
  
Abstract— In the context of spaceborne synthetic aperture 

radar (SAR) for remote sensing, multichannel system 
architectures coupled with digital beamforming (DBF) 
techniques are deemed a necessary technological advancement to 
fulfil the requirements for near future spaceborne radar 
missions. Calibration of such systems is an important topic, since 
channel imbalances may lead to considerable degradation of their 
performance. This paper analyzes the impact of residual errors 
in a SAR system with multiple channels in azimuth and derives 
an analytical model for the resulting performance degradation, 
which may be used in system design as an aid to establish 
requirements in an error budget analysis. 
 

Index Terms— Channel imbalances, Digital beamforming,  
Error modeling, High resolution wide swath, Multichannel SAR, 
Spaceborne radar, Synthetic aperture radar  
 

I. INTRODUCTION 
PACEBORNE synthetic aperture radar (SAR) [1] data 
currently enjoy an increasing acceptance in the scientific 

community, owing to its myriad applications. Imaging a wide 
swath with a high spatial resolution (HRWS) [2], [3] – which 
is necessary to provide a broad and up-to-date coverage of 
high quality data – is however a fundamental problem in SAR 
system design [1], since single channel systems are subject to 
a well-known compromise between azimuth resolution and 
coverage [4].  

The usage of multichannel architectures (especially in azimuth) 
and digital beamforming (DBF) techniques [5], [6] poses a 
promising solution to this dilemma and is currently subject of 
technological development for implementation of Sentinel-1 Next 
Generation and other HRWS satellite missions [7], [8]. A basic 
block diagram of the concept, which is based on multichannel 
sampling in azimuth [9], is provided in Fig. 1. 

The signal processing for this class of system relies, 
however, on the knowledge of the receive channels’ transfer 
functions [6], which makes adequate channel calibration 
crucial, as channel imbalances may severely degrade 
performance [10]. In terms of system design, this poses the 
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problem of how to specify radar electronics and calibration 
accuracy requirements, which in turn requires an 
understanding of the impact of such errors over performance. 
This paper analyses the impact of residual channel imbalances 
on the processing of a system with multiple azimuth channels 
and derives an analytical model for the degradation of the 
performance in comparison to what is expected in the error-
free scenario. Sections II and III provide the signal model and 
mathematical derivation, whereas Section IV presents 
simulation results to validate the established model. Finally, 
Section V provides a summary and discussion of the material. 

Fig. 1: Block diagram describing the data acquisition and processing in a 
SAR system with multiple azimuth channels. The scene’s backscattered 
signal is acquired by 𝑁𝑁 receivers, modelled by their transfer functions 𝐻𝐻𝑘𝑘(𝑓𝑓), 
at a (typically sub-Nyquist) rate of 𝑓𝑓PRF. The signal processing (digital filters 
𝑃𝑃𝑘𝑘(𝑓𝑓)) restores sampling to 𝑁𝑁 ⋅ 𝑓𝑓PRF, such that focusing yields a SAR image 
equivalent to a single-channel system sampled directly at 𝑁𝑁 ⋅ 𝑓𝑓PRF. 

II.  MULTICHANNEL AZIMUTH RECONSTRUCTION AND THE 
EFFECT OF CHANNEL IMBALANCES 

A. Signal Model: Error-free Case 

In the following, a system with one Tx and 𝑁𝑁 Rx azimuth 
channels is considered. As described in [6] in detail, if the 
sampling of each of the individual channels occurs at a rate of 
𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃, the effective sampling of the equivalent monostatic 
system is 𝑁𝑁 ⋅ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃, as 𝑁𝑁 samples are recorded for each 
received pulse. Thus, a complex signal spectrum 𝑈𝑈(𝑓𝑓) of 
Doppler bandwidth 𝐵𝐵𝐷𝐷 ≤ 𝑁𝑁 ⋅ 𝑓𝑓PRF  may be recovered 
unambiguously by proper combination of the aliased spectra 
of each of the channels in the frequency domain.  

Taking the limiting case, the total signal bandwidth of 
𝑁𝑁 ⋅ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 is divided into 𝑁𝑁 contiguous sub-bands 

𝐼𝐼𝑚𝑚 = �−𝑁𝑁 ⋅
𝑓𝑓PRF

2 + (𝑚𝑚 − 1) ⋅ 𝑓𝑓PRF,−𝑁𝑁 ⋅
𝑓𝑓PRF

2 + 𝑚𝑚 ⋅ 𝑓𝑓PRF�, (1) 

each of length 𝑓𝑓PRF, for 1 ≤ 𝑚𝑚 ≤ 𝑁𝑁. Due to the aliasing, the 
signal spectrum of the channels may be represented in any interval 
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of length 𝑓𝑓PRF, taken here to be 𝐼𝐼1. The k-th azimuth channel is 
considered to be described by the transfer function                    
𝐻𝐻𝑘𝑘(𝑓𝑓 + (𝑚𝑚 − 1) ⋅ 𝑓𝑓PRF), with 1 ≤ 𝑚𝑚, 𝑘𝑘 ≤ 𝑁𝑁.  The complete 
spectrum 𝑈𝑈(𝑓𝑓) of the scene to be recovered may be divided into 𝑁𝑁 
signals  𝑆𝑆𝑚𝑚(𝑓𝑓) = 𝑈𝑈(𝑓𝑓 + (𝑚𝑚 − 1) ⋅ 𝑓𝑓PRF), for f in 𝐼𝐼1. These 
signals can be regarded as azimuth looks of the SAR image, in 
accordance with typical SAR processing nomenclature. 

Considering that the k-th azimuth channel is positioned at 
Δ𝑥𝑥𝑘𝑘 and that the platform velocity in along-track is 𝑉𝑉𝑃𝑃, the 
channel transfer function in frequency domain after a Taylor 
expansion may be approximated by [6] 
𝐻𝐻𝑘𝑘(𝑓𝑓) = 𝑒𝑒−𝑗𝑗⋅𝛥𝛥𝜙𝜙𝑘𝑘 ⋅ 𝑒𝑒−𝑗𝑗⋅2⋅𝜋𝜋⋅𝛥𝛥𝑡𝑡𝑘𝑘⋅𝑓𝑓, (2) 

where Δ𝑡𝑡𝑘𝑘 = Δ𝑥𝑥𝑘𝑘
2⋅𝑉𝑉𝑃𝑃

 are the delays induced by the phase center 

baselines and Δ𝜙𝜙𝑘𝑘 is a constant phase. 
Taking into account the sub-band division, the multichannel 

system in frequency domain may be described by the N x N 
matrix 𝑯𝑯(𝑓𝑓) with elements 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓) = 𝐻𝐻𝑘𝑘(𝑓𝑓 + (𝑙𝑙 − 1) ⋅ 𝑓𝑓PRF) 
and the sub-sampled signal at each channel k by 

