐸�: wind input disturbance matrix, 

𝐹𝐹�: wind input disturbance transmission matrix, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�������: the displacement output matrix wind input disturbance transmission matrix, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������: the velocity output matrix. 

 

Figure 2.2 shows the state space representation of the Linearized model. 
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Figure2.2: FAST linearized state space model 

 

As the wind turbine rotor is spinning by 12.1 rpm, the operating point is periodic that 

leads to periodicity in the state space matrices 𝐴𝐴�,𝐵𝐵� ,𝐶𝐶� , D,𝐸𝐸�  and 𝐹𝐹�. To overcome this 

problem, the linearization process has been done 36 times, every 10-degree azimuth 

angle position and the linearized output model is taken as an average over the number of 

linearization processes per one revolution.      



 

11 

 

3    Modelling of Wind Disturbance  

According to Disturbance Accommodation Control (DAC) theory, the first requirement in 

order to accommodate the disturbance is to modell it. Here in this chapter, we will discuss 

how to model the wind disturbance based on Dryden wind turbulence model. 

The wind speed  𝑉𝑉 can be divided in two components, 

𝑉𝑉 = 𝑉𝑉𝑚𝑚 + 𝑣𝑣 (3-1) 

Where 𝑉𝑉𝑚𝑚 represents the steady mean wind speed and 𝑣𝑣 represents the atmospheric 

turbulence that covers the fluctuations of the wind speed. As the wind speed is 

experienced by a rotating wind turbine, the rotational sampling effect should be taken 

into consideration. Figure 3.1 shows the block diagram of the effective wind model where 

the rotational sampling effect is added to the turbulence model [7]. Each part of this 

model will be discussed in the following subsections. 

 

Figure 3.1: Effective wind model [7] 

3.1 Mean wind speed 

Mean wind speed describes the low frequency variations and is defined as the wind speed 

averaged over a specific time interval at a specific height. It is used to for the assessment 

of the expected energy yield. It is often modelled as a Weibull’s distribution. 

3.2 Turbulence 

The high frequency random variations of the flow towards the wind turbine over a period 

typically 10 min is referred to Turbulence [10]. These variations can be caused by the 

friction of the flow with the earth surface or the thermal effects in the planetary boundary 

layer near the earth surface. The turbulence can’t be avoided but it’s effect can be 

reduced by implementing a good control system that can react to it. 
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3.2.1 Turbulence model  

Turbulence is often considered as a stochastic process which is hard to be modelled in 

deterministic equations. Often, it is sufficient to modell just the characteristics via a Power 

Spectral Density (PSD).  

The Dryden wind Turbulence model is of that kind and will be used here. because of its 

simpler form and its easy access to the time simulation, it’s often used in the aerospace 

industry. The random functions associated with Dryden spectra can be generated by 

passing Gaussian white noise through appropriate form filter as shown in figure 3.2 [6]. 

The model consists of the power spectral density for the horizontal turbulence velocity 𝑢𝑢.  

 

Figure 3.2: Dryden wind turbulence model [6] 

The transfer function of the form filter generating a random signal having Dryden spectra 

from a white noise can be obtained by spectral factorization. it is given as the following 

equation for the horizontal turbulence.       

𝐹𝐹�𝑢𝑢𝑤𝑤 =
𝑢𝑢(𝑠𝑠)
 𝑟𝑟(𝑠𝑠) = �2𝜎𝜎𝑢𝑢2𝑇𝑇𝑢𝑢 .

1
1 + 𝑠𝑠𝑇𝑇𝑢𝑢

 (3-2) 

 where   

𝑇𝑇𝑢𝑢 =
𝐿𝐿𝑢𝑢
𝑉𝑉

=  
1
𝜔𝜔𝑢𝑢 

where 𝐿𝐿𝑢𝑢 is the length scale, 𝜎𝜎 is the standard deviation and it is a measure of the 

turbulence intensity, 𝑇𝑇 is the time constant, 𝑉𝑉 is the steady mean wind speed, 𝑢𝑢 is the 

index for the horizontal turbulence.  𝐿𝐿𝑢𝑢 is modelled as described in [11] where 𝑉𝑉 = 𝑉𝑉𝑚𝑚 =

18 m/s 

Turbulence intensity 𝐼𝐼 describes the level of the random variation from the mean wind 

speed as shown in figure 3.3. It is defined as the ratio of the standard deviation of wind 

speed variations to the mean wind speed 𝑉𝑉𝑚𝑚 in a certain averaging time, usually defined 

over 10 min or 1 h. 
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𝐼𝐼 =  
𝜎𝜎
𝑉𝑉𝑚𝑚

 

 

Figure 3.3: Measured time history of wind speed [12] 

 

This equation can be represented in a state space form as  

 

𝑥̇𝑥𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟
  

(3-4) 

 

𝑧𝑧 = 𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷
 

(3-5) 

where           𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷 = �− 𝑉𝑉
𝐿𝐿𝑢𝑢
�
                              

𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 = �𝜎𝜎�2 𝑉𝑉
𝐿𝐿𝑢𝑢
�  

                        
𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷 = [1] 

Figure 3.4 shows the state space representation of Dryden model.
 

For a three-bladed wind turbine  

𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡
−1
𝑇𝑇𝑢𝑢

0 0

0 −1
𝑇𝑇𝑢𝑢

0

0 0 −1
𝑇𝑇𝑢𝑢⎦
⎥
⎥
⎥
⎤

 ,    𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘

𝐿𝐿𝑢𝑢
 0 0

0 𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘
𝐿𝐿𝑢𝑢

 0

0 0 𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘
𝐿𝐿𝑢𝑢

 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ,  𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷 =  �
1 0 0
0 1 0
0 0 1

� 
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To be sure that the turbulence acting on each blade is uncorrelated and the speed of the 

three white noise generators are different.  
 

 
Figure 3.4:  State space representation of Dryden model 

 

3.3 Rotational Sampling Effect 

The rotational sampling effect adds the effect of the rotating blades to the turbulence as 

shown in figure 3.5 where the PSD shows peaks at the rotational frequency  𝑓𝑓1𝑏𝑏 and at higher 

harmonics (𝑓𝑓2𝑏𝑏 = 2𝑓𝑓1𝑏𝑏,𝑓𝑓3𝑏𝑏 = 3𝑓𝑓1𝑏𝑏). 

 For well understanding this effect, we need to discuss the following two cases. The first 

case, when the size of the eddy is much bigger than the rotor swept area. In this case 

there is no consideration for the rotational sampling effect and the observed wind speed 

will be the same for a rotating blade as for a fixed position. The second case, when the 

size of the eddy is smaller than the rotor swept area as we assume in our study. In this 

case, the turbine rotor samples the eddy periodically with each rotation until the eddy 

passes the rotor [13]. The sampling rate is dependent on the rotational speed and the 

loads acting on the blades in this case will be dependent on where the blade is. 
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Figure 3.5: Schematic representation of the power spectral density (PSD) of rotational sampling [14] 

This effect can be described by the meaning of the inverse notch filter. The inverse notch 

filter is a narrow band pass filter and it has an infinite impulse response. It rejects all 

frequencies expect of a stop frequency band centered on a center frequency, which is the 

wind turbine rotational frequency in our case. figure 3.6 shows the frequency response of 

the inverted notch filter. The state space representation of the three inverted notch filters 

for the three blades is:   

                                           𝑥̇𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +  𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (4-6) 

  

𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 

(4-7) 

 

The matrices 𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ,𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ,𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ,𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 are represented as  

 

𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0 0 0
−𝛺𝛺2 −2𝑑𝑑𝛺𝛺2 0 0 0 0

0 0 0 1 0 0
0 0 −𝛺𝛺2 −2𝑑𝑑𝛺𝛺2 0 0
0 0 0 0 0 1
0 0 0 0 −𝛺𝛺2 −2𝑑𝑑𝛺𝛺2⎦

⎥
⎥
⎥
⎥
⎤

  , 𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 

𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = �
0
0
0

 
2𝛺𝛺
0
0

 
0
0
0

 
0

2𝛺𝛺
0

 
0
0
0

 
0
0

2𝛺𝛺
�,         𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = �

1 0 0
0 1 0
0 0 1

� 

 

where 𝑑𝑑 represents the damping factor and 𝛺𝛺 the rotational speed. 
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Figure 3.6: Inverted notch filter response.  
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4 Derivation of a controller structure based on a stochastic 

disturbance observer 

4.1 Setting up design criteria 

The high frequency variations in wind speed (turbulence) are the primary reasons for the 

fatigue of the different wind turbine components. Designing a control system to mitigate 

the loads caused by the turbulence will directly translate into a reduction in the fatigue 

damage. This directly leads to increase in the life time of the wind turbine as it will be 

illustrated in chapter 6. 

Another impact of the turbulence on wind turbine is the fluctuations in the rotational 

speed.  In order to increase the rotational speed strength, the turbulence effect should be 

reduced. Chapter 5 shows how much the reduction in the standard deviation of the 

rotational speed before and after applying the controller.  

Briefly, the specific criteria for designing the control system are: -  

1- Decreasing the fatigue damage. 

2- Increasing the rotational speed strength. 
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4.2 State Estimation using Kalman Filter      

The ability of an observer to estimate unmeasurable states from a set of measurements 

with the help of a model of the control path suggests the idea of extending the model of 

the control path by a model of the disturbance and reconstructing the states of the 

disturbance as well. State estimation is the process of determining an estimate of the 

internal system states depending on a set of measurements of system inputs and outputs. 

The estimated states are a combination of the wind turbine estimated states and the 

augmented wind disturbance estimated states. In this thesis, the Discrete Kalman Filter will 

be used as an observer for the estimation process. It is an optimal recursive data 

processing algorithm that gives the optimal estimates of the system states for a linear 

system with additive Gaussian white noise in the process and the measurements which is 

correct in our case [15].  Kalman filter is optimal by minimizing the mean squared error 

between the estimated state and the real state. The recursive operation mode of the 

Kalman filter comes from its ability to depend only the previous estimate to get the 

current estimate rather than depending on the history of all previous estimates. Figure 4.1 

shows how is the Kalman filter estimates the system states with the help of the 

measurement of system’s output. 

 

Figure 4.1: State estimation based on Kalman filter [16] 

For nonlinear systems, different Kalman filters such as the extended Kalman filter and the 

unscented Kalman filter can be used.  Nowadays, Kalman filter is used in many different 

applications such as tracking systems, navigation and many computer vision applications.  
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Before starting the discussion about the operation of the Kalman filter algorithm, we need 

to understand the definitions of what’s called mean or expected value, variance and 

standard deviation. 

Expected value or Mean (𝜇𝜇):- 

For a random variable 𝑋𝑋, Expected value of 𝑋𝑋 is
 
 

𝐸𝐸[𝑋𝑋] = �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖

 (4-1) 

where 𝑥𝑥1 ,𝑥𝑥2 … … … . 𝑥𝑥𝑛𝑛  are the possible realization of 𝑋𝑋 and 𝑃𝑃1 ,𝑃𝑃2 … … … .𝑃𝑃𝑛𝑛   are the 
corresponding probabilities.  If 𝑋𝑋 is a continuous random variable, the Expected value will 
be 

  
𝐸𝐸[𝑋𝑋] = � 𝑥𝑥𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑑𝑑

∞

−∞
 (4-2) 

where 𝑓𝑓𝑋𝑋(𝑥𝑥) is the probability density function.  

Variance: -  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸 ��𝑋𝑋 − 𝐸𝐸(𝑋𝑋)�2� (4-3) 

                = 𝐸𝐸[𝑋𝑋2] − 𝜇𝜇2

 
 

It is a measure of the spread of 𝑋𝑋 around mean.  

Standard deviation: - 

It is the square root of variance. 

𝜎𝜎(𝑋𝑋) = �𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) 
(4-4) 
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4.2.1 The Discrete Kalman Filter derivation  

For the derivation of the Discrete Kalman filter, suppose that the linear system is 

represented in a state space representation as following: 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴�𝑥𝑥𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 +𝑤𝑤𝑘𝑘 (4-5) 

𝑦𝑦𝑘𝑘 = 𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘
 

(4-6) 

Where  

𝑥𝑥𝑘𝑘: (𝑛𝑛 x 1) system state at time 𝑡𝑡𝑘𝑘 

𝑦𝑦𝑘𝑘: (𝑝𝑝 x 1) measured output at time 𝑡𝑡𝑘𝑘 

𝑢𝑢𝑘𝑘: (𝑚𝑚 x 1) control input at time 𝑡𝑡𝑘𝑘 

𝐴𝐴�:  (𝑛𝑛 x 𝑛𝑛) state matrix  

𝐵𝐵�:  (𝑛𝑛 x 𝑚𝑚) input matrix  

𝐶𝐶�:  (𝑝𝑝 x 𝑛𝑛) output matrix  

𝐷𝐷� : (𝑝𝑝 x 𝑚𝑚) state matrix  

𝑤𝑤𝑘𝑘: (𝑛𝑛 x 1) process noise   

𝑣𝑣𝑘𝑘: (𝑝𝑝 x 1) measurement noise  

𝑛𝑛: number of the system states 

𝑝𝑝: number of the system outputs 

𝑚𝑚:number of the system 

 

It is assumed that the process noise 𝑤𝑤𝑘𝑘 and the measurement noise
 
𝑣𝑣𝑘𝑘 are normally 

gaussian distributed and uncorrelated.  

The covariance matrices for 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘are given by  

𝐸𝐸�𝑤𝑤𝑘𝑘𝑤𝑤𝑖𝑖𝑇𝑇� = 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 
𝐸𝐸�𝑣𝑣𝑘𝑘𝑣𝑣𝑖𝑖𝑇𝑇� = 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣 

 
Assume that the prior (or a priori) error in estimation is 𝑒𝑒𝑘𝑘− where   

𝑒𝑒𝑘𝑘− = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− (4-7) 

where 𝑥𝑥�𝑘𝑘− is the prior estimate. 

A Priori means the estimation is done before the measurement and a posteriori means the 

estimation is done after the measurement.  
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The associated error covariance matrix 𝑃𝑃�𝑘𝑘− is  

𝑃𝑃�𝑘𝑘− = 𝐸𝐸�𝑒𝑒𝑘𝑘−𝑒𝑒𝑘𝑘−𝑇𝑇� = 𝐸𝐸 ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− �𝑇𝑇� (4-8) 

where 𝑥𝑥�𝑘𝑘−  is the prior state estimate.  

