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1 Abstract 

 

The paper is about finding the global optimum for a wheel loader work cycle in a gravel application. This 

includes simulating the gravel and extracting the trajectories for the main actuators; propulsion, lift and tilt, 

during the work cycle. The optimal control method is dynamic programming and the optimum is calculated with 

regard to fuel efficiency [ton/l] but can be weighted towards productivity [ton/h]. 

The analytical optimal control results are compared to an extensive empirical measurement done on a wheel 

loader and shows around 15% higher fuel efficiency compared to the highest fuel efficiency measured among 

real operators. 
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1. Introduction 

The wheel loader is considered as one of the most 

versatile construction equipment machines that 

perform multiple tasks on work sites. However, in 

this paper the focus is on a wheel loader working in 

a bucket application as part of a production chain 

performing a “short loading cycle”. This use case 

has been chosen for demonstration of the method, 

due to the fact that this is one of the most common 

applications for larger wheel loaders. The versatile 

usage and large variations in operator behavior, due 

to multiple actuators, make optimizing fuel 

efficiency [ton/l] and productivity [ton/h] a 

challenge when designing a wheel loader. The 

variation due to operator behavior, among 

experienced operators can be as much as 150% in 

fuel efficiency and 300% in productivity [1]. 

Customers who buy construction machines use 

them as tools to make money as a business; 

consequently the running costs, such as fuel, 

maintenance and operator wage, are essential to 

minimize. Taking economics and environmental 

care into consideration, it is important to optimize 

the fuel efficiency [ton/l] and productivity [ton/h] of 

each construction machine. 

The literature contains several studies related to 

optimization of construction machines and wheel 

loaders in particular. However these papers have 

only considered machine speed and lifting during 

the transport phase [2,3] or only minimized 

consumed fuel per travelled distance when 

considering the drive line [4], both of which are 

great simplifications of the problem. In this paper a 

method for optimizing the complete work cycle, 

including the loading phase, is presented. The 

loading phase is important because about one third 

of the energy is spent in the gravel pile. This is 

visible in literature such as [5] where simple 

performance indicators are used to study fuel 

efficiency improvement of a complete wheel loader 

work cycle by optimizing bucket design and bucket 

filling. The bucket filling phase is also the most 

difficult part of the cycle for the operator. Optimal 

driving, for on-road applications, is covered in 

literature such as [6,7,8,9,10,11] while similar 

problems are solved for off-road in [2,3,12] and an 

optimization of a full work cycle in a grapple 

application of a wheel loader is solved in [13]. In 

the literature, there is a tendency to simplify the 

models of the major components to suit the 

optimization tool chosen. If the problem is 

non-convex, dynamic programming is the only 

reasonable method that guarantees global optimum. 

In this paper, a method is developed based on 

dynamic programming to ensure that the global 

optimum is found, with regard to fuel efficiency 

and productivity. In [14,15,16,17] a global optima 

has been found, using dynamic programming, to 

evaluate control strategies, in off-road machines, 

that need less computational power but do not 

ensure a global optimum solution for the complete 

machine as a system. However these papers only 

consider the primary energy converter side, for 

example: the internal combustion engine and/or the 

hydraulic pumps. The method presented in this 

paper also takes into consideration the actuators and 

does not rely on a recorded work cycle. 

The main research contribution in this paper is to 

formulate a dynamic programming problem that is 

able to be able to optimize the actuator movements 

in a complete work cycle with regard to fuel 

efficiency at a given productivity, including the 

three main actuators; propulsion, lift and tilt. This is 

done with a proven environmental model, to 

guarantee correct interaction between the gravel 

pile and bucket, and with models of the wheel 

loader based on maps of real measurement data of 

all major components in the wheel loader. The 

result of the optimization, calculated in Section 5, is 

then compared to the empirically best work cycle 

found in an operator deviation measurement study, 

presented in Section 2. 

The optimization in this paper excludes the route 

optimization, handled in literature such as 

[2,18,19,20]. In [2] the transport part of the work 

cycle is optimized, including path planning, with 

steering, machine velocity and load receiver angle, 

with more simplified equation based models of the 

internal components. 

Secondary research contributions are that this 

method is shown to be able to be used in the early 

phases of research and development when 

performing concept evaluations between different 

machine concepts and system optimization of the 

main components in each concept [21] Using the 

proposed method overcomes the traditional 

difficulties in simulating wheel loader efficiency 

and productivity with ad-hoc rule based algorithms. 

In [22,23] dynamic programming is used to 

determine the size of the electrical energy storage in 

a diesel-electric hybrid machine, while [21] 

demonstrates how the method presented in this 



paper applied to all major subsystems in the 

complete machine. It was also shown in [24] to be 

possible to extract from the results of this method, 

the input required for operator assist systems, 

automatic functions, and autonomous construction 

machine control development. 

For a complex system such as a wheel loader, 

solving an optimal control problem, and ensuring 

the solution is a global optimum, requires thorough 

knowledge about the system. Without this 

knowledge it is difficult to choose the most suitable 

optimal control method. In addition, when 

modeling the wheel loader, it is difficult to make 

the correct decision regarding reasonable 

simplifications and system boundaries. These 

decisions are often necessary to solve the problem 

within a reasonable computation time. For this 

reason an introduction to the wheel loader is given 

below and some of the largest challenges when 

simulating and controlling a wheel loader are 

discussed. The method presented in this paper can 

be applied in other industries that are facing similar 

challenges when performing a new machine 

concept evaluation or developing operator assist 

functions. Applicable industries are where the 

machine topology with parallel power flow, 

material interaction, and machine performance 

limitations are set by the operator, see Figure 2 and 

Section 1.2. Industries can be, but are not limited 

to, i.e. agriculture and forestry. An example is 

found in [25,26], where dynamic programming is 

used in the energy optimization of the hydraulic 

system of forestry equipment. In contrast to the 

examples in [14,15,16,17,22,23,25,26], in this 

paper the complete machine is considered. 