𝑦𝑦𝑘𝑘 (𝑓𝑓) = � 𝐻𝐻𝑘𝑘(𝑓𝑓 + (𝑚𝑚 − 1) ⋅ 𝑓𝑓PRF)  ⋅ 𝑆𝑆𝑚𝑚(𝑓𝑓)
𝑁𝑁

𝑚𝑚=1

, (3) 

so that, in matrix notation, 
𝒚𝒚(𝑓𝑓) = 𝑯𝑯(𝑓𝑓) ⋅  𝒔𝒔(𝑓𝑓), (4) 
where 𝒚𝒚(𝑓𝑓) = [𝑦𝑦1(𝑓𝑓), 𝑦𝑦2(𝑓𝑓), … , 𝑦𝑦𝑁𝑁(𝑓𝑓)]𝑇𝑇 and                      
𝒔𝒔(𝑓𝑓) = [𝑆𝑆1(𝑓𝑓), 𝑆𝑆2(𝑓𝑓), … , 𝑆𝑆𝑁𝑁(𝑓𝑓)]𝑇𝑇. 

Reconstruction can be regarded as an estimator  
𝒔𝒔�(𝑓𝑓) = 𝑷𝑷(𝑓𝑓) ⋅ 𝒚𝒚(𝑓𝑓), (5) 
where the filter matrix has elements 
𝑃𝑃𝑚𝑚𝑚𝑚(𝑓𝑓) = 𝑃𝑃𝑘𝑘(𝑓𝑓 + (𝑚𝑚 − 1) ⋅ 𝑓𝑓PRF) (6) 

and hence each look 𝑆𝑆𝑚𝑚(𝑓𝑓) is recovered by means of row 𝑚𝑚 of 
matrix 𝑷𝑷(𝑓𝑓), and each column of it is applied to a particular 
channel 𝑘𝑘. In particular, 𝑷𝑷(𝑓𝑓) = 𝑯𝑯(𝑓𝑓)−1 yields ideal 
reconstruction of the bandlimited signal in the noiseless case and 
can be shown to be optimal in a mean square error (MSE) sense, 
even in the presence of noise and a non-bandlimited spectrum [11], 
[12]. Alternative reconstruction schemes are analyzed in [12], [13], 
and amount to choosing the reconstruction filters 𝑷𝑷(𝑓𝑓) following 
different strategies, e.g. setting as design goal the suppression of 
white noise alongside the reconstruction of the signal. 

B. Error Model 

The signal model in Section II.A may be augmented to encompass 
channel errors by considering that the system is actually described by 
a channel matrix 𝑯𝑯𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝑓𝑓) which differs from the nominal channel 
matrix 𝑯𝑯(𝑓𝑓). Thus a modelling error is assumed, which may be 
caused by residual channel imbalances introduced by a previous 
beamforming stage (e.g. synchronization errors between the azimuth 
channels, clock drifts for the ADCs and amplitude and phase drifts in 
the Transmit/Receive (T/R) Modules). 

Let each of the N channels be affected by a phase error 𝜉𝜉𝑖𝑖, and a 
normalized amplitude error 𝜖𝜖𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. We assume 𝜖𝜖𝑖𝑖 to be 
independent identically distributed (i.i.d.) random variables following 
a Gaussian distribution 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), whereas two models are 
considered for the phase errors. First, a uniform distribution in the 

interval �− 𝜉𝜉𝑢𝑢
2

, 𝜉𝜉𝑢𝑢
2
� is considered, as a pessimistic assumption on the 

spread of the phases, while still allowing for a maximum error level. 
This could for example be due to the phase shift quantization in 
temperature-compensated T/R-Modules (e.g. 6 bit phase shifters such 
as used in TerraSAR-X lead to a precision of ± 5.6°). Such a model is 
convenient for establishing system design and calibration 
requirements, as only the maximum error needs to be specified from 
the analysis of the previous processing stages. Second, small phase 
errors (without a predefined distribution) are considered, i.e., 
satisfying the condition 
(1 + 𝜖𝜖𝑘𝑘) ⋅ exp(𝑗𝑗 ⋅ 𝜉𝜉𝑘𝑘) − 1 ≅ 𝜖𝜖𝑘𝑘 + 𝑗𝑗 ⋅ 𝜉𝜉𝑘𝑘 , (7) 
a model which is interesting for its simplicity and generality.  

In both cases, the amplitude and phase errors are assumed to 
be independent from each other and from the signal1. Then, 
the actual system matrix becomes 
𝑯𝑯𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝑓𝑓) = 𝑫𝑫 ⋅  𝑯𝑯(𝑓𝑓) (8) 
where the diagonal, frequency independent2 error matrix has 
elements  
𝑫𝑫 = diag(1 + 𝜖𝜖𝑖𝑖) ⋅ diag(exp(𝑗𝑗 ⋅ 𝜉𝜉𝑖𝑖)). (9) 

Reconstruction (cf. (4)) of the signal from the system described 
by (6) with the nominal reconstruction filters3 𝑷𝑷(𝑓𝑓) yields 
𝒔𝒔�(𝑓𝑓) =  𝑷𝑷(𝑓𝑓) ⋅ �𝑫𝑫 ⋅ 𝑯𝑯(𝑓𝑓)� ⋅ 𝒔𝒔(𝑓𝑓), (10) 

or, by expressing 𝑫𝑫 = 𝑰𝑰 + (𝑫𝑫 − 𝑰𝑰),  
𝒔𝒔�(𝑓𝑓) = 𝒔𝒔error−free(𝑓𝑓) + 𝑷𝑷(𝑓𝑓) ⋅ (𝑫𝑫− 𝑰𝑰) ⋅ 𝑯𝑯(𝑓𝑓) ⋅ 𝒔𝒔(𝑓𝑓) 
𝒔𝒔�(𝑓𝑓) = 𝒔𝒔error−free(𝑓𝑓) + 𝒔𝒔error(𝑓𝑓), 