With the new noisy measurement 𝑦𝑦𝑘𝑘, the predicted state 𝑥𝑥�  
𝑘𝑘  is corrected by a feedback 

of the difference between the measured output vector and the estimated output vector 

�𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− � via a weighting factor  𝐾𝐾�𝑘𝑘 as shown in the following equation  

𝑥𝑥�  
𝑘𝑘 =  𝑥𝑥�𝑘𝑘−  + 𝐾𝐾�𝑘𝑘 �𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− � (4-9) 

This weighting factor is called Kalman gain and it will be determined later. 

The updated error in the estimate or posteriori estimate error is 

𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘 (4-10) 

and the corresponding updated error covariance matrix is 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸�𝑒𝑒𝑘𝑘  𝑒𝑒𝑘𝑘𝑇𝑇� = 𝐸𝐸 ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘�
𝑇𝑇�. (4-11) 

by substituting equation (4-9) into equation (4-11), we get  

𝑃𝑃𝑘𝑘 = 𝐸𝐸�𝑒𝑒𝑘𝑘 𝑒𝑒𝑘𝑘𝑇𝑇� = 

𝐸𝐸 ��𝑥𝑥𝑘𝑘 − [ 𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]� �𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�
𝑇𝑇
� 

(4-12) 

If equation (4-5) is substituted into equation (4-12), the updated error covariance matrix 

can be written as 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸[�𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 − 𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�  

               �𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�𝑇𝑇] 

 

(4-13) 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− )− 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 − 𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�� 

                 � �𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− ) − 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− �]𝑇𝑇� 
(4-14) 

performing this expectation, we get 

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− −  𝐾𝐾�𝑘𝑘𝐶𝐶�𝑃𝑃�𝑘𝑘− −  𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇𝐾𝐾�𝑘𝑘𝑇𝑇 + 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 . (4-15) 

Now, the Kalman gain 𝐾𝐾�𝑘𝑘 needs to be determined such that 𝑃𝑃�𝑘𝑘 is minimized. This can be 

done using the straightforward differential calculus approach [17]. This approach can be 
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applied by differentiating the trace of 𝑃𝑃�𝑘𝑘 which represents the sum of the mean square 

errors in the estimate with respect to 𝐾𝐾�𝑘𝑘 and setting this derivative equal to zero 

𝑑𝑑(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑃𝑃�𝑘𝑘)
𝑑𝑑𝐾𝐾�𝑘𝑘

=  −2�𝐶𝐶�𝑃𝑃�𝑘𝑘−�
𝑇𝑇+ 2 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 (4-16) 

−2�𝐶𝐶�𝑃𝑃�𝑘𝑘−�
𝑇𝑇+ 2 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 = 0

 

(4-17) 

𝐾𝐾�𝑘𝑘 = 𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�
−1

 

(4-18) 

Substituting the Kalman gain  𝐾𝐾�𝑘𝑘 into equation (4-15), we get 

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− −  𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�
−1𝐶𝐶�𝑃𝑃�𝑘𝑘− (4-19) 

or  

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− − 𝐾𝐾�𝑘𝑘  𝐶𝐶�𝑃𝑃�𝑘𝑘− (4-20) 

𝑃𝑃�𝑘𝑘 = �𝐼𝐼 − 𝐾𝐾�𝑘𝑘  𝐶𝐶��𝑃𝑃�𝑘𝑘−

 
(4-21) 

The next estimation can be obtained using equation (4-4) with ignoring 𝑤𝑤𝑘𝑘 because it has 

zero mean and it is not correlated with any of the previous values 

𝑥𝑥�𝑘𝑘∗1− = 𝐴𝐴�𝑥𝑥�𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 . (4-22) 

 The associated error is  

𝑒𝑒𝑘𝑘∗1− = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥�𝑘𝑘∗1−  

            𝑒𝑒𝑘𝑘∗1−  = 𝐴𝐴�𝑥𝑥𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 + 𝐷𝐷�𝑢𝑢𝑘𝑘+1 + 𝑤𝑤𝑘𝑘 −  𝐴𝐴�𝑥𝑥�𝑘𝑘 − 𝐵𝐵�𝑢𝑢𝑘𝑘+1 − 𝐷𝐷�𝑢𝑢𝑘𝑘+1 

𝑒𝑒𝑘𝑘∗1− = 𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘
 

(4-23) 

and the associated error covariance matrix in this case is  

 𝑃𝑃�𝑘𝑘∗1− = 𝐸𝐸 [𝑒𝑒𝑘𝑘∗1−  𝑒𝑒𝑘𝑘∗1− 𝑇𝑇]
 

                             𝑃𝑃�𝑘𝑘∗1− = 𝐸𝐸 ��𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘��𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘�
𝑇𝑇� 

      𝑃𝑃�𝑘𝑘∗1− = 𝐴𝐴 �𝑃𝑃�𝑘𝑘𝐴𝐴�𝑇𝑇 + 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 .
 

(4-24) 

Figure 4.2 shows the operation of the Kalman filter algorithm  
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Figure 4.2: Kalman filter algorithm 

4.2.2 Disturbance Observation 

The model required for a disturbance observation using the Discrete Kalman filter consists 

of the combination of the linearized wind turbine model and the disturbance model as 

shown in figure 4.3. where 𝑤𝑤𝑘𝑘 and 𝑤𝑤𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 represent the process noise and the turbulence 

noise respectively.   𝑊𝑊𝑊𝑊 is an index for Wind Turbine and 𝐷𝐷𝐷𝐷𝐷𝐷 is an index for Disturbance. 

�
𝑥̇𝑥𝑊𝑊𝑊𝑊
𝑥̇𝑥𝐷𝐷𝐷𝐷𝐷𝐷

� = �
𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷
0 𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷

� �
𝑥𝑥𝑊𝑊𝑊𝑊
𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷� + �𝐵𝐵�0�

𝑢𝑢 + �
0
𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷

� 𝑟𝑟 + �
𝑤𝑤𝑘𝑘
𝑤𝑤𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷

� (4-25) 

𝑦𝑦𝑊𝑊𝑊𝑊 = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷] �
𝑥𝑥𝑊𝑊𝑊𝑊
𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷� + 𝐷𝐷�  𝑢𝑢 + 𝑣𝑣𝑘𝑘

 
(4-26) 

 

 

Figure 4.3: The required model for state estimation using Kalman filter  
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4.2.3 Kalman Filter Tuning 

The tuning of the Kalman filter is done via determination of the process noise covariance 

matrix 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 and the measurement noise covariance matrix 𝑅𝑅�𝑣𝑣𝑣𝑣𝑟𝑟 .  

For the tuning process, often just the main diagonal elements 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣 are engaged 

where the other elements are neglected.  

The measurement noise covariance matrix is determined through the error in the 

measurement. This error can be obtained from the sensors datasheet. The approximated 

measured noise is modelled by the following values  

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(1,1) =  6,25 ∗ 10−6 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(3,3) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(5,5) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(7,7) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(9,9) =  0,0001 

 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(2,2) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(4,4) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(6,6) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(8,8) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(10,10) =  0,0001 

 

The process noise covariance matrix is not so easy to be determined because there is no 

specific way to get it. Often this noise is selected via trial and error. One of these trials, 

which has been used here uses the model uncertainties caused by the preciosity of the un 

models. This can be shown in figure 4.4 where a66, a77, a88, a99 and a 1010 represents 

the average model uncertainties over the azimuth for 

𝐴𝐴�(6,6), 𝐴𝐴�(7,7), 𝐴𝐴�(8,8),  𝐴𝐴�(9,9), 𝐴𝐴�(10,10) respectively.  

These are the values of the diagonal elements of the process noise covariance matrix 

where the first ten elements are for the wind turbine states and the other 9 elements are 

for the disturbance states. 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(1,1) = 6 ∗ 10−9 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(2,2) = 3 ∗ 10−8 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(3,3) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(6,6) = 6 ∗ 10−9 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(7,7) = 3 ∗ 10−8 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(8,8) = 9 ∗ 10−6 
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𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(4,4) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(5,5) = 9 ∗ 10−6 

 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(9,9) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(10,10) = 3 ∗ 10−7 

 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(11,11) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(13,13) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(14,14) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(15,15) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(17,17) =0.0006666 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(12,12) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(13,13) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(14,14) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(16,16) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(18,18) =0.00066667 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(19,19) =0.00066667 

 

 

 

Figure 4.4: Determination of the process noise covariance matrix 
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4.3 Controller structure based on stochastic Disturbance accommodation 

control  

As it is discussed before, the second requirement in the disturbance accommodation 

control theory is to design a feedback/feedforward controller in order to stabilize the 

system and accommodate the disturbance. In our case, the Linear Quadratic Regulator 

(LQR) will be used as a full state feedback controller for tuning the wind turbine plant and 

a feedforward controller to accommodate the wind disturbances. 

4.3.1 linear quadratic regulator 

The linear quadratic regulator design is as an important design technique for linear 

systems since the sixties. There are two main objectives of LQR design, the first objective is 

to find a full state feedback controller to stabilize the wind turbine based on the turbine 

estimated states, which have been obtained from the Kalman filter, as we discussed in the 

previous section, where the second objective is to minimize the cost function 𝐽𝐽 that has 

been given in equation (4-27). This combination of an optimal estimator and an optimal 

regulator is called linear Quadratic Gaussian (LQG). 

Due to the separation principle, the estimation process via an observer e.g. Kalman Filter 

can be done separately to the controller tuning.   

According to Kalman, a linear time - invariant system is optimal if the following quadratic 

cost function is minimized 

𝐽𝐽 =  ∫ (𝑥𝑥𝑇𝑇𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥∞
0 + 𝑢𝑢𝑇𝑇𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢)𝑑𝑑𝑑𝑑 . (4-27) 

where 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 are constant weighting matrices and must meet the following 

conditions:
 -  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿  must be positive definite (regular and symmetrical) 

- 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 must be positive semidefinite (all principal determinants ≥ 0) 

 
Therefore, no negative cost components will occur. By appropriate selection of the 

weighting matrices, it can be a more meaningful compromise between the system states 

and the control effort [18].  
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The solution of the above variational problem (minimization of the cost function under the 

constraint of the state equations) leads to Hamiltonian canonical equations, which are 

solved by linear approach. From this, the cost function is minimized for the control law 

𝑢𝑢 =  −𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿  𝑥𝑥 (1) 
 

(4-28) 

The 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 is defined as  

𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵�𝑇𝑇𝑃𝑃�  (2) 

 

(4-29) 

where 𝑃𝑃� is an (𝑛𝑛𝑛𝑛𝑛𝑛) matrix and equal to the solution of the following non-linear Riccati 

differential equation 

𝑃𝑃�̇ = 𝑃𝑃�𝐴𝐴� + 𝐴𝐴�𝑇𝑇𝑃𝑃� − 𝑃𝑃�𝐵𝐵�𝑅𝑅�−1𝐵𝐵�𝑇𝑇𝑃𝑃� + 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 = 0 .
 

(4-30) 

If the process is fully controllable and 𝐴𝐴�,𝐵𝐵� ,𝐶𝐶� ,𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 are constants, 𝑃𝑃� is a constant, 

real, symmetric, positive-definite 𝑛𝑛𝑛𝑛𝑛𝑛 matrix [18]. 

The advantages of this approach are: - 

- It provides an optimal controller structure including its parameters. 

- It always leads to a stable control system. 

- Relatively fast calculation algorithms are available to solve the nonlinear algebraic 

Riccati equation for 𝑃𝑃� . 

- It is also optimal in the sense of minimizing the variance of the state variables in 

stochastic disorders. 

But it has the following disadvantages: - 

- The structure of the quality function and the selection of the weighting matrices 

are formally restricted. 

- The cost function converges only when 𝑥𝑥 and 𝑢𝑢 are close to zero for 𝑡𝑡 → ∞. 

- It is only applicable to a complete state vector feedback, so the state variables 

must be measured or estimated, the controller structure is specified fixed. 

4.3.1.1 LQR Tuning 

LQR Tuning means choosing values for the weighting matrices 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 to penalize 

the state variables and the control effort. In case of choosing a large value for 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 , the 

control effort will be highly penalized. Similarly, for 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿, if the 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 value is large, this 

means that the system is stabilized with less changes in the states.  The values of the main 

diagonal elements in the 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 are calculated according to this rule of thumb  
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𝑥𝑥𝑇𝑇𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 =  𝑞𝑞11𝑥𝑥12 + ⋯+ 𝑞𝑞1010𝑥𝑥10102     (4-31) 

where 𝑞𝑞11 is inversely proportional to maximum allowed value of 𝑥𝑥1( similar with𝑞𝑞22 ). 

Those are the calculated values of the main diagonal elements of 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 . 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (1,1) =  1 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (3,3) =  1 

 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (2,2) = 1 

 

 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 (1,1) = 1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(2,2) = 0,1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(3,3) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(4,4) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(5,5) = 10 

 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(6,6) = 1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(7,7) = 0,1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(8,8) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(9,9) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(10,10) = 10 
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4.3.2 Feedforward Control 

In this subsection, we will discuss how a feedforward controller can be used to 

accommodate the wind disturbances.  

If the disturbance can be modelled as  

𝑥𝑥𝑑̇𝑑 = 𝐴𝐴�𝑑𝑑𝑥𝑥𝑑𝑑 (4-32) 

𝑧𝑧 = 𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 (4-33) 

The disturbance model can be combined with the model of wind turbine and giving the 

following state space model 

𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�  𝑢𝑢 + 𝐸𝐸�𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 (4-34) 

   𝑦𝑦 = 𝐶𝐶� 𝑥𝑥 + 𝐷𝐷�  𝑢𝑢 + 𝐹𝐹�𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 . (4-35) 

 

This can be written in matrix form as 

 

�
𝑥̇𝑥
𝑥̇𝑥𝑑𝑑
� = �

𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝑑𝑑
0 𝐴𝐴�𝑑𝑑

� �
𝑥𝑥
𝑥𝑥𝑑𝑑� + �𝐵𝐵�0�

𝑢𝑢 (4-36) 

𝑦𝑦 = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝑑𝑑] �
𝑥𝑥
𝑥𝑥𝑑𝑑� (4-37) 

  

Or in a short form as 
𝑥̇𝑥∗ = 𝐴𝐴�∗ 𝑥𝑥∗ + 𝐵𝐵�∗ 𝑢𝑢 (4-38) 

𝑦𝑦 = 𝐶𝐶�∗ 𝑥𝑥∗ (4-39) 

Where  

𝐴𝐴�∗ = �
𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝑑𝑑
0 𝐴𝐴�𝑑𝑑

�,                            𝐵𝐵�∗ = �𝐵𝐵�0�
,                         𝐶𝐶�∗ = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝑑𝑑] 

The previous state equations (4-38) and (4-39) combines the turbine states and the wind 

disturbance states. Those states can be estimated using the  Luenberger full state observer 

as shown in figure 4.5. 
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Figure 4.5: State estimation and state feedback based on Luenberger full state observer 

 

The control input 𝑢𝑢 can be written as  

 

𝑢𝑢 =  − 𝑅𝑅�∗𝑥𝑥�∗ +  𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 (4-40) 

 

where 𝑅𝑅�∗  is the closed loop gain; 𝑅𝑅�∗ = [𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁� ] , 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 is the feedback gain, 𝑁𝑁�  is the 

feedforward gain. 