1.1 Paper outline 

In the remaining parts of Section 1 a short 

background description of the wheel loader and the 

definition of the wheel loader operation 

optimization are presented. In Section 2 an 

empirical study is presented where an empirical 

best case in regards to fuel efficiency, with an 

acceptable productivity, is found. In Section 3 the 

wheel loader configuration, with limitations and 

boundaries, is presented. The problem formulation 

is set up in Section 4. In Section 5 the numerical 

theoretical optimum is calculated. The optimization 

method, wheel loader and environment simulation 

models and implementation of the optimization 

algorithms, with limitations, are presented as well. 

In Section 6 a comparison analysis is done, 

investigating the differences between the numerical 

theoretical optimal solution and the empirical best 

case found in Section 2. The results are presented in 

Section 7, followed by a discussion in Section 8 and 

the conclusions are presented in Section 9. 

1.2 Wheel Loader Background 

As described in [1,27,28], the wheel loader is a 

versatile working machine used in a vast variety of 

applications with different attachments such as 

bucket, grapple [13], material handling arm, etc.. In 

this paper, the focus is on wheel loaders that are 

part of a production chain, in particular, bucket 

applications. The tasks are most often either loading 

material from the face of a material pile or a virgin 

bank, loading materials ranging from blasted rock 

to clay and natural sand, or re-handling, meaning 

handling material after the crusher, either to feed 

the next part in the production chain, to stockpile or 

to load onto trucks out from site. With each 

application, the wheel loader’s work cycle looks 

different. The most common work cycles for 

production chain wheel loaders in bucket 

applications are the “short loading cycle”, also 

called “V-cycle” or “Y-cycle” in literature such as 

[29,30], and the “load and carry cycle”. The major 

differences between the two cycles are the transport 

distance, the initial velocity into the gravel pile and 

that the need for using all actuators at the same time 

is more critical in the “short loading cycle”. A 

visualization of a “short loading cycle”, loading 

blasted rock onto an articulated hauler from face as 

a part of a production chain, is shown in Figure 1. 

 

Figure 1 – A wheel loader performs a ”short loading cycle” in 

blasted rock from face, as a part of a production chain [31]. 

There are two major differences between the more 

commonly known and studied optimization of an 

on-road vehicle and of a wheel loader, that increase 

the complexity of the system, and hence also the 

optimization. Firstly, the wheel loader has more 

actuators, propulsion, lift and tilt, comparing to a 



single propulsion actuator in the car, hence the 

operator is central in the control loop, see Figure 2, 

meaning that different operator behaviors have a 

higher impact than in a normal on-road application. 

This results in more degrees of freedom to optimize 

in the wheel loader case. Secondly, the interaction 

with the environment in a car is only the interaction 

with the ground and air and can be simulated using 

the vehicle motion equation [32] while in the wheel 

loader the interaction is more complicated. When 

filling the bucket all three actuators are working 

against a gravel pile in a complex power balance, 

see Figure 2.  

The schematic picture of the power flow in a wheel 

loader in Figure 2  reveals the complexity of the 

system. There is not only a coupling in the power 

flow at the combustion engine, which is coupled to 

the torque converter and the hydraulic pumps, but 

also at the bucket, where the wheels and cylinders 

are coupled via the gravel pile in the bucket filling 

phase. This means that the operator needs to 

balance the power available from the combustion 

engine between the two main power consumers, 

driveline and working hydraulics, at all times. 

Furthermore, the working hydraulics consists of 

two main functions, lift and tilt, and a number of 

support functions, such as steering and auxiliaries. 

 

Figure 2 - A schematic picture of the power balance and the 

control loop in a wheel loader during bucket fill [27,28].  

ECU is an on-board computer. 

A gravel pile model is necessary to get the correct 

coupling on the bucket-side of the schematic picture 

in Figure 2. This can be compared to the rolling 

resistance in an on-road application but it is 

responsible for almost all of the fuel consumed in 

the bucket fill phase, and around one third of the 

total amount of fuel consumed in a “short loading 

cycle” [33]. The importance of including the gravel 

pile cannot be emphasized enough.  

1.3 Wheel Loader Operation 

Optimization 

When discussing optimizing of the wheel loader 

operation, regardless if it is targeting fuel efficiency 

[ton/l] or productivity [ton/h], what often comes to 

mind is to optimize the wheel loader itself and 

sometimes also the work cycle layout. However the 

wheel loader operation optimization is not that 

simple, resulting in a problem too large to solve at 

once due to large computational power 

requirements. A suggestion for sub-dividing the 

optimization into levels for a wheel loader, working 

as part of a production chain, is shown in Figure 3. 

 

Figure 3 – Suggested optimization levels for a wheel loader, 

working as part of a production chain. Levels circled in red 

are targeted in this paper. 

The levels are defined as; 

Site and machine-to-machine optimization: On a 

work site, for example a quarry or open pit mine, 

the fleet of machines and the layout of the site can 

be optimized with regard to any combination of: 

energy usage of the complete site, the production 

rate, initial and/or running costs of the site. This 

task is further complicated by the imposition of 

boundary conditions. For example: the contractor 

has a limited set of machines or the layout of the 

site has geographical constraints. Once a set of 

machines has been chosen a continuous 

optimization has to be performed, with regard to 

how the machines work together. Optimization at 

this level is not covered in this paper but rather in 

literature such as [34,35]. 

