INTEGRATION AND ASSIMILATION OF METEOROLOGICAL (ECMWF) AEROSOL ESTIMATES INTO SEN2COR ATMOSPHERIC CORRECTION

IGARSS 2018
FERIA VALENcia | VALENcia | SPAIN
24 JULY 2018
TABLE OF CONTENTS

- Introduction
- Sentinel-2 mission / L2A processor Sen2Cor
- Current validation status of Sen2Cor v2.5
- Sen2Cor prototype using meteorological aerosol estimates
- Preliminary results
- Conclusion
SENTINEL-2 MISSION

- Optical mission for land and coastal region monitoring and emergency services
- Constellation of 2 satellites S2A and S2B
- Polar, Sun-synchronous orbit: altitude 786.13km with LTDN 10h30 AM
- Swath of 290km
- Global coverage with 5 days or less revisit period with both satellites

13 spectral bands
spatial resolution
10 m, 20 m, 60 m.
LEVEL-2A PROCESSING STEPS

- Two main modules: Scene Classification (SCL) and Atmospheric Correction (AC)
- Set of Look-Up Tables (LUTs) generated with libRadtran
- AOT derived at 550nm based on the DDV (Dense Dark Vegetation) algorithm
- WV retrieval based on the Atmospheric Pre-corrected Differential Absorption Algorithm (APDA)
Sentinel-2A product
Four tiles
North of Italy
22 April 2018
L2A PROCESSOR OUTPUTS

Sentinel-2A product
Four tiles
North of Italy
22 April 2018
Scatter plot of Sen2Cor WV output at 20 m resolution versus WV reference from AERONET stations. ACIX-1 data set (water sites excluded).

Accuracy requirement (solid lines): $|\Delta \text{WV}| \leq 0.1 \times \text{WV}_{\text{ref}} + 0.2$

Dashed line: Sen2Cor_output = Reference

Very good accuracy of WV estimation by Sen2Cor 2.5
L2A Validation Results Sen2Cor 2.5 Public: AOT Product

Scatter plot of Sen2Cor AOT$_{550}$ output at 20 m resolution versus AOT$_{550}$ reference from AERONET station. ACIX-1 data set (water sites excluded).

- Accuracy requirement (solid lines): $|\Delta \text{AOT}_{550}| \leq 0.1 \times \text{AOT}_{550,\text{ref}} + 0.03$
- Dashed line: $\text{Sen2Cor}_{\text{output}} = \text{Reference}$
- Green triangles: Results for DDV-algorithm
- Orange triangles: Results for fall-back processing with configured start VIS=40 km

- DDV-algorithm slightly overestimates AOT$_{550}$
- Current fall-back processing gives many large outliers
Fall back solution when DDV pixels are missing in the image.

- ECMWF-CAMS Total AOD at 550 nm short term forecast (< 12 hours)
- Data available on Operational FTP with short-term rolling archive (~ 3 days)
- CAMS data is collected daily
- CAMS data quality is controlled above L2A calibration test sites.

Sen2Cor CAMS prototype developed by TPZ F

First validation performed by DLR on ACIX dataset

Copernicus Atmosphere Monitoring Service (CAMS) website: https://atmosphere.copernicus.eu/
Example of CAMS product retrieved from operational FTP
0.4 x 0.4 deg lat-lon grid
L2A: ECMWF-CAMS AOD at 550 nm Assessment

Filtering using:

Aeronet quality (number of aeronet measurements around S2 acquisition time)

Nsamples: 547

Pearson's corr. Coeff R(all): 0.80

Slight overestimation for lower aerosol loads < 0.25
L2A PROTOTYPE: MAIN PROCESSING STEPS

- Sen2Cor CAMS prototype based on 02.05.05 (public version)
 - AOD inputs from CAMS NEAR_REALTIME (FTP) or MACC data from API server
 - CAMS AOD data used in AC processing only when not enough DDV are present
 - CAMS AOD converted to visibility (km) using the altitude of the CAMS DEM.
 - Visibility spatially and temporally interpolated to S2 geometry and S2 acquisition time.
 - Visibility parameter then used in the radiative transfer equations together with Sen2Cor Digital Elevation Model information (PlanetDEM for operational L2A)
 - Iterative negative reflectance check performed afterwards:
 - If too many negative surface reflectance pixels -> visibility slightly increased (\(\Leftrightarrow\) AOD decrease) to reduce the amount of negative reflectance pixels.
L2A Validation Results Sen2Cor 2.5 CAMS: AOT Product

Correlation plot of Sen2Cor AOT\textsubscript{550} output at 20 m resolution over AOT\textsubscript{550} reference from AERONET on basis of the ACIX-1 data set (water sites excluded).