 

The observed state equation can be written as  

 

𝑥𝑥�̇∗ = 𝐴𝐴�∗ 𝑥𝑥�∗ + 𝐵𝐵�∗ 𝑢𝑢 + 𝐾𝐾�∗𝐶𝐶�∗�𝑥𝑥∗ −  𝑥𝑥�∗� (4-41) 

 

where 𝐾𝐾�∗  is the observer gain;  𝐾𝐾�∗ = [𝐾𝐾�𝑥𝑥 𝐾𝐾�𝑥𝑥𝑥𝑥]𝑇𝑇. 

Equation (4-42) expresses the error in estimation which is the difference between the real 

state and the estimated state. 
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𝑒𝑒∗ = 𝑥𝑥∗ − 𝑥𝑥�∗ =  �
𝑒𝑒∗𝑥𝑥
𝑒𝑒∗𝑥𝑥𝑥𝑥

� =  �
𝑥𝑥
𝑥𝑥𝑑𝑑� − �

𝑥𝑥�
𝑥𝑥�𝑑𝑑
�  (4-42) 

The first-time derivative in the estimation error is 

𝑒̇𝑒∗ = �
𝑒̇𝑒𝑥𝑥
𝑒̇𝑒𝑥𝑥𝑥𝑥

�  = 𝑥̇𝑥∗ − 𝑥̇𝑥�∗ =  �𝐴𝐴�∗ −  𝐾𝐾�∗𝐶𝐶�∗� �
𝑒𝑒𝑥𝑥
𝑒𝑒𝑥𝑥𝑥𝑥�  (5-43) 

 

The state equation of the total system can be obtained by substituting the control input 𝑢𝑢 

into the state equation (4-38). it can be written as  

 

�
𝑥̇𝑥∗

𝑒̇𝑒∗� = �
𝐴𝐴�∗ −  𝐵𝐵�∗𝑅𝑅�∗ 𝐵𝐵�∗𝑅𝑅�∗

0 𝐴𝐴�∗ −  𝐾𝐾�∗𝐶𝐶�∗� �
𝑥𝑥∗

𝑒𝑒∗� + �𝐵𝐵�
∗

0
� 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 (4-44) 

 

If 𝐴𝐴∗,𝐵𝐵�∗,𝐶𝐶∗,𝐾𝐾∗,𝑅𝑅∗ are replaced into equation (4-44) by their definitions, the total system 

state equation will be written in the following detailed form  

 

⎢
⎢
⎢
⎡
𝑥̇𝑥
𝑥̇𝑥𝑑𝑑
𝑒̇𝑒𝑥𝑥
𝑒̇𝑒𝑥𝑥𝑥𝑥⎥

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡𝐴𝐴� − 𝐵𝐵�𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 

0
0
0

    

𝐸𝐸�  𝐶𝐶�𝑑𝑑 − 𝐵𝐵�𝑁𝑁�
𝐴𝐴�𝑑𝑑
0
0

    

𝐵𝐵�𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 
0

𝐴𝐴� − 𝐾𝐾�𝑥𝑥𝐶𝐶�
−𝐾𝐾�𝑥𝑥𝑥𝑥𝐶𝐶�

    

𝐵𝐵�𝑁𝑁�
0

𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑
𝐴𝐴�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑⎦

⎥
⎥
⎤
�

𝑥𝑥
𝑥𝑥𝑑𝑑
𝑒𝑒𝑥𝑥
𝑒𝑒𝑥𝑥𝑥𝑥

�+ �

𝐵𝐵�
0
0
0

� 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 . 

 

(4-45) 

From the previous equation, it is shown that the disturbance states 𝑥𝑥𝑑𝑑 influences the first-

time derivative of the system state 𝑥̇𝑥 through the term 𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐵𝐵�𝑁𝑁� .  

This influence can be neglected if  

𝑁𝑁� =  𝐵𝐵�−1𝐸𝐸�𝐶𝐶�𝑑𝑑 . 
(4-46) 

 

In case of matrix 𝐵𝐵� is not invertible, an optimal disturbance variable response is possible in 

the sense of the smallest error squared using the pseudo inverse  𝐵𝐵�∗ = (𝐵𝐵�𝑇𝑇𝐵𝐵�)−1𝐵𝐵�𝑇𝑇. 

It can be seen from equation (4-44) that the error in the estimation of the disturbance 𝑒𝑒𝑥𝑥𝑥𝑥 

has an effect on the state vector of the control loop via matrix 𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑 . A 100% 

compensation of this error is only possible for the theoretical case of an infinitely rapid 

estimation error dynamics. Due to the stochastic character of the turbulence but the 

variance in the estimation error  𝜎𝜎2 = 𝐸𝐸�𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖� can be minimized by using an optimal 

estimator such as Kalman filter as we discussed before.  
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5. Results  

All the results shown in this chapter are done with the linear model at the trim point 

mentioned in chapter 2. The linearization has also been done for the following trim points 

and the results are shown in the appendix.  

Trim point A: - 

- 15 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 10.45 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

Trim point B: - 

- 25 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 23.47 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

The system states after the combination between the wind turbine model and the 

disturbance model are the wind turbine states that were mentioned in chapter 2 with the 

addition of the following disturbance states: - 

- Turbulence state for blade 1  

- Turbulence state for blade 2  

- Turbulence state for blade 3 

- eddy slicing state 1 for blade 1 

- eddy slicing state 2 for blade 1 

- eddy slicing state 1 for blade 2 

- eddy slicing state 2 for blade 2 

- eddy slicing state 1 for blade 3 

- eddy slicing state 2 for blade 3 

where the measured outputs are: -  

- Angular generator speed  

- Blade 1 edgewise moment  
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- Blade 2 edgewise moment 

-  Blade 3 edgewise moment 

- Blade 1 flapwise moment 

- Blade 2 flapwise moment 

- Blade 3 flapwise moment 

- Tower side-to-side moment 

- Tower fore-aft moment 

- Tower torsional moment 

The system stability has been checked and it shows that the system is unstable because of 

unstable pole. The reason behind this instability issue is a numerical problem with FAST 

caused from the generator azimuth state after applying Multi Blade Coordinate 

transformation (MBC). This unstable response can be shown in the first plot at figure 5.6.  

with applying the LQR as a full state feedback controller, the system becomes stable as 

shown in the third plot in the same figure.  In case of neglecting this state, the wind 

turbine becomes stable as shown in the output response in figure 5.1 and 5.2.    

The implementation of the linearized wind turbine model, Kalman filter and the controller 

structure is shown in MATLAB Simulink. The validations of the Discrete Kalman Filter and 

the feedback/feedforward controller are done first for the linear models then for the 

nonlinear model.  

The advantage of the interface between FAST and Simulink with MATLAB gives the ability 

to use the FAST-nonlinear equations of motion through the FAST S-Function that has been 

incorporated in a Simulink model as shown in figure 6.4. This allows the validation of the 

results in the nonlinear simulation environment.   

5.1 Validation of the Linear Model 

Figure 5.1 and 5.2 show a good correspond between the linear model and the FAST-

nonlinear model for the flapwise moment and the tower fore-aft.  

The first 10 secs in those figures show the open loop response for the linear and nonlinear 

models without command pitch input. The next 50 secs show the open loop response for 

both models with pitch command input of one-degree pitch angle. 
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Figure 5.1: Validation of the linear model for the flapwise moment 

 

 

Figure 5.2: Validation of the linear model for the tower fore-aft moment 

5.2 Validation of the Discrete Kalman Filter with the linear model 

The Discrete Kalman Filter has been implemented in MATLAB Simulink and connected to 

the linearized model in combination with the disturbance model. The simulation has been 

run, the results shows a good and fast estimation for the wind turbine states as shown in 

figure 5.3 for the generator speed DoF and 1st flapwise bending mode DoF.  

The prefect gaussian distribution with zero mean shows a correct implementation of the 

filter. The good quality of the estimation is shown by the low value of the standard 

deviation of the error. 
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Figure 5.3: State estimation for generator speed DoF and 1st flapwise bending mode DoF based on 

Discrete Kalman Filter 

The standard deviation of the error in estimation calculated from time series and plotted 

as a red dashed line in figure 5.3 shows a very fast and stable performance of the Kalman 

filter. It has a value of 0,00011 for the variable speed generator DOF where its value the 

first flapwise bending-mode DOF is zero. The cyan line shown in the same figure shows 

the standard deviation of the error in estimation calculated from the Kalman filter as 

shown in equation (4-10). it is shown that it has a smaller value less than 0,001 KNm for 

the first flapewise bending-mode DOF and less than 0,0005 rpm for the variable speed 

generator DOF.  Results for other states and outputs are shown in figure A.1 and A.2 in 

the appendix. 

The simulation also shows a good estimation of the disturbance states where the standard 

deviations of the errors between the real states and the estimated states are very small as 

shown in figure 5.4 for the turbulence states. 

 

Figure 5.4: Turbulence state estimation for blade 1 
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5.3 Validation of the Discrete Kalman Filter with the nonlinear model 

 

Figure 5.5: State estimation for FAST nonlinear wind turbine 

The operation of the Kalman filter has been also validated with the nonlinear wind turbine 

supported by FAST as a S-Function in Simulink as shown in figure 5.5. Kalman Filter shows 

a good and fast estimation for the nonlinear wind turbine outputs as shown in Figure 5.6 

for the flapwise moment.  

 

figure 5.6: Kalman filter state estimation for the flapwise moment in turbulent atmosphere. 
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5.4 The Controller Performance   

 The stochastic disturbance accommodation controller that is described in the previous 

chapter is implemented in this subsection. The controller structure consists of the feedback 

and the feedforward controller as shown in figure 5.7 where 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 represents the feedback 

gain and 𝐾𝐾�𝐹𝐹𝐹𝐹 represents the feedforward gain. 

 
Figure 5.7: Controller structure in the linear simulation environment 

 

The Controller shows a good behavior in the disturbance accommodation and wind 

turbine stabilization. Table 5.1 shows a comparison between uncontrolled turbine, 

feedforward controlled turbine and feedforward/feedback controlled turbine for the 

generator speed, blade flapwise moment and tower fore-aft moment where the standard 

deviation has a lower value for the feedforward/feedback controlled turbine and a higher 

value for the uncontrolled turbine. Other comparison for all the measured outputs 

including the blade torsion moment for each blade and the system stats are shown in 

figure A.9 the appendix. 

 

 
Uncontrolled 

turbine 
Feedforward control 

Feedforward/Feedback 

control 

Generator speed 34.45 rpm 15.62 rpm 15.62 rpm 

blade Flapwise 6272.9 KNm 5442.65 KNm 240.63 KNm 
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moment   

Tower fore-aft 

moment 
2503.39 KNm 647.23 KNm 633.66 KNm 

Table 5.1: A comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine 

It is noticed that the standard deviation has the same value with the 

feedforward/feedback control and the feedforward control alone for the generator speed 

but the difference between the two controllers in this case is shown in figure 5.9 where 

the generator speed has a higher value near the rated speed with the 

feedforward/feedback control that its value for the feedforward alone. 

 

Figure 5.8 shows the controller behavior on the flap moment where the disturbance 

accommodation is achieved by the feedforward controller and the reduction in the flap 

moment is achieved by the LQR. The instability caused by unstable pole in the output 

response shown in the first two graphs in the same figure and not shown in the third 

graph clarifies that the Kalman Filter and the feedforward gain have no influence on the 

system eigenvalues, only the feedback via 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 has an influence on the eigen values. 

 

Figure 5.9 and figure 5.10 show also the controller behavior on the generator speed and 

the tower fore-aft moment respectively.  

 
Figure 5.8: Comparison of the uncontrolled turbine against the feedforward controlled turbine and 

the feedforward/feedback controlled turbine for The flap moment 
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Figure 5.9: Comparison of the uncontrolled turbine against the feedforward controlled turbine and 

the feedforward/feedback controlled turbine for the generator speed 

 

 

Figure 5.10: Comparison of the uncontrolled turbine against the feedforward controlled turbine 

and the feedforward/feedback controlled turbine The tower fore-aft moment  
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6. Comparative studies with a given "classical load controller" 

The results of this study have to compared with the results of a classical load controller study [20]. 

The blade fatigue damage, the tower fatigue damage, and the rotational speed-strength are used 

as comparison criteria. The fatigue damage for the blade and the tower is calculated using rainflow 

counting that allows the application of Palmgren-Miner linear damage hypothesis or what’s called 

Miner's rule. Miner's rule is one of the most widely models used to calculate the damage caused by 

cyclic loads. It had been proposed by A. Palmgren in 1924. It states that if a body that can stand 

certain amount of damage 𝐷𝐷 experiences to damages 𝐷𝐷𝑖𝑖 where 𝑖𝑖 = 1,2,3, …𝑁𝑁 from 𝑁𝑁 loads, then 

it might be expected that the failure can occur if  

�𝐷𝐷𝑖𝑖 = 𝐷𝐷 
𝑁𝑁

𝑖𝑖=1

 (6-1) 

or  

�
𝐷𝐷𝑖𝑖
𝐷𝐷

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-2) 

This linear cumulative damage concept can be used in fatigue settings by considering the body is 

subjected to 𝑛𝑛1 cycles at cyclic stress 𝜎𝜎1,  𝑛𝑛2 cycles at cyclic stress 𝜎𝜎2,…., 𝑛𝑛𝑛𝑛 cycles at cyclic stress 

𝜎𝜎𝑛𝑛. the number of cycles to failure can be calculated from the 𝑆𝑆 − 𝑁𝑁 curve for the body martialas 

shown in figure 6.1.   