(11) 

where 𝒔𝒔error−free(𝑓𝑓) is the result of reconstruction in the absence 
of errors. Note that in general 𝒔𝒔error−free(𝑓𝑓) ≠ 𝒔𝒔(𝑓𝑓), unless the 
signal is band-limited and noise free, and ambiguities cannot be 
perfectly suppressed, i.e. 
𝒔𝒔error−free(𝑓𝑓) = 𝒔𝒔(𝑓𝑓) + 𝒔𝒔amb(𝑓𝑓), (12) 

where 𝒔𝒔amb(𝑓𝑓) denotes the residual ambiguities. 
Due to the assumption that the zero-mean errors are independent 
of the signal (and also of additive noise),                      
𝐸𝐸[𝒔𝒔error−free(𝑓𝑓) ⋅ 𝒔𝒔error(𝑓𝑓)𝐻𝐻] = 0 and thus the ambiguous power 
due to them simply adds to that due to other factors, i.e. 
𝐸𝐸[‖𝒔𝒔�(𝑓𝑓)‖2] = 𝐸𝐸[‖𝒔𝒔error−free(𝑓𝑓)‖2]  + 𝐸𝐸[‖𝒔𝒔error(𝑓𝑓)‖2]. (13) 

The average signal power remains the same, so the final 
Azimuth Ambiguity-to-Signal Ratio (AASR) in the presence 
of errors following the model described in this section is  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴error−free + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴errors, (14) 

i.e. an additive term degrading the error-free result obtained 
for a particular (and not necessarily ideal) configuration. 

As will be elaborated, the statistical approach adopted in this 
paper is to assume a large set of calibration errors for the channels 
and then estimate the ensemble average of (14) as an indication of 
the AASR to be expected in a typical operational scenario.   

 
1 A model also usual in describing quantization errors, meaning the results 

can be extended to this case. 
2 We choose to present the simplest model for increased clarity, though 

frequency dependency of the errors within an interval of width 𝑓𝑓PRF can be 
seamlessly incorporated into the derivation up to (26). 

3 Notice that 𝑷𝑷(𝑓𝑓) = 𝑯𝑯(𝑓𝑓)−1 as in [6] is a possible choice, but the 
derivation holds for arbitrary reconstruction filters 𝑷𝑷(𝑓𝑓). 



III. DERIVATION OF RESIDUAL                                                    
AMBIGUITY LEVEL DUE TO ERRORS 

Taking the reconstruction error 𝚫𝚫𝒔𝒔(𝑓𝑓) = 𝒔𝒔�(𝑓𝑓) − 𝒔𝒔(𝑓𝑓) from 
(11), the quantity of interest is the residual ambiguous power 
density caused by the errors, that is 𝜎𝜎error2 (𝑓𝑓) = 𝐸𝐸[‖𝚫𝚫𝒔𝒔(𝑓𝑓)‖2]. To 
calculate it, we introduce the auxiliary random variables 
𝛽𝛽𝑘𝑘 = (1 + 𝜖𝜖𝑘𝑘) ⋅ exp(𝑗𝑗 ⋅ 𝜉𝜉𝑘𝑘) − 1;          for 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁, (15) 

which are pairwise independent and, from (11) and (4), allow 
the components of the error vector to be written as 

Δ𝑠𝑠𝑚𝑚(𝑓𝑓) = �𝑃𝑃𝑚𝑚𝑚𝑚(𝑓𝑓) ⋅ 𝛽𝛽𝑘𝑘 ⋅ 𝑦𝑦𝑘𝑘(𝑓𝑓)
𝑁𝑁

𝑘𝑘=0

. (16) 

One may then write, using (16) and rearranging,  

𝜎𝜎error2 (𝑓𝑓) = � 𝐸𝐸[|Δ𝑠𝑠𝑚𝑚(𝑓𝑓)|2]
𝑁𝑁

𝑚𝑚=0

 

𝜎𝜎error2 (𝑓𝑓) = � �𝐸𝐸[|𝑦𝑦𝑘𝑘(𝑓𝑓)|2] ⋅ 𝐸𝐸[|𝛽𝛽𝑘𝑘|2] ⋅ |𝑃𝑃𝑚𝑚𝑚𝑚(𝑓𝑓)|2
𝑁𝑁

𝑘𝑘=0

𝑁𝑁

𝑚𝑚=0

. 

(17) 

Since the signal components in the N x 1 vector 𝒔𝒔(𝑓𝑓) 
represent non-overlapping azimuth looks of the Doppler 
spectrum of the SAR signal [1], 
𝐸𝐸[𝒔𝒔(𝑓𝑓) ⋅ 𝒔𝒔𝐻𝐻(𝑓𝑓)] = diag(𝜎𝜎𝑖𝑖2(𝑓𝑓)) ,      1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. (18) 
and, from (4), 

𝑦𝑦𝑘𝑘(𝑓𝑓) = � 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓) ⋅ 𝑠𝑠𝑚𝑚(𝑓𝑓)
𝑵𝑵

𝑚𝑚=1

⇒ 

𝐸𝐸[|𝑦𝑦𝑘𝑘(𝑓𝑓)|2] = � 𝜎𝜎𝑚𝑚2(𝑓𝑓) ⋅ |𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓)|2
𝑵𝑵

𝑚𝑚=1

= � 𝜎𝜎𝑚𝑚2(𝑓𝑓),
𝑁𝑁

𝑚𝑚=1

 

(19) 

where 𝐻𝐻𝑖𝑖𝑖𝑖 are the entries of 𝑯𝑯 defined in (2) and the 
summation over 𝜎𝜎𝑚𝑚2 is the signal power density                      
𝑝𝑝𝑠𝑠(𝑓𝑓) = 𝐸𝐸[𝒔𝒔𝐻𝐻(𝑓𝑓) ⋅ 𝒔𝒔(𝑓𝑓)] summed over all azimuth looks for a 
given frequency f in 𝐼𝐼1.  

For the random variables 𝛽𝛽𝑘𝑘, taking the expectation using 
(15), the independence assumptions [15] and the fact that, for 
the amplitudes 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2)   ⇨  𝐸𝐸[𝜖𝜖𝑖𝑖] = 0,𝐸𝐸[𝜖𝜖𝑖𝑖2] = 𝜎𝜎𝜖𝜖2 yields 
𝜎𝜎𝛽𝛽2 = 𝐸𝐸[|𝛽𝛽𝑘𝑘|2] = 𝜎𝜎𝜖𝜖2 + 2 ⋅ 𝐸𝐸[1 − cos(𝜉𝜉𝑖𝑖)], (20) 
It can be shown by applying the theorem for the probability 
density of a function of a random variable [15] and direct 
integration that, for 𝜉𝜉~𝑈𝑈 �− 𝜉𝜉𝑢𝑢

2
, 𝜉𝜉𝑢𝑢
2
�, 

𝐸𝐸[sin(𝜉𝜉)] = 0; 

𝐸𝐸[cos(𝜉𝜉)] = 2 ⋅
sin �𝜉𝜉𝑢𝑢2 �

𝜉𝜉𝑢𝑢
= sinc �

𝜉𝜉𝑢𝑢
2 �. 