Machine optimization: Given a work task, the 

wheel loader itself can be optimized, with respect to 

fuel efficiency and/or productivity. This includes 

different machine concepts, such as a conventional 

wheel loader, a diesel-electric hybrid wheel loader, 

a full electric wheel loader, etc. System 

optimization, which is the sizing of components 

such as internal combustion engine, hydraulic 

Work cycle 

Site and machine-to-machine 

Machine 

Actuation 

Operator 



pumps, lifting unit etc. is included as well. Both 

concept evaluation and system optimization is done 

by the wheel loader manufacturer. Using the 

method developed and presented in this paper a 

concept evaluation and a system optimization can 

be performed, see [21] for more details. 

Work cycle optimization: Given the machine and 

the work task, there is freedom in how to plan the 

work cycle. While some boundary conditions, such 

as the gravel pile position and the load receiver 

height, may be fixed, there are other boundary 

conditions that are flexible. This includes the 

following: load receiver position, turning point of 

the wheel loader and the position trajectory between 

the gravel pile, turning point and load receiver. One 

result of the path planning optimization of the work 

cycle in [2] is shown in Figure 4. Here the steering 

angle of the wheel loader together with the x- and 

y-positions are optimized. The lift is considered 

only in order to determine that the required height 

at the load receiver is reached. 

 

Figure 4 - Left: Normalized values for the recorded 

productivity from measurements. Right: Recorded Wheel 

Loader trajectories during measurements. The highlighted 

trajectories have almost the same travelling distance and 

bucket load but are different in productivity [2]. 

The path planning optimization of the work cycle is 

not covered in this paper but rather in literature 

such as [2,19,20]. 

Actuator optimization: Given the work cycle 

geographical boundary constraints and machine, the 

cycle can be performed in different ways as regards 

actuation of the three main actuators; propulsion, 

lift and tilt. This results in different productivity 

[ton/h] and fuel efficiency [ton/l]. The method 

presented in this paper performs the actuator 

optimization by optimizing; the wheel loader 

velocity, lift position and tilt position in relation to 

covered distance by using dynamic programming. 

The main reason for dividing “Work cycle 

optimization” and “Actuator optimization” is to get 

reasonable computation times.  

Operator optimization: This is not really an 

optimization level if all other levels have been 

optimized, but is rather about the operator and how 

to influence how he/she operates the machine. This 

can be done by operator support systems, automatic 

functions or autonomous machines. Even if the 

method presented here will not directly deliver such 

systems, the results from the optimal control 

calculations can be used as input when developing 

them [24], hence the dashed circle in Figure 3. In 

addition, the “Work cycle optimization” will affect 

the “Operator optimization”. 

2 The Empirical Study 

The main reason for performing the study is to 

empirically find the best work cycle, with regard to 

fuel efficiency [ton/l] with an acceptable 

productivity [ton/h]. The purpose is to validate the 

calculated numerical theoretical global optimum, 

presented in Section 5. In an ideal case the number 

of measured operators would be infinity, or at least 

all operators in the world, but this is of course not 

feasible. The secondary reason was to evaluate the 

usefulness of an operator support tool [1]. The 

measurement setup presented briefly in this section 

and further in [1]. 

Since the theoretical optimization algorithm is 

designed to cover the “Actuator optimization” level 

in Figure 3, it is important to isolate the same layer 

in the real world measurements. This was done by 

ensuring that the environment was the same all the 

time. For this, the measurement was done indoors 

to minimize the effect of weather conditions, 

particularly since the gravel is heavier when moist. 

Also the same gravel was reused during the whole 

measurement, and even if the wear of the material 

was a bit more extensive than expected. In the load 

and carry application there was more extensive 

material wear due to wear against the conveyer belt 

and hopper. In the rock application the material, 

boulders and shot rock, break apart easier, rounding 

the edges, which change the material properties. 

This results in higher uncertainties regarding 

material wear in these two applications [1]. In the 

“Short loading cycle” the wear was not as big as in 

the other two application and after analyzing 

measurement data in conjunction with what had 

been observed during the measurements the this did 
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not affect the results much in the “Short loading 

cycle” application. This is also the reason why the 

indoor, most repetitive application is used as a 

comparison in this paper. The driving surface was 

smoothed between all operators to guarantee the 

same initial condition for all operators. All the 

measurements were done with the same Volvo 

L220F wheel loader to ensure that deviation 

between machines did not affect the results. The 

work cycle was arranged as in Figure 5. Even 

though the hauler was placed at the same position 

in every cycle the turning point in the V-cycle had 

to be decided by the wheel loader operator. Hence, 

the difference between the operators will mostly be 

in the “actuator optimization” layer but also partly 

in the “work cycle optimization” layer. 

 

Figure 5 – Measurement setup, performing a “Short 

loading cycle”. 

In the study, 79 operators operated the wheel 

loader. Each operator filled 5 haulers, with 3 

buckets of gravel in each, resulting in 15 wheel 

loader work cycles. More about the measurement 

setup, operator deviation and differences between 

applications can be found in [1]. 

