Molten salt chemistry in nitrate salt storage systems:
Linking experiments and modeling

Veronika Sötz
German Aerospace Center (DLR)
Institute of Engineering Thermodynamics

IRES
14.03.2018
Molten salt chemistry in nitrate salt storage systems: Linking experiments and modeling

Motivation

- Improve cost efficiency of thermal energy storage (TES) in Solar Salt (Na,KNO₃)

- Approaches:
 - Substitution of Solar Salt by low price filler materials, e.g. rock in TESIS_store
 (see poster 234, C. Odenthal)
 - Enhance storage capacity
 - Enhance energy conversion efficiency
 - Faster heat transfer (charging)
Molten salt chemistry in nitrate salt storage systems: Linking experiments and modeling

Motivation

- Formation of gases, pressure increase
- Mass losses
- Corrosion due to formation of oxides

$T_{\text{max}} \uparrow$

based on chemical reactions
Literature

- $NO_3^- \rightleftharpoons NO_2^- + 0.5 O_2$
 Thermodynamics ✓
 Kinetics ~
 Mass transport limitations ✗

- Reactions that form e.g. O^{2-}, NO_x
 Thermodynamics ✗
 Kinetics ✗
 Mass transport limitations ✗

- Vapor pressures [Glazov 2003] ~
Objective

1) Prove applicability of thermogravimetric analysis for investigation of reaction kinetics

2) Improve understanding of the first crucial chemical reaction \(NO_3^- \rightleftharpoons NO_2^- + 0.5 O_2 \)

 → Identify experimental sizes and geometries with and without mass transport limitations

3) Compare experimental results and simulation curves
Thermogravimetric Analysis

O_2(g) \rightarrow \text{chemical reaction} \rightarrow MNO_3(g)

salt evaporation

sample

scale

[Carling Sandia 1981, Duncan 2001, Glazov 2003]
Reaction kinetics and mass transport limitations

\[
2 \text{NO}_3^- \rightarrow 2 \text{NO}_2 + \text{O}_2
\]

\[
\text{Reaction velocity} = \text{Reaction kinetics} + \text{Mass transport limitations}
\]

\[
\text{Reaction velocity} \approx \text{Reaction kinetics}
\]
Reaction kinetics and mass transport limitations

Measurement uncertainty and mass transport effects are in the same order of magnitude for the 0.8 and 1.6 mm experiments.
Model description

Amount of substance-balance of nitrite ions NO_2^-:

$$\frac{dn_{NO_2^-}}{dt} = v_{NO_2^-} [c_{NO_3^-,c_{NO_2^-,c_{O_2}},E^f,A^f,E^r,A^r,T}] V_m$$

$v_{NO_2^-}$: Stoichiometric coefficient of NO_2^-, -1

r: Reaction rate $[\text{mol}^{-1}\text{m}^{-3}\text{s}^{-1}]$

V_m: Volume of the melt, constant

$$r = \frac{n_{NO_3^-}}{V_m} \cdot A^f \exp\left(\frac{E_f}{RT}\right) - \frac{n_{NO_2^-}}{V_m} p_{O_2} \cdot A^r \exp\left(\frac{E_r}{RT}\right)$$

forward reaction kinetics – reverse reaction kinetics

[Nissen 1983]
Experimental and simulation results

Available kinetic rate law includes mass transport limitations.
Summary and conclusion

1) Thermogravimetric analysis data was corrected with regard to salt evaporation
 → appropriate method for reaction velocity investigations

2) The velocity of the reaction
 \[NO_3^- \rightarrow NO_2^- + 0.5 O_2 \]
 is significantly influenced by experiment geometries,
 Thermogravimetric analysis allows experiments, where mass transport limitations can be neglected

3) Kinetic rate law from the literature includes mass transport limitations
Molten salt chemistry in nitrate salt storage systems:

Linking experiments and modeling

Thank you for listening!

Contact
Veronika.Soetz@dlr.de
Literature

Literature

Literature