(21) 

Hence, (20) becomes 
𝜎𝜎𝛽𝛽2 = �𝜎𝜎𝜖𝜖2 + 2 ⋅ �1 − sinc �𝜉𝜉𝑢𝑢

2
���. (22) 

Alternatively, using the small error model of (7), (20) can 
be simplified4 to 
𝜎𝜎𝛽𝛽2 = 𝐸𝐸[|𝛽𝛽𝑘𝑘|2] = 𝜎𝜎𝜖𝜖2 +𝐸𝐸[|𝜉𝜉𝑖𝑖|2], (23) 
regardless of the probability distribution, and for all 𝑖𝑖 (i.i.d). 
 

4 The small error model is useful if the phase errors are assumed to follow a 
distribution other than uniform, or show no particular structure. One example is a 
Gaussian error model, which is commonly adopted in engineering for error 
propagation from a large number of sources. If the errors are uniformly distributed, 
𝐸𝐸[|𝜉𝜉𝑖𝑖|2] = 𝜉𝜉𝑢𝑢2/12 and (23) represents a Maclaurin expansion of (22), since              
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Finally, (17) may be rewritten as 

𝜎𝜎error2 (𝑓𝑓) = 𝑝𝑝𝑆𝑆(𝑓𝑓) ⋅ 𝜎𝜎𝛽𝛽2 ⋅ � �|𝑃𝑃𝑚𝑚𝑚𝑚(𝑓𝑓)|2
𝑁𝑁

𝑘𝑘=0

𝑁𝑁

𝑚𝑚=0

 

𝜎𝜎error2 (𝑓𝑓) = 𝑝𝑝𝑆𝑆(𝑓𝑓) ⋅ 𝜎𝜎𝛽𝛽2 ⋅ ‖𝑸𝑸(𝑓𝑓)‖2 

(24) 

where 𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) denotes the entries of 𝑷𝑷(𝑓𝑓) and thus ‖𝑸𝑸(𝑓𝑓)‖2 
denotes the square of the Frobenius norm of the matrix 𝑸𝑸(𝑓𝑓), 
formed by taking element-wise the absolute value of 𝑷𝑷(𝑓𝑓)𝑁𝑁x𝑁𝑁. 
It is interesting to note that ‖𝑸𝑸(𝑓𝑓)‖2 is closely related to the 
SNR scaling factor of the reconstruction, defined in [6]: 

ΦREC(𝑓𝑓PRF) =
𝑁𝑁

𝑁𝑁 ⋅ 𝑓𝑓PRF
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                         =
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𝑓𝑓PRF
⋅ �‖𝑸𝑸(𝑓𝑓)‖2 ⋅ d𝑓𝑓, 

(25) 

meaning ΦREC(𝑓𝑓PRF) is an average over frequency of 
‖𝑸𝑸(𝑓𝑓)‖2. In the particular case 𝑷𝑷(𝑓𝑓) = 𝑯𝑯(𝑓𝑓)−1 [6], this 
quantity admits a closed-form analytical expression exploiting 
the Van der Monde structure of 𝑯𝑯(𝑓𝑓)  for inversion [11], [14]. 
At this point, let an average over frequency be introduced as 

𝑝𝑝amb =
1

𝑓𝑓PRF
⋅ � 𝐸𝐸[‖𝚫𝚫𝒔𝒔(𝑓𝑓)‖2] ⋅ d𝑓𝑓
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1

𝑓𝑓PRF
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𝑝𝑝amb = 𝜎𝜎𝛽𝛽2 ⋅ ‖𝑸𝑸�‖2 ⋅ 𝑝𝑝 signal
avg , 

(26) 

where 𝑝𝑝 signal
avg  is the average signal power density over all 

frequencies in 𝐼𝐼1 and ‖𝑸𝑸�‖2 is the average over frequency5 of ‖𝑸𝑸‖2. 
Using this result, one may define the error induced AASR6 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴errors =
𝑝𝑝amb
𝑝𝑝 signal
avg  
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴errors = 𝜎𝜎𝛽𝛽2 ⋅ ‖𝑸𝑸�‖2, 

(27) 

where 𝜎𝜎𝛽𝛽2 is defined by either (22) or (23), depending on the 
phase error model. This is the final and main result of this 
section, and indicates that, interestingly, the SNR scaling factor also 
effectively scales the ambiguous energy due to residual channel 
imbalances. The 𝑓𝑓PRF and the channel properties thus influence 
not only 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴error−free but also the system’s sensitivity, which 
is a new result following from the presented derivation. 

 
5 Due to the summation over the 𝑁𝑁 looks in 𝑝𝑝𝑠𝑠(𝑓𝑓) = 𝐸𝐸[𝒔𝒔𝐻𝐻(𝑓𝑓) ⋅ 𝒔𝒔(𝑓𝑓)], the 

integration interval of the result is 𝑁𝑁 ⋅ 𝑓𝑓PRF, which applies to the range compressed 
image. The integration over frequency to determine ‖𝑸𝑸�‖2 and the signal power should 
be restricted to the processed bandwidth to account for the azimuth matched filter. 

6 The AASR may be interpreted in a general sense as the well-known integrated 
sidelobe ratio (ISLR), used as a quality parameter for radar images. Recall from (14) 
that the ambiguous energy arises both from the excess Doppler bandwidth with 
respect to 𝑁𝑁 ⋅ 𝑓𝑓PRF (azimuth antenna pattern) and from the channel model mismatch, 
which leads to reconstruction errors and reduced ambiguity suppression in 
comparison to the error-free case. 



IV. SIMULATION RESULTS 
In this section, the analytical AASR model is verified by means 

of a Monte Carlo simulation of a C-band multichannel SAR 
system. The reconstruction (in this example, 𝑷𝑷(𝑓𝑓) = 𝑯𝑯(𝑓𝑓)−1 [6]) 
of a point target at a look angle 𝜃𝜃look= 32.5° is performed for 1000 
realizations of the errors drawn from the appropriate distributions 
(i.e. 𝑈𝑈 �− 𝜉𝜉𝑢𝑢

2
, 𝜉𝜉𝑢𝑢
2
� for phase errors and 𝑁𝑁(0,𝜎𝜎𝜖𝜖2) for amplitude 

errors) and the average AASR (estimated for each realization using 
the impulse response based method of [16])  is taken as an 
estimation of the expected values. This is repeated for different 
values of the corresponding error distribution parameters (𝜉𝜉𝑢𝑢 or 𝜎𝜎𝜖𝜖2) 
to measure the performance degradation as a function of the error 
level. The phase and amplitude errors are analyzed independently 
to allow a better visualization of the results, and the simulated 
signals are noiseless. Given the relevance of the noise scaling factor 
‖𝑸𝑸�‖2 for the sensitivity with respect to errors in (27), two different 
scenarios with two different values of 𝑓𝑓PRF are considered, to 
illustrate the behavior both for favorable and unfavorable sampling 
conditions. The system parameters are summarized in TABLE I. 
On transmit, phase-spoiling is used to widen the patterns. 