2.1 Empirical Study Output 

As a first step in the analysis of the empirical study, 

the average fuel efficiency and productivity for 

each operator is calculated. Only the wheel loader 

cycle is included, the hauler cycle when the wheel 

loader is not doing any work is excluded. As a 

second step the fuel efficiency and productivity per 

cycle is calculated. Worth noticing here is the 

difference between cycle #1, #2 and #3 when filling 

the hauler. Positioning often takes longer time in 

the first cycle due to repositioning of the wheel 

loader to the new pile geometry. This is because the 

same gravel is used in the test and the hauler does 

not empty in the exact same spot, see Figure 5. In 

the third cycle, care has to be taken when emptying 

the bucket because the hauler is filling up. The 

second cycle is usually the quickest one with the 

highest productivity [ton/h] and fuel efficiency 

[ton/h]. To favor consistently high fuel efficient 

behavior, the operator with highest average fuel 

efficiency, that also had a small deviation between 

the cycles, was chosen, EP15 in this case, and this 

operator’s best cycle, see the green square marker 

in Figure 6, is used as the benchmark to the 

numerical theoretical optimum. To be able to use a 

measured cycle as benchmark the cycle time, 

turning point and position of hauler and gravel pile 

are fed into the optimization algorithm. This 

corresponds to the “Work cycle optimization” layer 

in Figure 3. The output from the optimization 

algorithm is the movement of the three actuators: 

lift, tilt and propulsion. This corresponds to the 

“Actuator optimization” layer in Figure 3. 

 

Figure 6 - The fuel efficiency and productivity distribution of 

the most fuel efficient operator, EP15, compared to the other 

operators’ average. SLC means “short loading cycle”. 

Normalized axes due to Volvo internal results. 

Using the input from the measurements in this way 

will allow the isolation of the “actuator 

optimization” layer in Figure 3, and consequently 

verify that the optimization result returned is a 

global optimum. The “work cycle optimization” 

layer is not targeted but rather handled in [2,19,20]. 

This means that the work cycle parameters, such as 

turning point, fill position and empty position, both 

regarding the ground plane, the lift height, the 

bucket angle and cycle time are set from the 

measured operator’s work cycle. 

3 System Setup 

The wheel loader concept chosen to demonstrate 

the methodology presented in this paper is a 

precursor [36] to the recently revealed concept 

wheel loader “LX1” [37], performing a “short 

loading cycle” in a production chain, bucket 
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application. This is a full series hybrid with all three 

actuators; propulsion, lift and tilt, decoupled. The 

series hybrid drivetrain consists of one propulsion 

electric machine and a three speed gearbox without 

a torque converter. The working hydraulics is also 

hybridized in series, where one electrical machine 

propels one hydraulic pump for each function. In 

this case, lift and tilt are the hydraulic functions 

accounted for. The steering is not accounted for 

because the steering must always receive the power 

needed to steer for reasons of to safety. This means 

that the problem to be solved has three control 

signals; lift, tilt and propulsion, see the schematic 

picture in Figure 7. 

 

Figure 7 – Schematic picture of the wheel loader concept 

investigated. Schematic picture of the wheel loader concept 

investigated. The genset is the internal combustion engine and 

electrical machine on the primary energy converter side. ICE is 

the internal combustion engine, EM is the electrical machine, 

PE is the power electronics, Batt is the electrical energy storage 

(battery or super capacitor), HM is the hydraulic machine, 

CYL is the hydraulic cylinder actuating lift and tilt, and PG is 

planetary gears in the axles and hubs. 

The primary energy conversion, the genset and 

battery, on the left-hand side in Figure 7, are 

optimized in a separate dynamic programming 

optimization. This is done to reduce the number of 

states so that the optimization can be done within a 

reasonable computational time. To divide the 

problem into actuation optimization and the 

primary energy conversion optimization, with the 

actuator optimization as input to the primary energy 

conversion optimization, is a reasonable 

simplification, due to the decoupled nature of the 

series hybrid system. The limitation of the total 

power output from the internal combustion engine 

and energy storage system are included in such a 

way that the total power of the actuators are not 

allowed to exceed this limit. Hence, prioritization 

between the actuators has to be done as well. 

Because the operator is not involved in the 

optimization of the primary energy conversion in a 

series hybrid, and since the optimization result is to 

be compared with real operator data, the 

comparison will be at actuator level. Hence no more 

focus is put on the primary energy conversion 

optimization in this paper. In [21] a concept 

evaluation and system optimization is done with 

complete machine optimization, including 

producers, on three different wheel loader concepts. 

Due to the fact that only the “actuator 

optimization” layer is targeted in the optimal 

control algorithm and not the “work cycle 

optimization” layer the lack of steering will not 

affect the resulting trajectories of the actuators but 

will only significantly reduce the computation time.  

4 Problem Formulation 

The problem to be solved is to find a global 

optimum regarding fuel efficiency, at a given 

productivity, as described earlier. Discrete power 

loss maps for all components in the machine are 

used, originating from test rig measurements, is 

used to keep the machine model as close to reality 

as possible. Also the environmental models should 

be as close to reality as possible, therefore the 

Discrete Element Method, DEM, is used for the 

gravel pile model. From analysis of the power loss 

maps and the problem setup it can be shown that 

the problem is non-convex. In most of the 

commonly used optimal control solvers found in 

literature it would be troublesome to handle these 

data tables. This is mostly due to the fact that most 

of the solvers are gradient based. Thus if the 

optimization has a machine model that is map 

based, in practice the gradients can be tedious to 

calculate. Considering this and the desire to ensure 

that global optimum is found, an algorithm based 

on dynamic programming was developed by the 

author. 