It can be clearly shown that the fractional fatigue damage at stress 𝜎𝜎𝑖𝑖 can be calculated as 𝑛𝑛𝑖𝑖 𝑁𝑁𝑖𝑖�  
and the fatigue failure occurs when  the summtion of the fractional damages reaches the critical 
damage  

𝑛𝑛1
𝑁𝑁1

+
𝑛𝑛2
𝑁𝑁2

+
𝑛𝑛3
𝑁𝑁3

+ ⋯ = �
𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-3) 

Mathematically, the Miner´s rule is given by, 

�
𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-3) 

In order to apply rainflow counting algorithm, the time series need to be first processed into peak-

valley series to extrapolate the data from extrema, i.e., maxima and minima  of a time series. Then 

this count is weighted and added using the Miner rule for damage accumulation.  
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Figure 6.1: S-N material curve example 

  

 

Figure 6.2: Rainflow counting damage estimation procedure [22] 

The comparison shows a good behavior for the modern controller over the classical controller.  The 

fatigue damage for the blade  is reduced by a factor of 2.2  with appllying the feedforward 

controller alone and by a factor of 200 with the feedforward/feedback controller. The fatigue 

damage for the tower doesn’t reduce so much with the feedforward controller but  it reduced by a 

factor of 100 with the feedback/feedforward controller. Table 6.1 shows the comparison between 

the modern controller and the classical controller where the where the standard deviation of the 

rotational speed is used as comparison criteria. The values in the table represent the division 

of the standard deviation before applying the controller to the standard deviation after 

applying the controller at 15 m/s and 25 m/s wind speeds.     

 

 

  
Modern Control Classical control 

15 m/s 0,53 0,55 

25 m/s 0,35 0,97 

Table 6.1: A comparison between the modern controller and the classical controller where the 

standard deviation of the rotational speed is used as comparison criteria at 15 m/s and 25 m/s wind 

d  



 

42 

 

7. Conclusion 

In this thesis an observer based Disturbance Accomodation Controller was designed, implemented 

and tested with the linear and nonlinear models . The controller was benchmarked with a dreived 

set of critera for the well known NREL 5 MW wind turbine. The ability of an observer to estimate 

non-measurable states from a set of measurements using a model of the plant suggests the idea of 

extending the model of the plant by a model of the disturbance. The Discrete Kalman Filter has 

been used as an observer. The results show a good and fast estimation of the filter for the 

disturbance states. A feedforward/feedback controller has been used for counteracting the 

disturbance and stabilizing the wind turbine. The disturbance effect is reduced via a feedforward 

controller where the wind turbine is stabilized  via  a feedback controller.  The LQR is used as a full 

state fedback controller. The results show that the better the estimation of the disturbance states, 

the better the disturbance rejection.   

A comparative study has been done between this study; Modern load controller and a classical load 

controller. The modern controller shows a better performance than the classical controller. 
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A Appendix 

A.1 The Discrete Kalman Filter Performance 

Figure A-1 shows the performance of the Discrete Kalman filter in the estimation of the wind 

turbine states and the disturbance states. The standard deviation for the error between the 

actual state and the estimated state is calculated through a MATLAB script and it’s written upon 

each plot in the same figure.   
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Figure A-1: Time series and frequency distribution of the error in the estimation for the wind turbine 

states and the disturbance states.  
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Figure A-2 shows the time series and frequency distribution of the error in the estimation for the 

following measured outputs: 

1- Angular speed of the HSS and generator (GenSpeed) 

2- Blade 1 edgewise moment (RootMxb1) 

3- Blade 2 edgewise moment (RootMxb2) 

4- Blade 3 edgewise moment (RootMxb3) 

5- Blade 1 flapwise moment (RootMyb1) 

6- Blade 2 flapwise moment (RootMyb2) 

7- Blade 3 flapwise moment (RootMyb3) 

8- Blade 1 pitching moment (RootMzb1) 

9- Blade 2 pitching moment (RootMzb2) 

10- Blade 3 pitching moment (RootMzb3) 

11- Tower base roll (or side-to-side) moment (TwrBsMxt) 

12- Tower base pitching (or fore-aft) moment (TwrBsMyt) 

13- Tower base yaw (or torsional) moment (TwrBsMzt) 

  

 

 



 

48 

 

 

 

Figure A-2: Time series and frequency distribution of the error in the estimation for the measured outputs 
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A.2 The Controller Performance at 15 m/s wind speed conditions    

Trim point: - 

- 15 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 10.45 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

 

Figure A.3:  Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 
feedforward/feedback controlled turbine for the flap moment, 15 m/s wind speed 

 

 

Figure A.4: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the generator speed, 15 m/s wind speed 
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Figure A.5: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the tower fore-aft moment, 15 m/s wind speed, 15 m/s wind 

speed 

 

A.2 The Controller Performance at 25 m/s wind speed trim conditions    

Trim point: - 

- 25 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 23.47 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 
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Figure A.6:  Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the flap moment,  25 m/s wind speed 

 

Figure A.7: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the generator speed, 25 m/s wind speed 
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Figure A.8: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the tower fore-aft moment, 25 m/s wind speed, 

 

Figure A-7 shows a comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine for the wind turbine states, the disturbance state and the 

measured outputs mentioned in the previous section.   

 

 

Figure A.9: A comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine, 18 m/s wind speed 
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Abstract 

The control- and operation-system of a wind turbine must primarily ensure the fully 

automatic operation of wind turbines in a constantly changing environment (gusts, 

turbulence). In addition, economic efficiency charges the control-system to ensure that the 

highest possible efficiency is achieved, and the mechanical loads caused by disturbances 

are minimized. The reduction of loads in wind turbines becomes more important. 

According to the "internal model principle", the control quality or the potential for 

disturbance rejection is increased; the more information there is available on the character 

of the disturbance (turbulence). This principle is directly taken up by the observer-based 

Disturbance Accommodation Control (DAC).  

The ability of an observer to estimate non-measurable states from a set of measurements 

using a model of the plant suggests the idea of extending the model of the plant by a 

model of the disturbance. The states of the disturbance can thus also be reconstructed, 

and an easy-to-determine feedforward control can be implemented to counteract the 

disturbance. In this thesis DAC has to adjusted to suppress stochastic disturbances in wind 

turbines (NREL 5 MW). 





 

1 

1 Introduction  

Wind energy is one of the most growing renewable energy technologies in the world. The 

total worldwide installed capacity increased from 8 MW at 1980 till 18039 MW at 2000. 

In 2016 the installed capacity reached 500 GW. At the same year, the total worldwide 

electricity generated by wind energy was 900 TWh which means more than 4% of the 

global electricity demand. It is expected that the worldwide installed capacity will reach 

800 GW by the end of 2020 [1]. To cover the demand, the size and the rotor diameter 

increased over the last decades as you can see in figure 1.1. On the other hand, the 

increment in the size and the rotor diameter develops new challenges that need to be 

faced. One of those challenges is the increase in the blade mass and therefore the weight. 

Another one is the reduction in the natural frequencies.  

These loads can be reduced by implementing a control system that must primarily ensure 

the fully automatic operation of wind turbines in a constantly changing environment 

(gusts, turbulence). In addition, economic efficiency charges the control-system to ensure 

that the highest possible efficiency is achieved. 

 

 
Figure 1.1: Trend towards increasingly larger wind turbines [2] 

 

According to the "internal model principle", the control quality or the potential for 

disturbance rejection is increased; the more information about the disturbance is known. 

This principle is directly taken up by the observer-based Disturbance Accommodation 

Control. Disturbance Accommodation Control (DAC) is a new branch of modern control 
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theory that address the problems of dynamic modelling of uncertain disturbances which 

act on systems and designing feedback/feedforward controllers which achieve and 

maintain system performance specifications in the face of the disturbances [3]. It was 

developed by Johnson (1976) [3].  The theory was extended to wind turbine control by 

Balas (1998) [4]. He was the first who used it for the rejection of deterministic 

disturbances on the wind turbine [4]. He further elaborated and investigated the method 

in [5].  

The turbulence is a stochastic disturbance that cannot be easily measured, However the 

disturbance states can be estimated. The ability of an observer to estimate non-

measurable states from a set of measurements using a model of the plant suggests the 

idea of extending the model of the plant by a model of the disturbance. The states of the 

disturbance can thus also be reconstructed, and an easy-to-determine a feedforward 

controller that can be implemented to close the control loop, cf. [3]. This method was 

adapted for stochastic disturbances on a motor glider [6] and will be adjusted to suppress 

stochastic disturbances in wind turbines (NREL 5 MW reference turbine) in this thesis. 

The thesis is organized as follows: Chapter two discusses the modelling of wind turbine 

for controller design, the definition of NREL 5 MW baseline turbine and the development 

of a linear representation of the nonlinear wind turbine using the aeroelastic FAST tool. 

Chapter three illustrates the modelling of wind disturbance based on the Dryden wind 

turbulence model. Chapter four explains the state estimation based on the Discrete 

Kalman Filter and the design of the controller based on the disturbance accommodation 

control theory. In chapter five, the controller structure is implemented in a linear and 

nonlinear simulation environment. Chapter six shows a comparative study with a given 

classical load controller. Finally, Chapter seven contains a summary of this thesis.  
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2 Modelling of wind turbines for controller design 

A mathematical model of wind turbine gives the ability to understand the behavior of the 

wind turbine over its region of operation. A horizontal axis onshore wind turbine model 

can consist of a rotor model, a drive train model, a electrical generator model and a tower 

model.  

Nowadays, all described models can be implemented in various analytical tools such as 

FAST, SymDyn and DUWECS. All these tools can Linearize and simulate. The aero-elastic 

simulation tool FAST has been used in this study for modelling of NREL 5 MW Baseline 

turbine. The baseline turbine is modelled nonlinear in FAST but can be linearized for 

analysis or controller design purposes. The definition of NREL 5 MW Baseline turbine will 

be discussed in the following section. 

2.1 NREL 5 MW baseline wind turbine 

This study is based on NREL 5 MW baseline onshore Individual Pitch Control (IPC) wind 

turbine as a reference turbine.  NREL 5 MW baseline wind turbine has been developed by 

New and Renewable Energy Laboratory (NREL) to act as a reference model used for wind 

energy related studies and by wind turbine researches, however it has not been built. It 

has been designed based on the largest wind turbine prototypes in the world at that time; 

Multibrid M5000 and the REpower 5MW -each had a 5-MW rating. Because of 

unavailable detailed information about these machines at that time, available properties 

from other models used in WindPACT, RECOFF, and DOWEC projects have been gathered 

with Multibird M5000 and REpower 5 MW properties to extract the best available and 

most representative specifications [8]. 

NREL 5MW baseline turbine is a three-bladed upwind turbine with a variable-speed, 

active-pitch control system. Table 2.1 shows the baseline properties. 

Rated Power 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades  

Control Variable Speed, Individual Pitch  

Drivetrain High Speed, Multiple-Stage 

Gearbox 

Rotor, Hub Diameter 126 m, 3 m 
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Hub Height 90 m 

Cut-In, Rated, Cut-Out Wind 

Speed  

3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rated Tip Speed 80 m/s 

Rotor Mass 110,000 kg 

Nacelle Mass 240,000 kg 

Tower Mass 347,460 kg 

Table 2.1: NREL 5MW baseline wind Turbine properties [8] 

 

The relationships of the generator speed, rotor power, generator power, rotor thrust, and 

rotor torque are represented as a function of wind speed in figure 2.1.  

Figure 2.1 is divided into four different regions. Region 1½ is the startup region where the 

wind speed is a little bit higher than the cut in speed.  In this region, the generator speed 

is set to the lower limits which is defined to be in between 670 rpm and 30% above this 

value (or 871 rpm). Region 2 is a maximum power tracking control region where the 

generator torque is proportional to the square of the generator speed to maintain a 

constant (optimal) tip speed ratio.  Region 2½ is a linear transition between region 2 and 

region 3 with a torque slope corresponding to the slope of an induction machine. The 

generator-slip percentage in this region is taken to be 10%, according to the value used in 

the DOWEC study.  In region 3, the wind speed is above the rated speed. The generator 

speed is kept constant in this region so that the generator torque is inversely proportional 

to the generator speed [8]. 
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Figure 2.1: wind speed relationships of 5 MW baseline turbine [8] 

2.2 FAST  

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is an aeroelastic Computer-

Aided Engineering (CAE) tool for onshore and offshore horizontal axes wind turbines 

developed by New and Renewable Energy Laboratory (NREL) to simulate the nonlinear 

coupled dynamic response of wind turbines in the time domain. Wind turbines with two 

or three blades, up wind or downwind rotor, pitch or stall regulation, rigid or teetering 

hub, and lattice or tabular tower can be analyzed using FAST [9].  

The FAST Code is the result of combination of three distinct codes; the FAST2 Code for 

two-bladed HAWTs; the FAST3 Code for three-bladed HAWTs; and the AeroDyn 

subroutines for HAWTs with additional modification. The FAST Code have been modified 

since 2003 till now and additional features have been added. The ability of FAST to 

develop a linearized state space model used for control design was added in 2003. An 

interface between FAST and MATLAB Simulink has also been developed in 2004 which 

allows the user to implement a advanced turbine controls in Simulink environment. In 

2005, FAST got Germanischer Lloyd certificate [9].  

Three-bladed horizontal axes wind turbine with 24 degree of freedoms (DOFs) and two- 

bladed HAWT with 22 DOFs can be modelled using FAST.  The three-bladed HAWT  DOFs 

counts for  6 DOF for the platform translational (surge, sway, and heave) and rotational 
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(roll, pitch, and yaw) motions, 4 DOF for the tower flexibility; two are longitudinal modes, 

and two are lateral modes, 1 DOF for the Yaw motion of the nacelle, 2 DOF for the 

variations in generator speed and the drivetrain flexibility, 9 DOF for the blade flexibility;  3 

for the first flapwise bending mode of each blade, 3 for the second flapwise bending 

modes of each blade and 3 for the edgewise motion of each blade. 1 DOF for the rotor-

furl, and 1 DOF for the tail-furl. The two- bladed HAWT has the same DOFs as for the 

three-bladed but with the addition of 1 DOF for the blade teetering and only 6 DOF for 

the blade flexibility;  2 for the first flapwise bending mode of each blade, 2 for the second 

flapwise bending modes of each blade and 2 for the edgewise motion of each blade [9]. 

Here in this thesis, 10 DOFs are chosen to be modelled as shown in table 2.2.   

There are two different modes of operation supported by FAST, Simulation mode and 

Linearization mode. The simulation mode is used for the load analyses where the 

linearization mode is used to develop a linear model from the aeroelastic nonlinear wind 

turbine model. 

2.3 Linearization process using FAST  

The nonlinear description of the wind turbine can be linearized by FAST through two main 

steps, determination of an operating point and derivation about the selected operating 

point.  

2.3.1 Determination of an Operating point (OP) 

A trim point or an operating point is the point at which the system is in steady state where 

the system's state derivatives equal zero. Selecting this point is one of the most important 

steps in the linearization process as the linear representation of the nonlinear system is 

only valid for small perturbations from an operating point. It can be steady state operating 

point for operating turbine as in our case or static-equilibrium operating point for idling 

turbine. It is defined by selecting the system DOFs that need to be modelled and setting 

the initial conditions for control inputs and wind inputs. 