TABLE I 
SIMULATION SCENARIO PARAMETERS 

Relevant System Parameters (Azimuth) 

Symbol Quantity Value 
ℎorbit Orbit height 700 km 
𝜆𝜆 Wavelength 5.54 cm 

𝑙𝑙az Antenna length in azimuth 12.8 m 
𝑁𝑁az Number of azimuth channels 8 
Δ𝑥𝑥az (Physical) Spacing of azimuth channels 1.6 m 
𝐵𝐵𝐵𝐵proc Processed bandwidth 5773 Hz 
𝛿𝛿𝑎𝑎𝑎𝑎 Goal azimuth resolution 1 m 

The first scenario regards the uniform sampling case with 
𝑓𝑓PRF = 1172 Hz, and presents a multichannel PRF of                            
𝑁𝑁 ⋅ 𝑓𝑓PRF = 9376 Hz. This means considerable oversampling with 
respect to the signal bandwidth. As expected, error-free 
reconstruction leads to a low 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅error−free  =  −31 dB, at an 
azimuth resolution of 1.0 m. The corresponding impulse response 
is depicted in Fig. 2 (a). Notice that the abscissas are the instant 
Doppler frequencies rather the azimuth spatial coordinates, to 
highlight the origin of the ambiguous components. The ambiguities 
at integer multiples of 𝑓𝑓PRF, highlighted in blue, show very low 
levels, with the exception of the ones at ±9376 Hz, which 
correspond to the azimuth ambiguities of the error-free case. In 
contrast, they are visibly higher in Fig. 2 (b), which is the result of 
reconstruction with channels affected by (a realization of) phase 
errors drawn from a uniform distribution in the interval [-5°, 5°] 
(i.e., 𝜉𝜉𝑢𝑢 = 10°).  

Fig. 3 (a) and (b) illustrate the histograms of the AASR over 
the Monte Carlo trials, respectively for varying 𝜉𝜉𝑢𝑢 (phase 
errors) and 𝜎𝜎𝜖𝜖. The expected value of the AASR for each 
value of the respective distribution parameter is highlighted by 
vertical dashed lines in the same color of the histograms. It is 
clear that the AASR rises quickly from the error-free value for 
small errors, but the histograms migrate more slowly towards 
larger AASR levels for higher error magnitudes (cf. distance 
between vertical lines in Fig. 3 (a)).  

 

 
Fig. 2: Example of focused impulse responses after reconstruction with and 
without channel imbalances, for 𝑓𝑓PRF = 1172 Hz. (a) Error-free 
reconstruction, with very low AASR. (b) Reconstruction with a realization of 
uniform phase errors drawn from [-5°, 5°]. Ambiguites are visible in blue. 

 

 
Fig. 3: Monte Carlo simulation of reconstruction, for 𝑓𝑓PRF = 1172 Hz.               
(a) AASR histograms over Monte Carlo trials, parametrized by 𝜉𝜉𝑢𝑢.               
(b) AASR histograms parametrized by 𝜎𝜎𝜖𝜖. The black vertical dashed lines 
indicate 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅error−free and the color-coded ones, the mean of each 
histogram. 

The second scenario was designed to achieve error-free AASR 
levels of -25 dB. The degraded performance is obtained by 
reducing the PRF to 𝑓𝑓PRF = 1149 Hz, which does not change the 
achieved resolution. 

The AASR induced by phase and amplitude errors, as estimated 
by the Monte Carlo approach, is shown as a function of the 
distribution parameters 𝜉𝜉𝑢𝑢 and 𝜎𝜎𝜖𝜖 in Fig. 4, for both 𝑓𝑓PRF scenarios. 
The error bars show an interval of one standard deviation centered 
on the means of the Monte Carlo simulations, which correspond to 
the position of the vertical dashed lines in Fig. 3. 

The analytical model prediction calculated from (14), (27) is also 
plotted, showing very good agreement to the Monte Carlo 
simulations, especially for smaller errors. The maximum deviation 
between the curves is overall smaller than 0.15 dB. The expected 
AASR levels (red curve in Fig. 4) are dominated by the nominal 
levels 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴error−free for small values of 𝜉𝜉𝑢𝑢, and thus the initial 
sensitivity of the AASR to errors is low. For the first 𝑓𝑓PRF scenario 
– in Fig. 4 (a), (b) – the sensitivity increases for intermediate errors, 
however saturation effects result in a slightly reduced sensitivity for 
larger imbalances. The level of -25 dB, considered a threshold of 
the maximum acceptable residual ambiguity ratio, is reached for 
𝜉𝜉𝑢𝑢 =�  10.9° or 𝜎𝜎𝜖𝜖 =�  5.5%. In the second scenario – Fig. 4 (c), (d) – 
owing to the higher 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴error−free, the impact of errors is only 
visible for larger imbalances and the sensitivity does not change 
appreciably for the interval of error parameters considered in the 
analysis. 

Finally, to illustrate the usefulness of the presented error model 
in deriving requirements, a mapping of the total AASR (with 
errors) as a function of the initial error-free AASR and the phase 
error distribution range 𝜉𝜉𝑢𝑢 is shown in Fig. 5. In this example, 

                            (a)                                                     (b) 
 
 

                            (a)                                                     (b) 
 



‖𝑸𝑸�‖2 = 1, meaning uniform sampling is considered, and no 
amplitude errors occur (𝜎𝜎𝜖𝜖2 = 0), which can be understood as a best-
case analysis of the behavior of the phase-error induced AASR. 
The contour lines of the total AASR illustrate how a trade-off 
between the maximum residual phase error (which translates into 
hardware and calibration requirements) and the sampling 
conditions (a function of element spacing and PRF) may be used to 
achieve a specified performance level in the system design. The 
results illustrate on the one hand that the error contribution quickly 
dominates for operating points in which the error-free level is very 
low, making them hardly achievable in practice. On the other hand, 
some margin for the error contribution is seen to be required, 
according to the hardware’s and calibration system capabilities in 
terms of the achievable residual error magnitude. 
 