In discrete form the problem can be formulated as: 

(1) 

Here 𝒙𝒌 are the states, 𝒖𝒌 are the control signals;  
𝒙𝒌,𝟏 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦           𝒖𝒌,𝟏 = 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟        

𝒙𝒌,𝟐 = 𝑙𝑖𝑓𝑡 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝒖𝒌,𝟐 = 𝑙𝑖𝑓𝑡 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝒙𝒌,𝟑 = 𝑡𝑖𝑙𝑡 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝒖𝒌,𝟑 = 𝑡𝑖𝑙𝑡 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

at time 𝑘. In  𝐿(𝒙𝒌, 𝒖𝒌) the energy usage per 

sample, which becomes the power in each sample 

to be minimized, is computed according to the 

simulation model presented in Section 5.3.  𝛽 is a 

weighting factor that affects the cycle time by 

enforcing different average velocity of the wheel 

 

∑ 𝐿(𝒙𝒌, 𝒖𝒌) +
𝛽

𝑥𝑘,1

+ 𝐸(𝒙𝑵)

𝑁−1

𝑘=0

𝑓(𝒙𝒌, 𝒖𝒌) − 𝒙𝒌+𝟏 = 0 𝑓𝑜𝑟 𝑘 = 0, … , 𝑁 − 1
𝒙̅𝟎 − 𝒙𝟎 = 0                     

𝒙̅𝑵 − 𝒙𝑵 = 0                      
𝑥̅𝑇𝑃,1 − 𝑥𝑇𝑃,1 = 0                               

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝒙𝟎, 𝒖𝟎, 𝒙𝟏, … 𝒖𝑵−𝟏, 𝒙𝑵

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
   

 

 
Genset 



loader. 𝐸(𝒙𝑵) are the terminal penalties for 

ensuring correct end conditions. In 𝑓(𝒙𝒌, 𝒖𝒌) the 

states for the next sample are computed according 

to the simulation model presented in Section 5.3. 𝒙𝟎 

are the initial conditions and 𝒙𝑵 are the end 

conditions. The initial and end conditions for all 

three states are set by the phase boundary 

conditions as explained in Section 5.2. 𝑥̅𝑇𝑃,1 is the 

turning point condition as shown in Figure 11. The 

states, 𝒙𝒌, and the control signals, 𝒖𝒌 are discrete 

sets limited by the physical limits of the 

components in the wheel loader. 

5 Theoretical Global Optimum 

An optimal control method, together with the 

related algorithms and implementation, that ensures 

global optimum, according to the set requirements, 

are presented in this chapter. The optimal control 

method and the model of the wheel loader and its 

environment have to be able to interact in a way 

that the computation time is kept reasonable. The 

model of the wheel loader and its environment, 

with limitations, are also presented in detail. 

5.1 Optimal Control Method 

Many optimal control methods are available, in 

literature such as [38] and [39]. In the recent 

decades, optimal control has become more popular, 

much due to the fact that available computational 

power has increased substantially, enabling the use 

of optimal control in more applied industrial areas. 

More recent literature that explains different 

optimal control methods and how to use them in 

modern computers are [40,41]. 

Different optimization methods can be used to 

compute a numerical theoretical optimum with 

regard to fuel efficiency in a vehicle. In [42], an 

on-road vehicle system optimization problem is 

investigated by performing a “convexification” of 

the problem. In [3] the transport part in a wheel 

loader work cycle is optimized, the optimal control 

problem solver PROPT [43] is used, which uses a 

pseudo-spectral collocation method to solve a 

formulated multi-phase optimal control problem. 

Dynamic programming is chosen in this paper 

according to the line of argument in Section 4. 

5.1.1 Dynamic Programming 

Dynamic programming is an optimal control 

method where exhaustive search is performed in a 

structured way [44]. 

Assuming that the work cycle geographical 

boundary constraints are set, the focus is then on 

the “actuator optimization” level in Figure 3. The 

optimization problem is to solve how the three 

actuators; propulsion, lift, and tilt, should behave to 

optimize the fuel efficiency during the work cycle, 

while ensuring that the desired work cycle time is 

achieved to keep the required productivity. This 

means that the problem has three control signals, 

𝒖𝒌,𝟏 𝒕𝒐 𝟑 in (1). However, for visualization purposes 

a schematic “one control signal” case is shown in 

Figure 8. 

 

Figure 8 – Schematic example of a transition graph, for the 

forward computation, in a “one control signal” problem. 

Dynamic programming is a discrete method based 

on taking a decision at every sample. The basic idea 

is to compute backwards, for a known work cycle, 

the cost-to-go in each discrete sample for each 

discretized state value in a first loop, and in that 

way get the optimal path. Then the control signals 

are extracted by the help of the arc-costs, which in 

this case relates to the energy consumed by the 

wheel loader during that step. Interpolation is used 

between the current cost-to-go and the sum of the 

previous cost-to-go and the arc costs to be able to 

keep a sparse grid to save computational power. In 

a given work cycle the discretization of the x-axis is 

the distance. There are three “y-axes”; wheel loader 

velocity, lift cylinder position and tilt cylinder 

position. This corresponds to the state 𝒙𝒌,𝟏 𝒕𝒐 𝟑 in 

(1). The initial and final machine positions are set 

so that the wheel loader completes the work cycle. 

The initial, 𝒙𝟎, and final, 𝒙𝑵, states are set 

according to the boundary conditions given in by 

the geographical boundary constraints imposed on 

the work cycle. This result in forbidden arc-costs, 

see the beginning and end in Figure 8. The control 

signals, 𝒖𝒌,𝟏 𝒕𝒐 𝟑 in (1); the electrical propulsion 

machine torque, the lift cylinder speed and the tilt 

cylinder speed all have limitations because of the 

physical limitations of the electrical machines, 

which results in a maximum possible acceleration. 