Trim conditions are defined as:  

-  18 m/s steady horizontal wind speed.  

- 5 MW rated power. 

- Region III 
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- 12,1 rpm as initial rotor speed. 

The result pitch angel is 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 14.92°  

The selected DOFs of the linear model are listed in table 2.2.  

System DOFs: - 

𝑥𝑥1 1st tower fore-aft bending mode          

𝑥𝑥2 Variable speed generator  

𝑥𝑥3 1st flapwise bending-mode of blade 1 

𝑥𝑥4 1st flapwise bending-mode of blade 2 

𝑥𝑥5 1st flapwise bending-mode of blade 3 

𝑥𝑥6 First time derivative of 1st tower fore-aft bending mode  

𝑥𝑥7 First time derivative of Variable speed generator 

𝑥𝑥8 First time derivative of 1st flapwise bending-mode of blade 

1 

𝑥𝑥9 First time derivative of 1st flapwise bending-mode of blade 

2 

𝑥𝑥10 First time derivative of 1st flapwise bending-mode of blade 

3 

Table 2.2: Linearized model DOFs 

System inputs: -  

𝑢𝑢1 Blade 1 pitch command 

𝑢𝑢2 Blade 2pitch command 

𝑢𝑢3 Blade 3 pitch command 

Table 2.3: Control inputs 

3.3.2 linearization 

Suppose that the system nonlinear differential equation can be written in the following 

form
 

𝑥̇𝑥 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑓𝑓�𝑥𝑥,𝑢𝑢�    , 𝑦𝑦 = 𝑔𝑔�𝑥𝑥,𝑢𝑢� (2-1) 

where 𝑥𝑥 is the vector of the system states, 𝑢𝑢  is the vector of the control inputs, and 𝑦𝑦 is 

the vector of the system outputs.     
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By applying the Taylor expansion on the nonlinear equation (2-1) and neglecting the 

higher order terms, we get   

𝑥̇𝑥 = 𝑓𝑓�𝑥𝑥,𝑢𝑢� ≈ 𝑓𝑓�𝑥𝑥|𝑜𝑜𝑜𝑜,𝑢𝑢|𝑜𝑜𝑜𝑜� +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 δ𝑥𝑥 +
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

|𝑜𝑜𝑜𝑜 δ𝑢𝑢 (2-2) 

𝑦𝑦 = 𝑔𝑔�𝑥𝑥,𝑢𝑢� ≈ 𝑔𝑔�𝑥𝑥|𝑜𝑜𝑜𝑜,𝑢𝑢|𝑜𝑜𝑜𝑜� +
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 δ𝑥𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑜𝑜𝑜𝑜 δ𝑢𝑢
 

(2-3) 

At steady state conditions  

𝑓𝑓�𝑥𝑥�𝑜𝑜𝑜𝑜, 𝑢𝑢�𝑜𝑜𝑜𝑜� = 0, 𝑔𝑔�𝑥𝑥�𝑜𝑜𝑜𝑜, 𝑢𝑢�𝑜𝑜𝑜𝑜� = 0      

 

The description of the trim point is as following   

 𝛿𝛿𝑥̇𝑥 ≈
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

|𝑜𝑜𝑜𝑜 𝛿𝛿𝑥𝑥 +
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

|𝑜𝑜𝑜𝑜 δ𝑢𝑢 (2-4) 

 𝛿𝛿𝑦𝑦 ≈
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

 δ𝑥𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

 |𝑜𝑜𝑜𝑜δ𝑢𝑢
 

(2-5) 

These two equations can be written in other two forms as  

𝛿𝛿𝑥̇𝑥 = 𝐴𝐴�𝛿𝛿𝑥𝑥 + 𝐵𝐵� 𝛿𝛿𝑢𝑢 (2-6) 

𝛿𝛿𝑦𝑦 = 𝐶𝐶� 𝛿𝛿𝑥𝑥 + 𝐷𝐷�  𝛿𝛿𝑢𝑢
 

(2-7) 

The matrices 𝐴𝐴�, 𝐵𝐵�, 𝐶𝐶�, 𝐷𝐷�  in the last two equations are defined as   

𝐴𝐴� =
𝜕𝜕𝑓𝑓

𝜕𝜕𝑥𝑥
|𝑜𝑜𝑜𝑜,    𝐵𝐵� =

𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢
|𝑜𝑜𝑜𝑜, 𝐶𝐶� =

𝜕𝜕𝑔𝑔

𝜕𝜕𝑥𝑥
|𝑜𝑜𝑜𝑜, 𝐷𝐷� =  

𝜕𝜕𝑔𝑔

𝜕𝜕𝑢𝑢
|𝑜𝑜𝑜𝑜 . 

where 𝐴𝐴� is the state matrix, 𝐵𝐵� is the input matrix, 𝐶𝐶� is the output matrix and 𝐷𝐷� is the input-

transmission matrix. 

FAST applies the same principle for the following nonlinear equation of motion to get the 

linear representation from the nonlinear wind turbine model. 

𝑀𝑀� (𝑞𝑞,𝑢𝑢, 𝑡𝑡)𝑞𝑞 ̈ + 𝑓𝑓 �𝑞𝑞, 𝑞̇𝑞,𝑢𝑢, 𝑧𝑧, 𝑡𝑡� = 0 (2-8) 

where 𝑀𝑀�  is the mass matrix. 𝑓𝑓 is the vector of the nonlinear forcing function, 𝑞𝑞, 𝑞̇𝑞, 𝑞𝑞 ̈ are 

the vectors of the displacements, velocities and accelerations DOFs.  u  is the vector of 

control inputs, 𝑧𝑧 is the vector of the wind disturbances input and 𝑡𝑡 is the time [9]. 

The operating points are defined as 
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𝑞𝑞 = 𝑞𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞𝑞 ,     𝑞̇𝑞 = 𝑞̇𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞̇𝑞,      𝑞̈𝑞 =  𝑞̈𝑞|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑞̈𝑞,     𝑢𝑢 = 𝑢𝑢|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑢𝑢,    

   𝑧𝑧 = 𝑧𝑧|𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑧𝑧 

by substituting these expressions into the equation of motion and applying Taylor 

expansion as it’s mentioned before, we get the following linear equation 

 

𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�  𝑢𝑢 + 𝐸𝐸�𝑧𝑧 (2-9) 

𝑦𝑦 = 𝐶𝐶� 𝑥𝑥 + 𝐷𝐷�  𝑢𝑢 + 𝐹𝐹�𝑧𝑧 (2-10) 

 

The matrices 𝐴𝐴�, 𝐵𝐵�, 𝐶𝐶�, 𝐷𝐷�  into equations (2-9) and (2-10) are defined as 

𝐴𝐴� =  �
0 𝐼𝐼

−𝑀𝑀�−1𝐺𝐺� −𝑀𝑀�−1𝐶𝐶��,     𝐵𝐵� = �
0

𝑀𝑀�−1𝐿𝐿��,       𝐸𝐸� = �
0

𝑀𝑀�−1𝐹𝐹𝑑𝑑����,      𝐶𝐶� = �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷������� 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�������, 

𝐿𝐿� = �𝜕𝜕𝑀𝑀�
𝜕𝜕𝑢𝑢
𝑞̈𝑞 +

𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
� |𝑜𝑜𝑜𝑜 . 

 

where  

𝑀𝑀� : mass matrix; 𝑀𝑀� = 𝑀𝑀|𝑜𝑜𝑜𝑜 , 

𝐶𝐶�: damping / gyroscopic matrix; 𝐶𝐶� = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞

|𝑜𝑜𝑜𝑜 , 

𝐺𝐺�: stiffness matrix; 𝐺𝐺� = �
𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
𝑞̈𝑞 +

𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
� |𝑜𝑜𝑜𝑜 , 

𝐸𝐸�: wind input disturbance matrix, 

𝐹𝐹�: wind input disturbance transmission matrix, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�������: the displacement output matrix wind input disturbance transmission matrix, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������: the velocity output matrix. 

 

Figure 2.2 shows the state space representation of the Linearized model. 
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Figure2.2: FAST linearized state space model 

 

As the wind turbine rotor is spinning by 12.1 rpm, the operating point is periodic that 

leads to periodicity in the state space matrices 𝐴𝐴�,𝐵𝐵� ,𝐶𝐶� , D,𝐸𝐸�  and 𝐹𝐹�. To overcome this 

problem, the linearization process has been done 36 times, every 10-degree azimuth 

angle position and the linearized output model is taken as an average over the number of 

linearization processes per one revolution.      
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3    Modelling of Wind Disturbance  

According to Disturbance Accommodation Control (DAC) theory, the first requirement in 

order to accommodate the disturbance is to modell it. Here in this chapter, we will discuss 

how to model the wind disturbance based on Dryden wind turbulence model. 

The wind speed  𝑉𝑉 can be divided in two components, 

𝑉𝑉 = 𝑉𝑉𝑚𝑚 + 𝑣𝑣 (3-1) 

Where 𝑉𝑉𝑚𝑚 represents the steady mean wind speed and 𝑣𝑣 represents the atmospheric 

turbulence that covers the fluctuations of the wind speed. As the wind speed is 

experienced by a rotating wind turbine, the rotational sampling effect should be taken 

into consideration. Figure 3.1 shows the block diagram of the effective wind model where 

the rotational sampling effect is added to the turbulence model [7]. Each part of this 

model will be discussed in the following subsections. 

 

Figure 3.1: Effective wind model [7] 

3.1 Mean wind speed 

Mean wind speed describes the low frequency variations and is defined as the wind speed 

averaged over a specific time interval at a specific height. It is used to for the assessment 

of the expected energy yield. It is often modelled as a Weibull’s distribution. 

3.2 Turbulence 

The high frequency random variations of the flow towards the wind turbine over a period 

typically 10 min is referred to Turbulence [10]. These variations can be caused by the 

friction of the flow with the earth surface or the thermal effects in the planetary boundary 

layer near the earth surface. The turbulence can’t be avoided but it’s effect can be 

reduced by implementing a good control system that can react to it. 
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3.2.1 Turbulence model  

Turbulence is often considered as a stochastic process which is hard to be modelled in 

deterministic equations. Often, it is sufficient to modell just the characteristics via a Power 

Spectral Density (PSD).  

The Dryden wind Turbulence model is of that kind and will be used here. because of its 

simpler form and its easy access to the time simulation, it’s often used in the aerospace 

industry. The random functions associated with Dryden spectra can be generated by 

passing Gaussian white noise through appropriate form filter as shown in figure 3.2 [6]. 

The model consists of the power spectral density for the horizontal turbulence velocity 𝑢𝑢.  

 

Figure 3.2: Dryden wind turbulence model [6] 

The transfer function of the form filter generating a random signal having Dryden spectra 

from a white noise can be obtained by spectral factorization. it is given as the following 

equation for the horizontal turbulence.       

𝐹𝐹�𝑢𝑢𝑤𝑤 =
𝑢𝑢(𝑠𝑠)
 𝑟𝑟(𝑠𝑠) = �2𝜎𝜎𝑢𝑢2𝑇𝑇𝑢𝑢 .

1
1 + 𝑠𝑠𝑇𝑇𝑢𝑢

 (3-2) 

 where   

𝑇𝑇𝑢𝑢 =
𝐿𝐿𝑢𝑢
𝑉𝑉

=  
1
𝜔𝜔𝑢𝑢 

where 𝐿𝐿𝑢𝑢 is the length scale, 𝜎𝜎 is the standard deviation and it is a measure of the 

turbulence intensity, 𝑇𝑇 is the time constant, 𝑉𝑉 is the steady mean wind speed, 𝑢𝑢 is the 

index for the horizontal turbulence.  𝐿𝐿𝑢𝑢 is modelled as described in [11] where 𝑉𝑉 = 𝑉𝑉𝑚𝑚 =

18 m/s 

Turbulence intensity 𝐼𝐼 describes the level of the random variation from the mean wind 

speed as shown in figure 3.3. It is defined as the ratio of the standard deviation of wind 

speed variations to the mean wind speed 𝑉𝑉𝑚𝑚 in a certain averaging time, usually defined 

over 10 min or 1 h. 
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𝐼𝐼 =  
𝜎𝜎
𝑉𝑉𝑚𝑚

 

 

Figure 3.3: Measured time history of wind speed [12] 

 

This equation can be represented in a state space form as  

 

𝑥̇𝑥𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟
  

(3-4) 

 

𝑧𝑧 = 𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷
 

(3-5) 

where           𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷 = �− 𝑉𝑉
𝐿𝐿𝑢𝑢
�
                              

𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 = �𝜎𝜎�2 𝑉𝑉
𝐿𝐿𝑢𝑢
�  

                        
𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷 = [1] 

Figure 3.4 shows the state space representation of Dryden model.
 

For a three-bladed wind turbine  

𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡
−1
𝑇𝑇𝑢𝑢

0 0

0 −1
𝑇𝑇𝑢𝑢

0

0 0 −1
𝑇𝑇𝑢𝑢⎦
⎥
⎥
⎥
⎤

 ,    𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘

𝐿𝐿𝑢𝑢
 0 0

0 𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘
𝐿𝐿𝑢𝑢

 0

0 0 𝜎𝜎𝑢𝑢�2 𝑉𝑉𝑘𝑘
𝐿𝐿𝑢𝑢

 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ,  𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷 =  �
1 0 0
0 1 0
0 0 1

� 
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To be sure that the turbulence acting on each blade is uncorrelated and the speed of the 

three white noise generators are different.  
 

 
Figure 3.4:  State space representation of Dryden model 

 

3.3 Rotational Sampling Effect 

The rotational sampling effect adds the effect of the rotating blades to the turbulence as 

shown in figure 3.5 where the PSD shows peaks at the rotational frequency  𝑓𝑓1𝑏𝑏 and at higher 

harmonics (𝑓𝑓2𝑏𝑏 = 2𝑓𝑓1𝑏𝑏,𝑓𝑓3𝑏𝑏 = 3𝑓𝑓1𝑏𝑏). 