 

 

 

 
Fig. 4: AASR as function of phase error uniform distribution range 𝜉𝜉𝑢𝑢 (a, c) and 
amplitude error standard deviation 𝜎𝜎𝜖𝜖 (b, d), for 𝑓𝑓PRF = 1172 Hz (a, b) and                  
𝑓𝑓PRF = 1149 Hz (c, d). The blue dots show the average derived from the Monte 
Carlo simulations, whereas the error bar shows an interval of one standard 
deviation centered on the mean. The red dashed line shows the result of the 
analytical prediction, with the error-free level (respectively -31 dB and -25 dB 
for the two scenarios) indicated by a horizontal black dashed line. 

 
Fig. 5: 2D mapping of total AASR as a function of the error-free AASR 
(abscissa) and the phase error distribution parameter 𝜉𝜉𝑢𝑢 (ordinate), with 
contour lines indicating total AASR level boundaries in dB. 

V. FINAL REMARKS AND DISCUSSION 
The paper presented a residual phase-amplitude error model for 

a system with multiple receive channels in azimuth and derived 
mathematically an analytical model for the error’s impact on the 

ambiguous energy found in the reconstructed image, measured by 
means of the AASR performance parameter. An interesting new 
result is that the well-known SNR scaling parameter also plays an 
important role in the scaling of the error-induced ambiguous 
energy. The sampling conditions are therefore also relevant for the 
robustness of the processing approach with respect to errors in the 
channel’s transfer functions.  

The model was validated to a good extent by means of Monte 
Carlo simulations of the errors, following the appropriate 
probability distribution assumed in the derivation. This leads to the 
conclusion that the assumed approximations are reasonable and no 
appreciable deviations are expected from the computationally more 
costly Monte Carlo approach. The model thus presents itself as a 
simple and effective alternative to estimate the impacts of residual 
errors and may be used as a design aid for e.g. establishing radar 
electronics and calibration requirements for the next generation of 
multichannel spaceborne SAR systems. 
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Abstract— In the context of spaceborne synthetic aperture radar (SAR) for remote sensing, multichannel system architectures coupled with digital beamforming (DBF) techniques are deemed a necessary technological advancement to fulfil the requirements for near future spaceborne radar missions. Calibration of such systems is an important topic, since channel imbalances may lead to considerable degradation of their performance. This paper analyzes the impact of residual errors in a SAR system with multiple channels in azimuth and derives an analytical model for the resulting performance degradation, which may be used in system design as an aid to establish requirements in an error budget analysis.
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Introduction

S

PACEBORNE synthetic aperture radar (SAR) [1] data currently enjoy an increasing acceptance in the scientific community, owing to its myriad applications. Imaging a wide swath with a high spatial resolution (HRWS) [2], [3] – which is necessary to provide a broad and up-to-date coverage of high quality data – is however a fundamental problem in SAR system design [1], since single channel systems are subject to a well-known compromise between azimuth resolution and coverage [4]. 

The usage of multichannel architectures (especially in azimuth) and digital beamforming (DBF) techniques [5], [6] poses a promising solution to this dilemma and is currently subject of technological development for implementation of Sentinel-1 Next Generation and other HRWS satellite missions [7], [8]. A basic block diagram of the concept, which is based on multichannel sampling in azimuth [9], is provided in Fig. 1.

The signal processing for this class of system relies, however, on the knowledge of the receive channels’ transfer functions [6], which makes adequate channel calibration crucial, as channel imbalances may severely degrade performance [10]. In terms of system design, this poses the problem of how to specify radar electronics and calibration accuracy requirements, which in turn requires an understanding of the impact of such errors over performance. This paper analyses the impact of residual channel imbalances on the processing of a system with multiple azimuth channels and derives an analytical model for the degradation of the performance in comparison to what is expected in the error-free scenario. Sections II and III provide the signal model and mathematical derivation, whereas Section IV presents simulation results to validate the established model. Finally, Section V provides a summary and discussion of the material.

		[bookmark: _Ref487796578][image: ]Fig. 1: Block diagram describing the data acquisition and processing in a SAR system with multiple azimuth channels. The scene’s backscattered signal is acquired by  receivers, modelled by their transfer functions , at a (typically sub-Nyquist) rate of . The signal processing (digital filters ) restores sampling to , such that focusing yields a SAR image equivalent to a single-channel system sampled directly at .





[bookmark: _Ref474484288] Multichannel Azimuth Reconstruction and the Effect of Channel Imbalances

[bookmark: _Ref474404905]Signal Model: Error-free Case

In the following, a system with one Tx and  Rx azimuth channels is considered. As described in [6] in detail, if the sampling of each of the individual channels occurs at a rate of , the effective sampling of the equivalent monostatic system is , as  samples are recorded for each received pulse. Thus, a complex signal spectrum  of Doppler bandwidth may be recovered unambiguously by proper combination of the aliased spectra of each of the channels in the frequency domain. 

Taking the limiting case, the total signal bandwidth of  is divided into  contiguous sub-bands

		

		(1)





each of length, for . Due to the aliasing, the signal spectrum of the channels may be represented in any interval of length, taken here to be . The k-th azimuth channel is considered to be described by the transfer function                    , with .  The complete spectrum  of the scene to be recovered may be divided into  signals , for f in  These signals can be regarded as azimuth looks of the SAR image, in accordance with typical SAR processing nomenclature.

Considering that the k-th azimuth channel is positioned at  and that the platform velocity in along-track is , the channel transfer function in frequency domain after a Taylor expansion may be approximated by [6]

		

		[bookmark: _Ref474402957][bookmark: _Ref421787537](2)





where  are the delays induced by the phase center baselines and  is a constant phase.

Taking into account the sub-band division, the multichannel system in frequency domain may be described by the N x N matrix  with elements  and the sub-sampled signal at each channel k by

		

		(3)





so that, in matrix notation,
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where  and                      .

Reconstruction can be regarded as an estimator 

		,

		[bookmark: _Ref474405488](5)





where the filter matrix has elements

		

		(6)





and hence each look  is recovered by means of row  of matrix , and each column of it is applied to a particular channel . In particular,  yields ideal reconstruction of the bandlimited signal in the noiseless case and can be shown to be optimal in a mean square error (MSE) sense, even in the presence of noise and a non-bandlimited spectrum [11], [12]. Alternative reconstruction schemes are analyzed in [12], [13], and amount to choosing the reconstruction filters  following different strategies, e.g. setting as design goal the suppression of white noise alongside the reconstruction of the signal.