This is why not all transitions are allowed in the 

middle of the graph in in Figure 8. More about 

dynamic programming can be found in [44]. 



5.2 Dynamic Programming 

Implementation 

An algorithm has been developed to find the global 

optimum with regards to fuel efficiency [ton/l] for a 

given work cycle and a given machine concept, 

converted to electrical actuator energy efficiency 

[ton/J]. The work cycle is divided into four phases; 

“Loading”, “Transport with load”, “Unloading” 

and “Transport without load”, see Figure 11. This 

is possible because the work cycle has fixed start 

and end points where each phase starts and ends. In 

the example presented in this paper these fixed 

points are taken from the measurement. The 

computational time is lower when the phases are 

computed in parallel, and due to the fixed boundary 

points the split does not affect the optimization 

results. Dividing the problem into a path planning 

optimization of the work cycle and an actuator 

optimization adds a risk of sub-optimal solutions. 

However, in many cases these points are set by 

outer environmental constraints such as location of 

the pile, load receiver and other obstacles. 

In dynamic programming, the implementation is a 

challenge due to the curse of dimensionality [39]. 

Furthermore, the level of discretization and the 

computation time are interrelated. To investigate 

how the discretization of the control signal affects 

the optimal control results, different runs with 

increasing control signal discretization have been 

performed, visualized by the blue crosses in Table 

1. Only the control signal discretization matters 

since this sets the resolution in the output power for 

the three actuators. This in turn results in a motion, 

either on the driveline or the working hydraulics. 

The total power of all three actuators with the cycle 

time weighting factor corresponds to the arc-costs 

in Figure 8. 

Table 1 - Runs with different levels of discretization. 

Run 
Control signal 

discretization 

State 

discretization 
Marker 

1 11x11x11 11x10x10 X 

2 21x21x21 11x10x10 X 

3 41x41x41 11x10x10 X 

4 61x61x61 11x10x10 X 

5 81x81x81 11x10x10 X 

1 11x11x11 21x19x19 O 

2 21x21x21 21x19x19 O 

3 41x41x41 21x19x19 O 

 

 

As can be seen in Figure 9, represented by the blue 

crosses, the normalized energy usage is relatively 

insensitive to control signal discretization increases 

past “Run” 2”. With further discretization, the 

solution changes by less than 1%. Therefore this 

discretization level is used henceforth. 

 

Figure 9 - Normalized energy usage for different 

discretization levels. Legend and level of discretization 

according to Table 1. 

To investigate how sensitive the result is to the 

interpolation between the states, when interpolating 

from the different arc-costs, three of the simulations 

were repeated with an increased level of 

discretization of the states. The results are 

represented with red circles in Table 1. and Figure 

9. The difference in the results of the two 

discretization levels is small in comparison to other 

sources of error, for example the simplified 

machine and environment model presented in 

Section 5.3. Considering the exponential increase in 

calculation time with each increasing level of 

discretization, see Figure 10, there is no practical 

justification for using a higher level of 

discretization. However, there are other ways to 

increase the level of accuracy, for example by using 

a better interpolation. A two-step interpolation 

calculation, in each sample, is used in the final 

version of the optimization algorithm which 

increases the accuracy, so that it will be used 

henceforth. 

The calculation times for the different simulations 

in Table 1 are shown in Figure 10. Here the 

exponential curse of dimensionality is clear and the 

importance of keeping the discretization as low as 

possible are visible. 



 

Figure 10 - Calculation times for simulations. Legend and 

level of discretization according to Table 1. 

More about convergence of the dynamic 

programming algorithm is presented in [13]. 

To be able to reach the fixed points in the working 

cycle, end penalties, 𝐸(𝒙𝑵) in (1), have to be 

implemented. These ensure that the wheel loader is 

moving and energy is used. A weighting factor,  𝛽 

in (1) and (2), has to be implemented to ensure that 

the desired work cycle time is achieved. 

To simplify the understanding, a pseudo-code of the 

implementation of the dynamic programming is 

shown in Code 1. The cost-to-go is first computed 

backwards to get the costs in all points in Figure 8 

and ensure correct ending point. 

 

Code 1 – Pseudocode for the backward computation of the 

cost-to-go. 

There is a high out of bound penalization factor 

implemented when calculating the arc cost to 

ensure that the algorithm keeps within the boundary 

conditions of the components. To reduce 

computational time whilst keeping the accuracy in 

the optimization, a method is used that decreases 

the discretization level and instead computes two 

steps inside every loop. 

Then the algorithm computes forward, according to 

the pseudo-code in Code 2, from the correct starting 

point to find the control signals that result in the 

global optimal solution, with regard to energy 

efficiency of the actuators. 

 

Code 2 – Pseudocode for the forward computation, 

extracting the optimal control signals. 

The arc-costs represent the sum of the energy 

consumption of all actuators in each arc 

computation and hence each distance step. The 

calculations of the arc-costs are detailed in 

Section 5.3. 

The tool has also been developed to enable the 

investigation of the Pareto front that visualizes the 

trade-off between productivity and fuel efficiency, 

and forms the machine trade-off curve presented in 

[1]. This is done here by changing the cycle time 

penalty,  𝛽, and in that way calculating the 

maximum fuel efficiency for all the possible cycle 

times, which essentially corresponds to the 

productivity, given the load, for the wheel loader. 