Sen2Cor 2.5, fall-back solution = start VIS

Sen2Cor 2.5, fall-back solution = CAMS data

Using CAMS data as fallback solution in case there are no DDV-pixels in the image looks much better.
Sen2Cor 2.5 public in comparison to Sen2Cor 2.5 CAMS; ACIX (water sites excluded)

<table>
<thead>
<tr>
<th>AOT statistics</th>
<th>noDDV set 2.5 public</th>
<th>noDDV set 2.5 CAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of products</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Products within requ.</td>
<td>27%</td>
<td>36%</td>
</tr>
<tr>
<td>R^2 (Coefficient of variation)</td>
<td>0.19</td>
<td>0.60</td>
</tr>
<tr>
<td>r (Pearson’s correlation coeff.)</td>
<td>0.43</td>
<td>0.77</td>
</tr>
<tr>
<td>MA (Median Accuracy value)</td>
<td>-0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>MD (Median deviation)</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>MP (Median Precision value)</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>U (Uncertainty)</td>
<td>0.25</td>
<td>0.17</td>
</tr>
<tr>
<td>Max AOT$_{550}$ difference</td>
<td>0.77</td>
<td>0.48</td>
</tr>
<tr>
<td>95.4% Quantile</td>
<td>0.14</td>
<td>0.26</td>
</tr>
<tr>
<td>68.3% Quantile</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Median Deviation = median (|Sen2Cor - reference|)

Much higher correlations, remarkable lower MP, U and Max AOT$_{550}$ difference, lower A
More products within requirement
L2A CAMS FALLBACK: Sen2COR 2.5 ORIGINAL

Sentinel-2B product
Four tiles
Naples, Italy
9 March 2018

Overlap region in red: 980 x 980 pixels
L2A CAMS FALLBACK: Sen2cor 2.5 CAMS PROTOTYPE

Sentinel-2B product
Four tiles
Naples, Italy
9 March 2018

Overlap region in red : 980 x 980 pixels
CONCLUSION AND OUTLOOK

- Sen2Cor CAMS prototype based on public Sen2Cor version 2.5
- Promising results for the improvement of AOT retrieval in case DDV pixels are missing in the image
- CAMS data quality monitoring over L2A calibration sites to be continued
- Further investigations foreseen:
 - using CAMS forecasts for different aerosol types
 - merging CAMS forecasts with Sen2Cor AOT estimates (in case DDV are present in the image)
ACKNOWLEDGEMENTS

The authors thank the PI investigators and their staff for establishing and maintaining the AERONET sites used in this investigation.
THANK YOU FOR YOUR ATTENTION!

Jérôme Louis
Vincent Debaecker
Uwe Müller-Wilm
Bringfried Pflug
Magdalena Main-Knorn

jerome.louis@telespazio.com
L2A CALIBRATION ACTIVITIES: CAMS-ECMWF AOT

CAMS geopotential used to calculate elevation
elevation = surface geopotential / 9.80665

Resolution 0.4 x 0.4 deg
L2A: ECMWF-CAMS AOD at 550 nm Assessment

No direct correlation between cloud coverage and CAMS aod uncertainty.

Qualitative analysis of outliers shows that these are often related to a large weather front approaching the aeronet site.
VALIDATION PROCEDURE

• AOT & WV validation procedure:
 ➢ direct comparison with AERONET as reference
 ➢ AERONET: satellite overpass time ±30 min
 ➢ Sentinel-2: average over
 ➢ 9km x 9km area around sunphotometer of all vegetated and not-vegetated pixels

• SR validation procedure:
 ➢ Pixel-by-pixel comparison with AERONET corrected (surface reflection) data as reference
 ➢ SR reference computed from [Eric Vermote]
 ➢ Sentinel-2 L1C (TOA) data with
 ➢ 6S radiation transport model using
 ➢ aerosol parameters from AERONET as input
 ➢ AERONET: satellite overpass time ±30 min
 ➢ Sentinel-2:
 ➢ 9km x 9km area around sunphotometer with
 ➢ only non-saturated, non-cloudy and non-missing pixels considered
VALIDATION PROCEDURE

• Statistical metrics:
 - $X_i = SR_{i\lambda}, AOT^{550}_i, WV_i$
 - $\Delta X_i = X_i,_{SEN2COR} - X_i,_{reference}$
 - **Median Accuracy value** (median difference to reference value)

 $$MA = \text{Median}_{i=1}^{n}(\Delta X_i)$$
 - **Median absolute Deviation**:

 $$MD = \text{Median}_{i=1}^{n}(|\Delta X_i|)$$
 - **Median Precision value** (rms around MA)

 $$MP = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n}(\Delta X_i - MA)^2}$$
 - **Uncertainty U** (rms around reference value)

 $$U = \sqrt{\frac{1}{n} \sum_{i=1}^{n}(\Delta X_i)^2}$$
 - **SR per band**:
 - MA, MP and U are computed per 0.02-SR-bins and
 - overall values for entire SR range