 For well understanding this effect, we need to discuss the following two cases. The first 

case, when the size of the eddy is much bigger than the rotor swept area. In this case 

there is no consideration for the rotational sampling effect and the observed wind speed 

will be the same for a rotating blade as for a fixed position. The second case, when the 

size of the eddy is smaller than the rotor swept area as we assume in our study. In this 

case, the turbine rotor samples the eddy periodically with each rotation until the eddy 

passes the rotor [13]. The sampling rate is dependent on the rotational speed and the 

loads acting on the blades in this case will be dependent on where the blade is. 
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Figure 3.5: Schematic representation of the power spectral density (PSD) of rotational sampling [14] 

This effect can be described by the meaning of the inverse notch filter. The inverse notch 

filter is a narrow band pass filter and it has an infinite impulse response. It rejects all 

frequencies expect of a stop frequency band centered on a center frequency, which is the 

wind turbine rotational frequency in our case. figure 3.6 shows the frequency response of 

the inverted notch filter. The state space representation of the three inverted notch filters 

for the three blades is:   

                                           𝑥̇𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +  𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (4-6) 

  

𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 

(4-7) 

 

The matrices 𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ,𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ,𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ,𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 are represented as  

 

𝐴𝐴�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0 0 0
−𝛺𝛺2 −2𝑑𝑑𝛺𝛺2 0 0 0 0

0 0 0 1 0 0
0 0 −𝛺𝛺2 −2𝑑𝑑𝛺𝛺2 0 0
0 0 0 0 0 1
0 0 0 0 −𝛺𝛺2 −2𝑑𝑑𝛺𝛺2⎦

⎥
⎥
⎥
⎥
⎤

  , 𝐵𝐵�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 

𝐶𝐶�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = �
0
0
0

 
2𝛺𝛺
0
0

 
0
0
0

 
0

2𝛺𝛺
0

 
0
0
0

 
0
0

2𝛺𝛺
�,         𝐷𝐷�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = �

1 0 0
0 1 0
0 0 1

� 

 

where 𝑑𝑑 represents the damping factor and 𝛺𝛺 the rotational speed. 
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Figure 3.6: Inverted notch filter response.  
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4 Derivation of a controller structure based on a stochastic 

disturbance observer 

4.1 Setting up design criteria 

The high frequency variations in wind speed (turbulence) are the primary reasons for the 

fatigue of the different wind turbine components. Designing a control system to mitigate 

the loads caused by the turbulence will directly translate into a reduction in the fatigue 

damage. This directly leads to increase in the life time of the wind turbine as it will be 

illustrated in chapter 6. 

Another impact of the turbulence on wind turbine is the fluctuations in the rotational 

speed.  In order to increase the rotational speed strength, the turbulence effect should be 

reduced. Chapter 5 shows how much the reduction in the standard deviation of the 

rotational speed before and after applying the controller.  

Briefly, the specific criteria for designing the control system are: -  

1- Decreasing the fatigue damage. 

2- Increasing the rotational speed strength. 
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4.2 State Estimation using Kalman Filter      

The ability of an observer to estimate unmeasurable states from a set of measurements 

with the help of a model of the control path suggests the idea of extending the model of 

the control path by a model of the disturbance and reconstructing the states of the 

disturbance as well. State estimation is the process of determining an estimate of the 

internal system states depending on a set of measurements of system inputs and outputs. 

The estimated states are a combination of the wind turbine estimated states and the 

augmented wind disturbance estimated states. In this thesis, the Discrete Kalman Filter will 

be used as an observer for the estimation process. It is an optimal recursive data 

processing algorithm that gives the optimal estimates of the system states for a linear 

system with additive Gaussian white noise in the process and the measurements which is 

correct in our case [15].  Kalman filter is optimal by minimizing the mean squared error 

between the estimated state and the real state. The recursive operation mode of the 

Kalman filter comes from its ability to depend only the previous estimate to get the 

current estimate rather than depending on the history of all previous estimates. Figure 4.1 

shows how is the Kalman filter estimates the system states with the help of the 

measurement of system’s output. 

 

Figure 4.1: State estimation based on Kalman filter [16] 

For nonlinear systems, different Kalman filters such as the extended Kalman filter and the 

unscented Kalman filter can be used.  Nowadays, Kalman filter is used in many different 

applications such as tracking systems, navigation and many computer vision applications.  
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Before starting the discussion about the operation of the Kalman filter algorithm, we need 

to understand the definitions of what’s called mean or expected value, variance and 

standard deviation. 

Expected value or Mean (𝜇𝜇):- 

For a random variable 𝑋𝑋, Expected value of 𝑋𝑋 is
 
 

𝐸𝐸[𝑋𝑋] = �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖

 (4-1) 

where 𝑥𝑥1 ,𝑥𝑥2 … … … . 𝑥𝑥𝑛𝑛  are the possible realization of 𝑋𝑋 and 𝑃𝑃1 ,𝑃𝑃2 … … … .𝑃𝑃𝑛𝑛   are the 
corresponding probabilities.  If 𝑋𝑋 is a continuous random variable, the Expected value will 
be 

  
𝐸𝐸[𝑋𝑋] = � 𝑥𝑥𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑑𝑑

∞

−∞
 (4-2) 

where 𝑓𝑓𝑋𝑋(𝑥𝑥) is the probability density function.  

Variance: -  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸 ��𝑋𝑋 − 𝐸𝐸(𝑋𝑋)�2� (4-3) 

                = 𝐸𝐸[𝑋𝑋2] − 𝜇𝜇2

 
 

It is a measure of the spread of 𝑋𝑋 around mean.  

Standard deviation: - 

It is the square root of variance. 

𝜎𝜎(𝑋𝑋) = �𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) 
(4-4) 
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4.2.1 The Discrete Kalman Filter derivation  

For the derivation of the Discrete Kalman filter, suppose that the linear system is 

represented in a state space representation as following: 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴�𝑥𝑥𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 +𝑤𝑤𝑘𝑘 (4-5) 

𝑦𝑦𝑘𝑘 = 𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘
 

(4-6) 

Where  

𝑥𝑥𝑘𝑘: (𝑛𝑛 x 1) system state at time 𝑡𝑡𝑘𝑘 

𝑦𝑦𝑘𝑘: (𝑝𝑝 x 1) measured output at time 𝑡𝑡𝑘𝑘 

𝑢𝑢𝑘𝑘: (𝑚𝑚 x 1) control input at time 𝑡𝑡𝑘𝑘 

𝐴𝐴�:  (𝑛𝑛 x 𝑛𝑛) state matrix  

𝐵𝐵�:  (𝑛𝑛 x 𝑚𝑚) input matrix  

𝐶𝐶�:  (𝑝𝑝 x 𝑛𝑛) output matrix  

𝐷𝐷� : (𝑝𝑝 x 𝑚𝑚) state matrix  

𝑤𝑤𝑘𝑘: (𝑛𝑛 x 1) process noise   

𝑣𝑣𝑘𝑘: (𝑝𝑝 x 1) measurement noise  

𝑛𝑛: number of the system states 

𝑝𝑝: number of the system outputs 

𝑚𝑚:number of the system 

 

It is assumed that the process noise 𝑤𝑤𝑘𝑘 and the measurement noise
 
𝑣𝑣𝑘𝑘 are normally 

gaussian distributed and uncorrelated.  

The covariance matrices for 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘are given by  

𝐸𝐸�𝑤𝑤𝑘𝑘𝑤𝑤𝑖𝑖𝑇𝑇� = 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 
𝐸𝐸�𝑣𝑣𝑘𝑘𝑣𝑣𝑖𝑖𝑇𝑇� = 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣 

 
Assume that the prior (or a priori) error in estimation is 𝑒𝑒𝑘𝑘− where   

𝑒𝑒𝑘𝑘− = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− (4-7) 

where 𝑥𝑥�𝑘𝑘− is the prior estimate. 

A Priori means the estimation is done before the measurement and a posteriori means the 

estimation is done after the measurement.  
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The associated error covariance matrix 𝑃𝑃�𝑘𝑘− is  

𝑃𝑃�𝑘𝑘− = 𝐸𝐸�𝑒𝑒𝑘𝑘−𝑒𝑒𝑘𝑘−𝑇𝑇� = 𝐸𝐸 ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− �𝑇𝑇� (4-8) 

where 𝑥𝑥�𝑘𝑘−  is the prior state estimate.  

With the new noisy measurement 𝑦𝑦𝑘𝑘, the predicted state 𝑥𝑥�  
𝑘𝑘  is corrected by a feedback 

of the difference between the measured output vector and the estimated output vector 

�𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− � via a weighting factor  𝐾𝐾�𝑘𝑘 as shown in the following equation  

𝑥𝑥�  
𝑘𝑘 =  𝑥𝑥�𝑘𝑘−  + 𝐾𝐾�𝑘𝑘 �𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− � (4-9) 

This weighting factor is called Kalman gain and it will be determined later. 

The updated error in the estimate or posteriori estimate error is 

𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘 (4-10) 

and the corresponding updated error covariance matrix is 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸�𝑒𝑒𝑘𝑘  𝑒𝑒𝑘𝑘𝑇𝑇� = 𝐸𝐸 ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘�
𝑇𝑇�. (4-11) 

by substituting equation (4-9) into equation (4-11), we get  

𝑃𝑃𝑘𝑘 = 𝐸𝐸�𝑒𝑒𝑘𝑘 𝑒𝑒𝑘𝑘𝑇𝑇� = 

𝐸𝐸 ��𝑥𝑥𝑘𝑘 − [ 𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]� �𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�
𝑇𝑇
� 

(4-12) 

If equation (4-5) is substituted into equation (4-12), the updated error covariance matrix 

can be written as 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸[�𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 − 𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�  

               �𝑥𝑥𝑘𝑘 − [𝑥𝑥�𝑘𝑘− + 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�𝑇𝑇] 

 

(4-13) 

𝑃𝑃�𝑘𝑘 = 𝐸𝐸��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− )− 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 − 𝐶𝐶�𝑥𝑥�𝑘𝑘− )]�� 

                 � �𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− ) − 𝐾𝐾�𝑘𝑘(𝐶𝐶�𝑥𝑥𝑘𝑘 + 𝐷𝐷�𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 −  𝐶𝐶�𝑥𝑥�𝑘𝑘− �]𝑇𝑇� 
(4-14) 

performing this expectation, we get 

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− −  𝐾𝐾�𝑘𝑘𝐶𝐶�𝑃𝑃�𝑘𝑘− −  𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇𝐾𝐾�𝑘𝑘𝑇𝑇 + 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 . (4-15) 

Now, the Kalman gain 𝐾𝐾�𝑘𝑘 needs to be determined such that 𝑃𝑃�𝑘𝑘 is minimized. This can be 

done using the straightforward differential calculus approach [17]. This approach can be 
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applied by differentiating the trace of 𝑃𝑃�𝑘𝑘 which represents the sum of the mean square 

errors in the estimate with respect to 𝐾𝐾�𝑘𝑘 and setting this derivative equal to zero 

𝑑𝑑(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑃𝑃�𝑘𝑘)
𝑑𝑑𝐾𝐾�𝑘𝑘

=  −2�𝐶𝐶�𝑃𝑃�𝑘𝑘−�
𝑇𝑇+ 2 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 (4-16) 

−2�𝐶𝐶�𝑃𝑃�𝑘𝑘−�
𝑇𝑇+ 2 𝐾𝐾�𝑘𝑘�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�𝐾𝐾�𝑘𝑘𝑇𝑇 = 0

 

(4-17) 

𝐾𝐾�𝑘𝑘 = 𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�
−1

 

(4-18) 

Substituting the Kalman gain  𝐾𝐾�𝑘𝑘 into equation (4-15), we get 

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− −  𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇�𝐶𝐶�𝑃𝑃�𝑘𝑘−𝐶𝐶�𝑇𝑇 + 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣�
−1𝐶𝐶�𝑃𝑃�𝑘𝑘− (4-19) 

or  

𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑘𝑘− − 𝐾𝐾�𝑘𝑘  𝐶𝐶�𝑃𝑃�𝑘𝑘− (4-20) 

𝑃𝑃�𝑘𝑘 = �𝐼𝐼 − 𝐾𝐾�𝑘𝑘  𝐶𝐶��𝑃𝑃�𝑘𝑘−

 
(4-21) 

The next estimation can be obtained using equation (4-4) with ignoring 𝑤𝑤𝑘𝑘 because it has 

zero mean and it is not correlated with any of the previous values 

𝑥𝑥�𝑘𝑘∗1− = 𝐴𝐴�𝑥𝑥�𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 . (4-22) 

 The associated error is  

𝑒𝑒𝑘𝑘∗1− = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥�𝑘𝑘∗1−  

            𝑒𝑒𝑘𝑘∗1−  = 𝐴𝐴�𝑥𝑥𝑘𝑘 + 𝐵𝐵�𝑢𝑢𝑘𝑘+1 + 𝐷𝐷�𝑢𝑢𝑘𝑘+1 + 𝑤𝑤𝑘𝑘 −  𝐴𝐴�𝑥𝑥�𝑘𝑘 − 𝐵𝐵�𝑢𝑢𝑘𝑘+1 − 𝐷𝐷�𝑢𝑢𝑘𝑘+1 

𝑒𝑒𝑘𝑘∗1− = 𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘
 

(4-23) 

and the associated error covariance matrix in this case is  

 𝑃𝑃�𝑘𝑘∗1− = 𝐸𝐸 [𝑒𝑒𝑘𝑘∗1−  𝑒𝑒𝑘𝑘∗1− 𝑇𝑇]
 

                             𝑃𝑃�𝑘𝑘∗1− = 𝐸𝐸 ��𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘��𝐴𝐴�𝑒𝑒𝑘𝑘 + 𝑤𝑤𝑘𝑘�
𝑇𝑇� 

      𝑃𝑃�𝑘𝑘∗1− = 𝐴𝐴 �𝑃𝑃�𝑘𝑘𝐴𝐴�𝑇𝑇 + 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 .
 

(4-24) 

Figure 4.2 shows the operation of the Kalman filter algorithm  
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Figure 4.2: Kalman filter algorithm 

4.2.2 Disturbance Observation 

The model required for a disturbance observation using the Discrete Kalman filter consists 

of the combination of the linearized wind turbine model and the disturbance model as 

shown in figure 4.3. where 𝑤𝑤𝑘𝑘 and 𝑤𝑤𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 represent the process noise and the turbulence 

noise respectively.   𝑊𝑊𝑊𝑊 is an index for Wind Turbine and 𝐷𝐷𝐷𝐷𝐷𝐷 is an index for Disturbance. 

�
𝑥̇𝑥𝑊𝑊𝑊𝑊
𝑥̇𝑥𝐷𝐷𝐷𝐷𝐷𝐷

� = �
𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷
0 𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷

� �
𝑥𝑥𝑊𝑊𝑊𝑊
𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷� + �𝐵𝐵�0�

𝑢𝑢 + �
0
𝐵𝐵�𝐷𝐷𝐷𝐷𝐷𝐷

� 𝑟𝑟 + �
𝑤𝑤𝑘𝑘
𝑤𝑤𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷

� (4-25) 

𝑦𝑦𝑊𝑊𝑊𝑊 = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝐷𝐷𝐷𝐷𝐷𝐷] �
𝑥𝑥𝑊𝑊𝑊𝑊
𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷� + 𝐷𝐷�  𝑢𝑢 + 𝑣𝑣𝑘𝑘

 
(4-26) 

 

 

Figure 4.3: The required model for state estimation using Kalman filter  
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4.2.3 Kalman Filter Tuning 

The tuning of the Kalman filter is done via determination of the process noise covariance 

matrix 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 and the measurement noise covariance matrix 𝑅𝑅�𝑣𝑣𝑣𝑣𝑟𝑟 .  