This information can then be used to optimize a 

complete work site. When evaluating different 

complete machine concepts the machine trade-off 

curve, which is the trade-off between fuel 

efficiency and productivity, can differ, both with 

regard to maximum fuel efficiency at different 

productivity, and also the characteristics of the 

maximum fuel efficiency over the productivity 

range for the specific wheel loader. It is 

advantageous to have a machine trade-off curve as 

forgiving as possible to facilitate different operator 

behavior [1]. But also to have the most robust 

machine possible to enable different production 

rates at different customer sites while maintaining 

high energy efficiency. More details on multi-

objective optimization can be found in [45,46]. 

5.3 Simulation Model 

The model of energy usage, represented by the 

function, 𝐿(𝑥𝑘 , 𝑢𝑘) in (1), consists of the wheel 

loader model and the model of its environment. The 

purpose is to calculate the power consumption as 

accurately as possible, since energy efficiency 

[ton/J] is the main optimization criteria. 

for i=final discretized distance step 

down to 0 

for j=0 to top discretized machine 

velocity 

for k=lowest to highest discretized 

lift position 

for l=lowest to highest discretized 

tilt position 

Compute the arc-cost according to (2). 
Save cost-to-go in each grid point 

for use in Code 2 by accumulating 
the minimum arc-cost and previous 

cost-to-go. 

end 

end 

end 

end 

for ii=0 to final discretized distance 

Compute the arc-cost according to (2). 
Compute the total cost by adding arc-

cost and cost-to-go from Code 1. 
The optimal control signals are derived 

from the minimum total cost. 

end 



The arc-cost in Code 1 and Code 2 is computed 

according to (2),  

𝒂𝒓𝒄_𝒄𝒐𝒔𝒕 = (𝑷𝒑𝒓𝒐𝒑 + 𝑷𝒍𝒊𝒇𝒕 + 𝑷𝒕𝒊𝒍𝒕 + 𝜷) ∙
∆𝒔

𝒗𝒂𝒗𝒈
   (2) 

where 𝑃𝑝𝑟𝑜𝑝 is the propulsion power delivered to 

the driveline, 𝑃𝑙𝑖𝑓𝑡 is the lift power, 𝑃𝑡𝑖𝑙𝑡  is the tilt 

power, 𝛽 is weighting factor discussed in 

Section 5.2 and 
∆𝑠

𝑣𝑎𝑣𝑔
 is the time step converted 

according to (3). 

∆𝑡 =
∆𝑠

𝑣𝑎𝑣𝑔
∙  (3) 

where ∆𝑡 is the time step, 𝑣𝑎𝑣𝑔 is the average 

velocity of the wheel loader in the time step and ∆𝑠 

is the distance travelled in the time step. 

The propulsion power is computed according to (4). 

𝑃𝑝𝑟𝑜𝑝 = 𝑃𝑤ℎ𝑒𝑒𝑙 + 𝑃𝑎𝑥𝑙𝑒_𝑙𝑜𝑠𝑠 + 𝑃𝑔𝑏𝑥_𝑙𝑜𝑠𝑠 + 𝑃𝑒𝑑𝑠_𝑙𝑜𝑠𝑠 
 (4) 

where 𝑃𝑤ℎ𝑒𝑒𝑙  is the power exerted on the wheels, 

𝑃𝑎𝑥𝑙𝑒_𝑙𝑜𝑠𝑠 is the losses in the axles, 𝑃𝑔𝑏𝑥_𝑙𝑜𝑠𝑠 is the 

gearbox losses and 𝑃𝑒𝑑𝑠_𝑙𝑜𝑠𝑠 is the losses in the 

propulsion electric drive system, which include the 

electrical machine and power electronics. The 

wheel power is computed from (5), (6), (8) and (9). 

𝑃𝑤ℎ𝑒𝑒𝑙 = 𝑇𝑤ℎ𝑒𝑒𝑙 ∙ 𝜔𝑤ℎ𝑒𝑒𝑙   (5) 

where 𝑇𝑤ℎ𝑒𝑒𝑙  is the torque exerted on the wheels 

and 𝜔𝑤ℎ𝑒𝑒𝑙  is the wheel speed. The wheel torque is 

computed from 

𝑇𝑤ℎ𝑒𝑒𝑙 = 𝐹𝑤ℎ𝑒𝑒𝑙 ∙ 𝑟𝑤ℎ𝑒𝑒𝑙   (6) 

where 𝑟𝑤ℎ𝑒𝑒𝑙  is the wheel radius and 𝐹𝑤ℎ𝑒𝑒𝑙  is the 

force exerted from the wheels to the ground. 

 

Figure 11 – Visualization of the “short loading cycle”, 

showing the phases and working area, modified from [27]. 

In the loading phase, see Figure 11, the wheel force 

and the vehicle speed are determined in the gravel 

simulation model, represented by 𝑓1 in (7), 

presented further in Section 5.4.1. The bucket 

trajectory is defined by the forward position, 

𝑥𝑏𝑢𝑐𝑘𝑒𝑡, the upward position, 𝑦𝑏𝑢𝑐𝑘𝑒𝑡  and the angle 

of the bucket, 𝜃𝑏𝑢𝑐𝑘𝑒𝑡 . This bucket trajectory is 

used as input to the DEM simulation.  

(𝑥𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑦𝑏𝑢𝑐𝑘𝑒𝑡 , 𝜃𝑏𝑢𝑐𝑘𝑒𝑡) =

𝑓1(𝐹𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑣𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝐹𝑧_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑣𝑦_𝑏𝑢𝑐𝑘𝑒𝑡 ,

𝑇𝑏𝑢𝑐𝑘𝑒𝑡 , 𝜔𝑏𝑢𝑐𝑘𝑒𝑡)   (7) 

The results from the DEM simulations are then post 

processed via a Volvo internal kinematic model of 

the lifting unit represented by 𝑓2 in (8). 