Error Model

The signal model in Section II.A may be augmented to encompass channel errors by considering that the system is actually described by a channel matrix  which differs from the nominal channel matrix . Thus a modelling error is assumed, which may be caused by residual channel imbalances introduced by a previous beamforming stage (e.g. synchronization errors between the azimuth channels, clock drifts for the ADCs and amplitude and phase drifts in the Transmit/Receive (T/R) Modules).

Let each of the N channels be affected by a phase error , and a normalized amplitude error , . We assume  to be independent identically distributed (i.i.d.) random variables following a Gaussian distribution , whereas two models are considered for the phase errors. First, a uniform distribution in the interval  is considered, as a pessimistic assumption on the spread of the phases, while still allowing for a maximum error level. This could for example be due to the phase shift quantization in temperature-compensated T/R-Modules (e.g. 6 bit phase shifters such as used in TerraSAR-X lead to a precision of ± 5.6°). Such a model is convenient for establishing system design and calibration requirements, as only the maximum error needs to be specified from the analysis of the previous processing stages. Second, small phase errors (without a predefined distribution) are considered, i.e., satisfying the condition
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a model which is interesting for its simplicity and generality. 

In both cases, the amplitude and phase errors are assumed to be independent from each other and from the signal[footnoteRef:2]. Then, the actual system matrix becomes [2:  A model also usual in describing quantization errors, meaning the results can be extended to this case.] 
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where the diagonal, frequency independent[footnoteRef:3] error matrix has elements  [3:  We choose to present the simplest model for increased clarity, though frequency dependency of the errors within an interval of width  can be seamlessly incorporated into the derivation up to (26).] 
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Reconstruction (cf. (4)) of the signal from the system described by (6) with the nominal reconstruction filters[footnoteRef:4]  yields [4:  Notice that  as in [6] is a possible choice, but the derivation holds for arbitrary reconstruction filters ] 


		,

		(10)





or, by expressing 

		 +

,
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where  is the result of reconstruction in the absence of errors. Note that in general , unless the signal is band-limited and noise free, and ambiguities cannot be perfectly suppressed, i.e.

		,

		(12)





where  denotes the residual ambiguities.

Due to the assumption that the zero-mean errors are independent of the signal (and also of additive noise),                       and thus the ambiguous power due to them simply adds to that due to other factors, i.e.

		.

		(13)





The average signal power remains the same, so the final Azimuth Ambiguity-to-Signal Ratio (AASR) in the presence of errors following the model described in this section is 

		,
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i.e. an additive term degrading the error-free result obtained for a particular (and not necessarily ideal) configuration.

As will be elaborated, the statistical approach adopted in this paper is to assume a large set of calibration errors for the channels and then estimate the ensemble average of (14) as an indication of the AASR to be expected in a typical operational scenario.  

[bookmark: _Ref488996160]Derivation of Residual                                                    Ambiguity Level due to Errors

Taking the reconstruction error  from (11), the quantity of interest is the residual ambiguous power density caused by the errors, that is . To calculate it, we introduce the auxiliary random variables

		,
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which are pairwise independent and, from (11) and (4), allow the components of the error vector to be written as
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One may then write, using (16) and rearranging, 
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Since the signal components in the N x 1 vector  represent non-overlapping azimuth looks of the Doppler spectrum of the SAR signal [1],

		,     .

		(18)





and, from (4),

		



		(19)





where  are the entries of  defined in (2) and the summation over  is the signal power density                       summed over all azimuth looks for a given frequency f in . 

For the random variables , taking the expectation using (15), the independence assumptions [15] and the fact that, for the amplitudes  yields

		,
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It can be shown by applying the theorem for the probability density of a function of a random variable [15] and direct integration that, for ,

		



		(21)





Hence, (20) becomes

		.
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Alternatively, using the small error model of (7), (20) can be simplified[footnoteRef:5] to [5:  The small error model is useful if the phase errors are assumed to follow a distribution other than uniform, or show no particular structure. One example is a Gaussian error model, which is commonly adopted in engineering for error propagation from a large number of sources. If the errors are uniformly distributed,  and (23) represents a Maclaurin expansion of (22), since              ] 


		,
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regardless of the probability distribution, and for all  (i.i.d).

Finally, (17) may be rewritten as

		



		(24)





where  denotes the entries of  and thus  denotes the square of the Frobenius norm of the matrix , formed by taking element-wise the absolute value of . It is interesting to note that  is closely related to the SNR scaling factor of the reconstruction, defined in [6]:

		





		(25)





meaning  is an average over frequency of . In the particular case [6], this quantity admits a closed-form analytical expression exploiting the Van der Monde structure of  for inversion [11], [14]. At this point, let an average over frequency be introduced as
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where  is the average signal power density over all frequencies in  and  is the average over frequency[footnoteRef:6] of . [6:  Due to the summation over the  looks in , the integration interval of the result is , which applies to the range compressed image. The integration over frequency to determine  and the signal power should be restricted to the processed bandwidth to account for the azimuth matched filter.] 


Using this result, one may define the error induced AASR[footnoteRef:7] [7:  The AASR may be interpreted in a general sense as the well-known integrated sidelobe ratio (ISLR), used as a quality parameter for radar images. Recall from (14) that the ambiguous energy arises both from the excess Doppler bandwidth with respect to  (azimuth antenna pattern) and from the channel model mismatch, which leads to reconstruction errors and reduced ambiguity suppression in comparison to the error-free case.] 


		



,
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where  is defined by either (22) or (23), depending on the phase error model. This is the final and main result of this section, and indicates that, interestingly, the SNR scaling factor also effectively scales the ambiguous energy due to residual channel imbalances. The  and the channel properties thus influence not only  but also the system’s sensitivity, which is a new result following from the presented derivation.

[bookmark: _Ref474484290]Simulation Results

In this section, the analytical AASR model is verified by means of a Monte Carlo simulation of a C-band multichannel SAR system. The reconstruction (in this example,  [6]) of a point target at a look angle = 32.5° is performed for 1000 realizations of the errors drawn from the appropriate distributions (i.e.  for phase errors and  for amplitude errors) and the average AASR (estimated for each realization using the impulse response based method of [16])  is taken as an estimation of the expected values. This is repeated for different values of the corresponding error distribution parameters ( or ) to measure the performance degradation as a function of the error level. The phase and amplitude errors are analyzed independently to allow a better visualization of the results, and the simulated signals are noiseless. Given the relevance of the noise scaling factor  for the sensitivity with respect to errors in (27), two different scenarios with two different values of  are considered, to illustrate the behavior both for favorable and unfavorable sampling conditions. The system parameters are summarized in TABLE I. On transmit, phase-spoiling is used to widen the patterns.