For the tuning process, often just the main diagonal elements 𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣 are engaged 

where the other elements are neglected.  

The measurement noise covariance matrix is determined through the error in the 

measurement. This error can be obtained from the sensors datasheet. The approximated 

measured noise is modelled by the following values  

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(1,1) =  6,25 ∗ 10−6 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(3,3) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(5,5) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(7,7) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(9,9) =  0,0001 

 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(2,2) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(4,4) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(6,6) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(8,8) =  0,0001 

𝑅𝑅�𝑣𝑣𝑣𝑣𝑣𝑣(10,10) =  0,0001 

 

The process noise covariance matrix is not so easy to be determined because there is no 

specific way to get it. Often this noise is selected via trial and error. One of these trials, 

which has been used here uses the model uncertainties caused by the preciosity of the un 

models. This can be shown in figure 4.4 where a66, a77, a88, a99 and a 1010 represents 

the average model uncertainties over the azimuth for 

𝐴𝐴�(6,6), 𝐴𝐴�(7,7), 𝐴𝐴�(8,8),  𝐴𝐴�(9,9), 𝐴𝐴�(10,10) respectively.  

These are the values of the diagonal elements of the process noise covariance matrix 

where the first ten elements are for the wind turbine states and the other 9 elements are 

for the disturbance states. 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(1,1) = 6 ∗ 10−9 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(2,2) = 3 ∗ 10−8 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(3,3) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(6,6) = 6 ∗ 10−9 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(7,7) = 3 ∗ 10−8 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(8,8) = 9 ∗ 10−6 
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𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(4,4) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(5,5) = 9 ∗ 10−6 

 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(9,9) = 9 ∗ 10−6 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(10,10) = 3 ∗ 10−7 

 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(11,11) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(13,13) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(14,14) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(15,15) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(17,17) =0.0006666 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(12,12) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(13,13) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(14,14) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(16,16) = 3 ∗ 10−7 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(18,18) =0.00066667 

𝑄𝑄�𝑣𝑣𝑣𝑣𝑣𝑣(19,19) =0.00066667 

 

 

 

Figure 4.4: Determination of the process noise covariance matrix 
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4.3 Controller structure based on stochastic Disturbance accommodation 

control  

As it is discussed before, the second requirement in the disturbance accommodation 

control theory is to design a feedback/feedforward controller in order to stabilize the 

system and accommodate the disturbance. In our case, the Linear Quadratic Regulator 

(LQR) will be used as a full state feedback controller for tuning the wind turbine plant and 

a feedforward controller to accommodate the wind disturbances. 

4.3.1 linear quadratic regulator 

The linear quadratic regulator design is as an important design technique for linear 

systems since the sixties. There are two main objectives of LQR design, the first objective is 

to find a full state feedback controller to stabilize the wind turbine based on the turbine 

estimated states, which have been obtained from the Kalman filter, as we discussed in the 

previous section, where the second objective is to minimize the cost function 𝐽𝐽 that has 

been given in equation (4-27). This combination of an optimal estimator and an optimal 

regulator is called linear Quadratic Gaussian (LQG). 

Due to the separation principle, the estimation process via an observer e.g. Kalman Filter 

can be done separately to the controller tuning.   

According to Kalman, a linear time - invariant system is optimal if the following quadratic 

cost function is minimized 

𝐽𝐽 =  ∫ (𝑥𝑥𝑇𝑇𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥∞
0 + 𝑢𝑢𝑇𝑇𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢)𝑑𝑑𝑑𝑑 . (4-27) 

where 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 are constant weighting matrices and must meet the following 

conditions:
 -  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿  must be positive definite (regular and symmetrical) 

- 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 must be positive semidefinite (all principal determinants ≥ 0) 

 
Therefore, no negative cost components will occur. By appropriate selection of the 

weighting matrices, it can be a more meaningful compromise between the system states 

and the control effort [18].  
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The solution of the above variational problem (minimization of the cost function under the 

constraint of the state equations) leads to Hamiltonian canonical equations, which are 

solved by linear approach. From this, the cost function is minimized for the control law 

𝑢𝑢 =  −𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿  𝑥𝑥 (1) 
 

(4-28) 

The 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 is defined as  

𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿−1𝐵𝐵�𝑇𝑇𝑃𝑃�  (2) 

 

(4-29) 

where 𝑃𝑃� is an (𝑛𝑛𝑛𝑛𝑛𝑛) matrix and equal to the solution of the following non-linear Riccati 

differential equation 

𝑃𝑃�̇ = 𝑃𝑃�𝐴𝐴� + 𝐴𝐴�𝑇𝑇𝑃𝑃� − 𝑃𝑃�𝐵𝐵�𝑅𝑅�−1𝐵𝐵�𝑇𝑇𝑃𝑃� + 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 = 0 .
 

(4-30) 

If the process is fully controllable and 𝐴𝐴�,𝐵𝐵� ,𝐶𝐶� ,𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 are constants, 𝑃𝑃� is a constant, 

real, symmetric, positive-definite 𝑛𝑛𝑛𝑛𝑛𝑛 matrix [18]. 

The advantages of this approach are: - 

- It provides an optimal controller structure including its parameters. 

- It always leads to a stable control system. 

- Relatively fast calculation algorithms are available to solve the nonlinear algebraic 

Riccati equation for 𝑃𝑃� . 

- It is also optimal in the sense of minimizing the variance of the state variables in 

stochastic disorders. 

But it has the following disadvantages: - 

- The structure of the quality function and the selection of the weighting matrices 

are formally restricted. 

- The cost function converges only when 𝑥𝑥 and 𝑢𝑢 are close to zero for 𝑡𝑡 → ∞. 

- It is only applicable to a complete state vector feedback, so the state variables 

must be measured or estimated, the controller structure is specified fixed. 

4.3.1.1 LQR Tuning 

LQR Tuning means choosing values for the weighting matrices 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 to penalize 

the state variables and the control effort. In case of choosing a large value for 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 , the 

control effort will be highly penalized. Similarly, for 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿, if the 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 value is large, this 

means that the system is stabilized with less changes in the states.  The values of the main 

diagonal elements in the 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 are calculated according to this rule of thumb  
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𝑥𝑥𝑇𝑇𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 =  𝑞𝑞11𝑥𝑥12 + ⋯+ 𝑞𝑞1010𝑥𝑥10102     (4-31) 

where 𝑞𝑞11 is inversely proportional to maximum allowed value of 𝑥𝑥1( similar with𝑞𝑞22 ). 

Those are the calculated values of the main diagonal elements of 𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 . 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (1,1) =  1 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (3,3) =  1 

 

𝑅𝑅�𝐿𝐿𝐿𝐿𝐿𝐿 (2,2) = 1 

 

 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿 (1,1) = 1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(2,2) = 0,1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(3,3) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(4,4) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(5,5) = 10 

 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(6,6) = 1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(7,7) = 0,1 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(8,8) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(9,9) = 10 

𝑄𝑄�𝐿𝐿𝐿𝐿𝐿𝐿(10,10) = 10 
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4.3.2 Feedforward Control 

In this subsection, we will discuss how a feedforward controller can be used to 

accommodate the wind disturbances.  

If the disturbance can be modelled as  

𝑥𝑥𝑑̇𝑑 = 𝐴𝐴�𝑑𝑑𝑥𝑥𝑑𝑑 (4-32) 

𝑧𝑧 = 𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 (4-33) 

The disturbance model can be combined with the model of wind turbine and giving the 

following state space model 

𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵�  𝑢𝑢 + 𝐸𝐸�𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 (4-34) 

   𝑦𝑦 = 𝐶𝐶� 𝑥𝑥 + 𝐷𝐷�  𝑢𝑢 + 𝐹𝐹�𝐶𝐶�𝑑𝑑𝑥𝑥𝑑𝑑 . (4-35) 

 

This can be written in matrix form as 

 

�
𝑥̇𝑥
𝑥̇𝑥𝑑𝑑
� = �

𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝑑𝑑
0 𝐴𝐴�𝑑𝑑

� �
𝑥𝑥
𝑥𝑥𝑑𝑑� + �𝐵𝐵�0�

𝑢𝑢 (4-36) 

𝑦𝑦 = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝑑𝑑] �
𝑥𝑥
𝑥𝑥𝑑𝑑� (4-37) 

  

Or in a short form as 
𝑥̇𝑥∗ = 𝐴𝐴�∗ 𝑥𝑥∗ + 𝐵𝐵�∗ 𝑢𝑢 (4-38) 

𝑦𝑦 = 𝐶𝐶�∗ 𝑥𝑥∗ (4-39) 

Where  

𝐴𝐴�∗ = �
𝐴𝐴� 𝐸𝐸�𝐶𝐶�𝑑𝑑
0 𝐴𝐴�𝑑𝑑

�,                            𝐵𝐵�∗ = �𝐵𝐵�0�
,                         𝐶𝐶�∗ = [𝐶𝐶� 𝐹𝐹�𝐶𝐶�𝑑𝑑] 

The previous state equations (4-38) and (4-39) combines the turbine states and the wind 

disturbance states. Those states can be estimated using the  Luenberger full state observer 

as shown in figure 4.5. 
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Figure 4.5: State estimation and state feedback based on Luenberger full state observer 

 

The control input 𝑢𝑢 can be written as  

 

𝑢𝑢 =  − 𝑅𝑅�∗𝑥𝑥�∗ +  𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 (4-40) 

 

where 𝑅𝑅�∗  is the closed loop gain; 𝑅𝑅�∗ = [𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁� ] , 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 is the feedback gain, 𝑁𝑁�  is the 

feedforward gain. 

 

The observed state equation can be written as  

 

𝑥𝑥�̇∗ = 𝐴𝐴�∗ 𝑥𝑥�∗ + 𝐵𝐵�∗ 𝑢𝑢 + 𝐾𝐾�∗𝐶𝐶�∗�𝑥𝑥∗ −  𝑥𝑥�∗� (4-41) 

 

where 𝐾𝐾�∗  is the observer gain;  𝐾𝐾�∗ = [𝐾𝐾�𝑥𝑥 𝐾𝐾�𝑥𝑥𝑥𝑥]𝑇𝑇. 

Equation (4-42) expresses the error in estimation which is the difference between the real 

state and the estimated state. 
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𝑒𝑒∗ = 𝑥𝑥∗ − 𝑥𝑥�∗ =  �
𝑒𝑒∗𝑥𝑥
𝑒𝑒∗𝑥𝑥𝑥𝑥

� =  �
𝑥𝑥
𝑥𝑥𝑑𝑑� − �

𝑥𝑥�
𝑥𝑥�𝑑𝑑
�  (4-42) 

The first-time derivative in the estimation error is 

𝑒̇𝑒∗ = �
𝑒̇𝑒𝑥𝑥
𝑒̇𝑒𝑥𝑥𝑥𝑥

�  = 𝑥̇𝑥∗ − 𝑥̇𝑥�∗ =  �𝐴𝐴�∗ −  𝐾𝐾�∗𝐶𝐶�∗� �
𝑒𝑒𝑥𝑥
𝑒𝑒𝑥𝑥𝑥𝑥�  (5-43) 

 

The state equation of the total system can be obtained by substituting the control input 𝑢𝑢 

into the state equation (4-38). it can be written as  

 

�
𝑥̇𝑥∗

𝑒̇𝑒∗� = �
𝐴𝐴�∗ −  𝐵𝐵�∗𝑅𝑅�∗ 𝐵𝐵�∗𝑅𝑅�∗

0 𝐴𝐴�∗ −  𝐾𝐾�∗𝐶𝐶�∗� �
𝑥𝑥∗

𝑒𝑒∗� + �𝐵𝐵�
∗

0
� 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 (4-44) 

 

If 𝐴𝐴∗,𝐵𝐵�∗,𝐶𝐶∗,𝐾𝐾∗,𝑅𝑅∗ are replaced into equation (4-44) by their definitions, the total system 

state equation will be written in the following detailed form  

 

⎢
⎢
⎢
⎡
𝑥̇𝑥
𝑥̇𝑥𝑑𝑑
𝑒̇𝑒𝑥𝑥
𝑒̇𝑒𝑥𝑥𝑥𝑥⎥

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡𝐴𝐴� − 𝐵𝐵�𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 

0
0
0

    

𝐸𝐸�  𝐶𝐶�𝑑𝑑 − 𝐵𝐵�𝑁𝑁�
𝐴𝐴�𝑑𝑑
0
0

    

𝐵𝐵�𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 
0

𝐴𝐴� − 𝐾𝐾�𝑥𝑥𝐶𝐶�
−𝐾𝐾�𝑥𝑥𝑥𝑥𝐶𝐶�

    

𝐵𝐵�𝑁𝑁�
0

𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑
𝐴𝐴�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑⎦

⎥
⎥
⎤
�

𝑥𝑥
𝑥𝑥𝑑𝑑
𝑒𝑒𝑥𝑥
𝑒𝑒𝑥𝑥𝑥𝑥

�+ �

𝐵𝐵�
0
0
0

� 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 . 

 

(4-45) 

From the previous equation, it is shown that the disturbance states 𝑥𝑥𝑑𝑑 influences the first-

time derivative of the system state 𝑥̇𝑥 through the term 𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐵𝐵�𝑁𝑁� .  

This influence can be neglected if  

𝑁𝑁� =  𝐵𝐵�−1𝐸𝐸�𝐶𝐶�𝑑𝑑 . 
(4-46) 

 

In case of matrix 𝐵𝐵� is not invertible, an optimal disturbance variable response is possible in 

the sense of the smallest error squared using the pseudo inverse  𝐵𝐵�∗ = (𝐵𝐵�𝑇𝑇𝐵𝐵�)−1𝐵𝐵�𝑇𝑇. 

It can be seen from equation (4-44) that the error in the estimation of the disturbance 𝑒𝑒𝑥𝑥𝑥𝑥 

has an effect on the state vector of the control loop via matrix 𝐸𝐸�𝐶𝐶�𝑑𝑑 − 𝐾𝐾�𝑥𝑥𝐹𝐹�𝐶𝐶�𝑑𝑑 . A 100% 

compensation of this error is only possible for the theoretical case of an infinitely rapid 

estimation error dynamics. Due to the stochastic character of the turbulence but the 

variance in the estimation error  𝜎𝜎2 = 𝐸𝐸�𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖� can be minimized by using an optimal 

estimator such as Kalman filter as we discussed before.  
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5. Results  

All the results shown in this chapter are done with the linear model at the trim point 

mentioned in chapter 2. The linearization has also been done for the following trim points 

and the results are shown in the appendix.  