[bookmark: _Ref454891301]TABLE I

Simulation Scenario Parameters

		Relevant System Parameters (Azimuth)



		Symbol

		Quantity

		Value



		

		Orbit height

		700 km



		

		Wavelength

		5.54 cm



		

		Antenna length in azimuth

		12.8 m



		

		Number of azimuth channels

		8



		

		(Physical) Spacing of azimuth channels

		1.6 m



		

		Processed bandwidth

		5773 Hz



		

		Goal azimuth resolution

		1 m





The first scenario regards the uniform sampling case with 1172 Hz, and presents a multichannel PRF of                            9376 Hz. This means considerable oversampling with respect to the signal bandwidth. As expected, error-free reconstruction leads to a low , at an azimuth resolution of 1.0 m. The corresponding impulse response is depicted in Fig. 2 (a). Notice that the abscissas are the instant Doppler frequencies rather the azimuth spatial coordinates, to highlight the origin of the ambiguous components. The ambiguities at integer multiples of , highlighted in blue, show very low levels, with the exception of the ones at ±9376 Hz, which correspond to the azimuth ambiguities of the error-free case. In contrast, they are visibly higher in Fig. 2 (b), which is the result of reconstruction with channels affected by (a realization of) phase errors drawn from a uniform distribution in the interval [-5°, 5°] (i.e.,  = 10°). 

Fig. 3 (a) and (b) illustrate the histograms of the AASR over the Monte Carlo trials, respectively for varying  (phase errors) and . The expected value of the AASR for each value of the respective distribution parameter is highlighted by vertical dashed lines in the same color of the histograms. It is clear that the AASR rises quickly from the error-free value for small errors, but the histograms migrate more slowly towards larger AASR levels for higher error magnitudes (cf. distance between vertical lines in Fig. 3 (a)). 
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                            (a)	                                                    (b)







[bookmark: _Ref487796592]Fig. 2: Example of focused impulse responses after reconstruction with and without channel imbalances, for 1172 Hz. (a) Error-free reconstruction, with very low AASR. (b) Reconstruction with a realization of uniform phase errors drawn from [-5°, 5°]. Ambiguites are visible in blue.
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                            (a)	                                                    (b)





[bookmark: _Ref487796613]Fig. 3: Monte Carlo simulation of reconstruction, for 1172 Hz.               (a) AASR histograms over Monte Carlo trials, parametrized by .               (b) AASR histograms parametrized by . The black vertical dashed lines indicate  and the color-coded ones, the mean of each histogram.





The second scenario was designed to achieve error-free AASR levels of -25 dB. The degraded performance is obtained by reducing the PRF to 1149 Hz, which does not change the achieved resolution.

The AASR induced by phase and amplitude errors, as estimated by the Monte Carlo approach, is shown as a function of the distribution parameters  and  in Fig. 4, for both  scenarios. The error bars show an interval of one standard deviation centered on the means of the Monte Carlo simulations, which correspond to the position of the vertical dashed lines in Fig. 3.

The analytical model prediction calculated from (14), (27) is also plotted, showing very good agreement to the Monte Carlo simulations, especially for smaller errors. The maximum deviation between the curves is overall smaller than 0.15 dB. The expected AASR levels (red curve in Fig. 4) are dominated by the nominal levels  for small values of , and thus the initial sensitivity of the AASR to errors is low. For the first  scenario – in Fig. 4 (a), (b) – the sensitivity increases for intermediate errors, however saturation effects result in a slightly reduced sensitivity for larger imbalances. The level of -25 dB, considered a threshold of the maximum acceptable residual ambiguity ratio, is reached for  10.9° or  5.5%. In the second scenario – Fig. 4 (c), (d) – owing to the higher , the impact of errors is only visible for larger imbalances and the sensitivity does not change appreciably for the interval of error parameters considered in the analysis.

Finally, to illustrate the usefulness of the presented error model in deriving requirements, a mapping of the total AASR (with errors) as a function of the initial error-free AASR and the phase error distribution range  is shown in Fig. 5. In this example, , meaning uniform sampling is considered, and no amplitude errors occur ( = 0), which can be understood as a best-case analysis of the behavior of the phase-error induced AASR. The contour lines of the total AASR illustrate how a trade-off between the maximum residual phase error (which translates into hardware and calibration requirements) and the sampling conditions (a function of element spacing and PRF) may be used to achieve a specified performance level in the system design. The results illustrate on the one hand that the error contribution quickly dominates for operating points in which the error-free level is very low, making them hardly achievable in practice. On the other hand, some margin for the error contribution is seen to be required, according to the hardware’s and calibration system capabilities in terms of the achievable residual error magnitude.
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                            (a)	                                                    (b)
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                            (c)	                                                    (d)





[bookmark: _Ref487796626]Fig. 4: AASR as function of phase error uniform distribution range  (a, c) and amplitude error standard deviation  (b, d), for 1172 Hz (a, b) and                  1149 Hz (c, d). The blue dots show the average derived from the Monte Carlo simulations, whereas the error bar shows an interval of one standard deviation centered on the mean. The red dashed line shows the result of the analytical prediction, with the error-free level (respectively -31 dB and -25 dB for the two scenarios) indicated by a horizontal black dashed line.
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[bookmark: _Ref487796653]Fig. 5: 2D mapping of total AASR as a function of the error-free AASR (abscissa) and the phase error distribution parameter  (ordinate), with contour lines indicating total AASR level boundaries in dB.





[bookmark: _Ref474484291]Final Remarks and Discussion

The paper presented a residual phase-amplitude error model for a system with multiple receive channels in azimuth and derived mathematically an analytical model for the error’s impact on the ambiguous energy found in the reconstructed image, measured by means of the AASR performance parameter. An interesting new result is that the well-known SNR scaling parameter also plays an important role in the scaling of the error-induced ambiguous energy. The sampling conditions are therefore also relevant for the robustness of the processing approach with respect to errors in the channel’s transfer functions. 

The model was validated to a good extent by means of Monte Carlo simulations of the errors, following the appropriate probability distribution assumed in the derivation. This leads to the conclusion that the assumed approximations are reasonable and no appreciable deviations are expected from the computationally more costly Monte Carlo approach. The model thus presents itself as a simple and effective alternative to estimate the impacts of residual errors and may be used as a design aid for e.g. establishing radar electronics and calibration requirements for the next generation of multichannel spaceborne SAR systems.
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