Trim point A: - 

- 15 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 10.45 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

Trim point B: - 

- 25 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 23.47 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

The system states after the combination between the wind turbine model and the 

disturbance model are the wind turbine states that were mentioned in chapter 2 with the 

addition of the following disturbance states: - 

- Turbulence state for blade 1  

- Turbulence state for blade 2  

- Turbulence state for blade 3 

- eddy slicing state 1 for blade 1 

- eddy slicing state 2 for blade 1 

- eddy slicing state 1 for blade 2 

- eddy slicing state 2 for blade 2 

- eddy slicing state 1 for blade 3 

- eddy slicing state 2 for blade 3 

where the measured outputs are: -  

- Angular generator speed  

- Blade 1 edgewise moment  
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- Blade 2 edgewise moment 

-  Blade 3 edgewise moment 

- Blade 1 flapwise moment 

- Blade 2 flapwise moment 

- Blade 3 flapwise moment 

- Tower side-to-side moment 

- Tower fore-aft moment 

- Tower torsional moment 

The system stability has been checked and it shows that the system is unstable because of 

unstable pole. The reason behind this instability issue is a numerical problem with FAST 

caused from the generator azimuth state after applying Multi Blade Coordinate 

transformation (MBC). This unstable response can be shown in the first plot at figure 5.6.  

with applying the LQR as a full state feedback controller, the system becomes stable as 

shown in the third plot in the same figure.  In case of neglecting this state, the wind 

turbine becomes stable as shown in the output response in figure 5.1 and 5.2.    

The implementation of the linearized wind turbine model, Kalman filter and the controller 

structure is shown in MATLAB Simulink. The validations of the Discrete Kalman Filter and 

the feedback/feedforward controller are done first for the linear models then for the 

nonlinear model.  

The advantage of the interface between FAST and Simulink with MATLAB gives the ability 

to use the FAST-nonlinear equations of motion through the FAST S-Function that has been 

incorporated in a Simulink model as shown in figure 6.4. This allows the validation of the 

results in the nonlinear simulation environment.   

5.1 Validation of the Linear Model 

Figure 5.1 and 5.2 show a good correspond between the linear model and the FAST-

nonlinear model for the flapwise moment and the tower fore-aft.  

The first 10 secs in those figures show the open loop response for the linear and nonlinear 

models without command pitch input. The next 50 secs show the open loop response for 

both models with pitch command input of one-degree pitch angle. 
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Figure 5.1: Validation of the linear model for the flapwise moment 

 

 

Figure 5.2: Validation of the linear model for the tower fore-aft moment 

5.2 Validation of the Discrete Kalman Filter with the linear model 

The Discrete Kalman Filter has been implemented in MATLAB Simulink and connected to 

the linearized model in combination with the disturbance model. The simulation has been 

run, the results shows a good and fast estimation for the wind turbine states as shown in 

figure 5.3 for the generator speed DoF and 1st flapwise bending mode DoF.  

The prefect gaussian distribution with zero mean shows a correct implementation of the 

filter. The good quality of the estimation is shown by the low value of the standard 

deviation of the error. 



 

35 

 

 

Figure 5.3: State estimation for generator speed DoF and 1st flapwise bending mode DoF based on 

Discrete Kalman Filter 

The standard deviation of the error in estimation calculated from time series and plotted 

as a red dashed line in figure 5.3 shows a very fast and stable performance of the Kalman 

filter. It has a value of 0,00011 for the variable speed generator DOF where its value the 

first flapwise bending-mode DOF is zero. The cyan line shown in the same figure shows 

the standard deviation of the error in estimation calculated from the Kalman filter as 

shown in equation (4-10). it is shown that it has a smaller value less than 0,001 KNm for 

the first flapewise bending-mode DOF and less than 0,0005 rpm for the variable speed 

generator DOF.  Results for other states and outputs are shown in figure A.1 and A.2 in 

the appendix. 

The simulation also shows a good estimation of the disturbance states where the standard 

deviations of the errors between the real states and the estimated states are very small as 

shown in figure 5.4 for the turbulence states. 

 

Figure 5.4: Turbulence state estimation for blade 1 
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5.3 Validation of the Discrete Kalman Filter with the nonlinear model 

 

Figure 5.5: State estimation for FAST nonlinear wind turbine 

The operation of the Kalman filter has been also validated with the nonlinear wind turbine 

supported by FAST as a S-Function in Simulink as shown in figure 5.5. Kalman Filter shows 

a good and fast estimation for the nonlinear wind turbine outputs as shown in Figure 5.6 

for the flapwise moment.  

 

figure 5.6: Kalman filter state estimation for the flapwise moment in turbulent atmosphere. 
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5.4 The Controller Performance   

 The stochastic disturbance accommodation controller that is described in the previous 

chapter is implemented in this subsection. The controller structure consists of the feedback 

and the feedforward controller as shown in figure 5.7 where 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 represents the feedback 

gain and 𝐾𝐾�𝐹𝐹𝐹𝐹 represents the feedforward gain. 

 
Figure 5.7: Controller structure in the linear simulation environment 

 

The Controller shows a good behavior in the disturbance accommodation and wind 

turbine stabilization. Table 5.1 shows a comparison between uncontrolled turbine, 

feedforward controlled turbine and feedforward/feedback controlled turbine for the 

generator speed, blade flapwise moment and tower fore-aft moment where the standard 

deviation has a lower value for the feedforward/feedback controlled turbine and a higher 

value for the uncontrolled turbine. Other comparison for all the measured outputs 

including the blade torsion moment for each blade and the system stats are shown in 

figure A.9 the appendix. 

 

 
Uncontrolled 

turbine 
Feedforward control 

Feedforward/Feedback 

control 

Generator speed 34.45 rpm 15.62 rpm 15.62 rpm 

blade Flapwise 6272.9 KNm 5442.65 KNm 240.63 KNm 
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moment   

Tower fore-aft 

moment 
2503.39 KNm 647.23 KNm 633.66 KNm 

Table 5.1: A comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine 

It is noticed that the standard deviation has the same value with the 

feedforward/feedback control and the feedforward control alone for the generator speed 

but the difference between the two controllers in this case is shown in figure 5.9 where 

the generator speed has a higher value near the rated speed with the 

feedforward/feedback control that its value for the feedforward alone. 

 

Figure 5.8 shows the controller behavior on the flap moment where the disturbance 

accommodation is achieved by the feedforward controller and the reduction in the flap 

moment is achieved by the LQR. The instability caused by unstable pole in the output 

response shown in the first two graphs in the same figure and not shown in the third 

graph clarifies that the Kalman Filter and the feedforward gain have no influence on the 

system eigenvalues, only the feedback via 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 has an influence on the eigen values. 

 

Figure 5.9 and figure 5.10 show also the controller behavior on the generator speed and 

the tower fore-aft moment respectively.  

 
Figure 5.8: Comparison of the uncontrolled turbine against the feedforward controlled turbine and 

the feedforward/feedback controlled turbine for The flap moment 
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Figure 5.9: Comparison of the uncontrolled turbine against the feedforward controlled turbine and 

the feedforward/feedback controlled turbine for the generator speed 

 

 

Figure 5.10: Comparison of the uncontrolled turbine against the feedforward controlled turbine 

and the feedforward/feedback controlled turbine The tower fore-aft moment  
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6. Comparative studies with a given "classical load controller" 

The results of this study have to compared with the results of a classical load controller study [20]. 

The blade fatigue damage, the tower fatigue damage, and the rotational speed-strength are used 

as comparison criteria. The fatigue damage for the blade and the tower is calculated using rainflow 

counting that allows the application of Palmgren-Miner linear damage hypothesis or what’s called 

Miner's rule. Miner's rule is one of the most widely models used to calculate the damage caused by 

cyclic loads. It had been proposed by A. Palmgren in 1924. It states that if a body that can stand 

certain amount of damage 𝐷𝐷 experiences to damages 𝐷𝐷𝑖𝑖 where 𝑖𝑖 = 1,2,3, …𝑁𝑁 from 𝑁𝑁 loads, then 

it might be expected that the failure can occur if  

�𝐷𝐷𝑖𝑖 = 𝐷𝐷 
𝑁𝑁

𝑖𝑖=1

 (6-1) 

or  

�
𝐷𝐷𝑖𝑖
𝐷𝐷

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-2) 

This linear cumulative damage concept can be used in fatigue settings by considering the body is 

subjected to 𝑛𝑛1 cycles at cyclic stress 𝜎𝜎1,  𝑛𝑛2 cycles at cyclic stress 𝜎𝜎2,…., 𝑛𝑛𝑛𝑛 cycles at cyclic stress 

𝜎𝜎𝑛𝑛. the number of cycles to failure can be calculated from the 𝑆𝑆 − 𝑁𝑁 curve for the body martialas 

shown in figure 6.1.   

It can be clearly shown that the fractional fatigue damage at stress 𝜎𝜎𝑖𝑖 can be calculated as 𝑛𝑛𝑖𝑖 𝑁𝑁𝑖𝑖�  
and the fatigue failure occurs when  the summtion of the fractional damages reaches the critical 
damage  

𝑛𝑛1
𝑁𝑁1

+
𝑛𝑛2
𝑁𝑁2

+
𝑛𝑛3
𝑁𝑁3

+ ⋯ = �
𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-3) 

Mathematically, the Miner´s rule is given by, 

�
𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

= 1 
𝑁𝑁

𝑖𝑖=1

 (6-3) 

In order to apply rainflow counting algorithm, the time series need to be first processed into peak-

valley series to extrapolate the data from extrema, i.e., maxima and minima  of a time series. Then 

this count is weighted and added using the Miner rule for damage accumulation.  
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Figure 6.1: S-N material curve example 

  

 

Figure 6.2: Rainflow counting damage estimation procedure [22] 

The comparison shows a good behavior for the modern controller over the classical controller.  The 

fatigue damage for the blade  is reduced by a factor of 2.2  with appllying the feedforward 

controller alone and by a factor of 200 with the feedforward/feedback controller. The fatigue 

damage for the tower doesn’t reduce so much with the feedforward controller but  it reduced by a 

factor of 100 with the feedback/feedforward controller. Table 6.1 shows the comparison between 

the modern controller and the classical controller where the where the standard deviation of the 

rotational speed is used as comparison criteria. The values in the table represent the division 

of the standard deviation before applying the controller to the standard deviation after 

applying the controller at 15 m/s and 25 m/s wind speeds.     

 

 

  
Modern Control Classical control 

15 m/s 0,53 0,55 

25 m/s 0,35 0,97 

Table 6.1: A comparison between the modern controller and the classical controller where the 

standard deviation of the rotational speed is used as comparison criteria at 15 m/s and 25 m/s wind 

d  
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7. Conclusion 

In this thesis an observer based Disturbance Accomodation Controller was designed, implemented 

and tested with the linear and nonlinear models . The controller was benchmarked with a dreived 

set of critera for the well known NREL 5 MW wind turbine. The ability of an observer to estimate 

non-measurable states from a set of measurements using a model of the plant suggests the idea of 

extending the model of the plant by a model of the disturbance. The Discrete Kalman Filter has 

been used as an observer. The results show a good and fast estimation of the filter for the 

disturbance states. A feedforward/feedback controller has been used for counteracting the 

disturbance and stabilizing the wind turbine. The disturbance effect is reduced via a feedforward 

controller where the wind turbine is stabilized  via  a feedback controller.  The LQR is used as a full 

state fedback controller. The results show that the better the estimation of the disturbance states, 

the better the disturbance rejection.   

A comparative study has been done between this study; Modern load controller and a classical load 

controller. The modern controller shows a better performance than the classical controller. 
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A Appendix 

A.1 The Discrete Kalman Filter Performance 

Figure A-1 shows the performance of the Discrete Kalman filter in the estimation of the wind 

turbine states and the disturbance states. The standard deviation for the error between the 

actual state and the estimated state is calculated through a MATLAB script and it’s written upon 

each plot in the same figure.   

 

 

 



 

46 

 

 

 

Figure A-1: Time series and frequency distribution of the error in the estimation for the wind turbine 

states and the disturbance states.  
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Figure A-2 shows the time series and frequency distribution of the error in the estimation for the 

following measured outputs: 

1- Angular speed of the HSS and generator (GenSpeed) 

2- Blade 1 edgewise moment (RootMxb1) 

3- Blade 2 edgewise moment (RootMxb2) 

4- Blade 3 edgewise moment (RootMxb3) 

5- Blade 1 flapwise moment (RootMyb1) 

6- Blade 2 flapwise moment (RootMyb2) 

7- Blade 3 flapwise moment (RootMyb3) 

8- Blade 1 pitching moment (RootMzb1) 

9- Blade 2 pitching moment (RootMzb2) 

10- Blade 3 pitching moment (RootMzb3) 

11- Tower base roll (or side-to-side) moment (TwrBsMxt) 

12- Tower base pitching (or fore-aft) moment (TwrBsMyt) 

13- Tower base yaw (or torsional) moment (TwrBsMzt) 
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Figure A-2: Time series and frequency distribution of the error in the estimation for the measured outputs 
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A.2 The Controller Performance at 15 m/s wind speed conditions    

Trim point: - 

- 15 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 10.45 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 

 

Figure A.3:  Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 
feedforward/feedback controlled turbine for the flap moment, 15 m/s wind speed 

 

 

Figure A.4: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the generator speed, 15 m/s wind speed 
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Figure A.5: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the tower fore-aft moment, 15 m/s wind speed, 15 m/s wind 

speed 

 

A.2 The Controller Performance at 25 m/s wind speed trim conditions    

Trim point: - 

- 25 m/s steady horizontal wind speeds.  

- 90 m as Reference height for horizontal wind speed. 

- 23.47 degree as initial blade pitch angel for each blade. 

- 12.1 rpm as initial rotor speed. 
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Figure A.6:  Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the flap moment,  25 m/s wind speed 

 

Figure A.7: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the generator speed, 25 m/s wind speed 
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Figure A.8: Comparison of the uncontrolled turbine against the feedforward controlled turbine and the 

feedforward/feedback controlled turbine for the tower fore-aft moment, 25 m/s wind speed, 

 

Figure A-7 shows a comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine for the wind turbine states, the disturbance state and the 

measured outputs mentioned in the previous section.   

 

 

Figure A.9: A comparison between the uncontrolled turbine, feedforward controlled turbine and 

feedforward/feedback controlled turbine, 18 m/s wind speed 
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