(𝐹𝑤ℎ𝑒𝑒𝑙 , 𝑣𝑎𝑣𝑔 , 𝐹𝑙𝑖𝑓𝑡𝑐𝑦𝑙
, 𝑣𝑙𝑖𝑓𝑡𝑐𝑦𝑙

, 𝐹𝑡𝑖𝑙𝑡𝑐𝑦𝑙
, 𝑣𝑡𝑖𝑙𝑡𝑐𝑦𝑙

) =

𝑓2(𝐹𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑣𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝐹𝑧_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑣𝑦_𝑏𝑢𝑐𝑘𝑒𝑡 ,

𝑇𝑏𝑢𝑐𝑘𝑒𝑡 , 𝜔𝑏𝑢𝑐𝑘𝑒𝑡)   (8) 

where 𝐹𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 is the force on the bucket, 𝑣𝑥_𝑏𝑢𝑐𝑘𝑒𝑡 

is the velocity of the bucket, in the forward 

direction, 𝐹𝑧_𝑏𝑢𝑐𝑘𝑒𝑡 is the force on the bucket, 

𝑣𝑦_𝑏𝑢𝑐𝑘𝑒𝑡 is the velocity of the bucket, in the 

upward direction, 𝑇𝑏𝑢𝑐𝑘𝑒𝑡  is the torque on the 

bucket and 𝜔𝑏𝑢𝑐𝑘𝑒𝑡 is the angular velocity of the 

bucket, see Figure 12. 

 

Figure 12 – Schematic picture of the forces and speeds of the 

bucket and how they translate to cylinder and vehicle forces 

and speeds, modified from [28]. 

In the rest of the work cycle, transporting and 

unloading, the wheel force results in an acceleration 

force for the vehicle according to the vehicle 

motion equation in (9) [32]. 

𝐹𝑎𝑐𝑐 = 𝐹𝑤ℎ𝑒𝑒𝑙 − 𝐹𝑟𝑜𝑙𝑙 − 𝐹𝑎𝑖𝑟    (9) 

where, 𝐹𝑎𝑐𝑐 is the acceleration force for the vehicle, 

𝐹𝑟𝑜𝑙𝑙  is the rolling resistance and 𝐹𝑎𝑖𝑟  is the air 

resistance. Froll is simplified to be constant since in 

the “short loading cycle” the working area is 

constrained to a small geographical area according 



to Figure 11. The acceleration force generates the 

vehicle velocity, see (10), this is the state in the 

driveline. 

If 𝑣𝑓𝑖𝑛𝑎𝑙 is the end velocity for the discrete step, 

𝑣𝑖𝑛𝑖𝑡is the initial velocity, 𝑚 is the vehicle mass and 

∆𝑠 is the step distance, the resulting motion of the 

wheel loader can be computed as in (10). 

𝑣𝑓𝑖𝑛𝑎𝑙 = 𝑣𝑖𝑛𝑖𝑡 +
𝐹𝑎𝑐𝑐

𝑚
∙

∆𝑠

𝑣𝑖𝑛𝑖𝑡
  (10) 

The control signal in the driveline, the propulsion 

electrical machine torque, 𝑇𝑒𝑚, is computed in (11). 

𝑇𝑒𝑚 =
𝑇𝑤ℎ𝑒𝑒𝑙+

𝑃𝑎𝑥𝑙𝑒_𝑙𝑜𝑠𝑠
𝜔𝑎𝑥𝑙𝑒

+
𝑃𝑔𝑏𝑥_𝑙𝑜𝑠𝑠

𝜔𝑔𝑏𝑥

𝑔𝑟𝑔𝑏𝑥∙𝑔𝑟𝑎𝑥𝑙𝑒
   (11) 

where 𝑔𝑟𝑔𝑏𝑥 and 𝑔𝑟𝑎𝑥𝑙𝑒  are the gear ratios in the 

gearbox and axle. The mechanical losses in the 

gearbox and axles, 𝑃𝑔𝑏𝑥_𝑙𝑜𝑠𝑠 and 𝑃𝑎𝑥𝑙𝑒_𝑙𝑜𝑠𝑠, are 

computed in (12) and (13). 

𝑃𝑔𝑏𝑥_𝑙𝑜𝑠𝑠 = 𝑓3(𝑇𝑤ℎ𝑒𝑒𝑙 , 𝑣𝑎𝑣𝑔)        (12) 

𝑃𝑎𝑥𝑙𝑒_𝑙𝑜𝑠𝑠 = 𝑓4(𝑇𝑤ℎ𝑒𝑒𝑙 , 𝑣𝑎𝑣𝑔)          (13) 

where 𝑓3 and 𝑓4 are tabulated values from test rig 

measurements. 

The losses in the electric drive system, 𝑃𝑒𝑑𝑠_𝑙𝑜𝑠𝑠, are 

computed in (14). 

𝑃𝑒𝑑𝑠_𝑙𝑜𝑠𝑠 = 𝑓5(𝑇𝑒𝑚 , 𝜔𝑒𝑚)           (14) 

where 𝜔𝑒𝑚 is the speed of the propulsion electrical 

machine and 𝑓5 consists of tabulated values from 

test rig measurements. 

The power to the hydraulic system, 𝑃𝑙𝑖𝑓𝑡 and 𝑃𝑡𝑖𝑙𝑡  is 

computed by (15) and (16). 

𝑃𝑙𝑖𝑓𝑡 = 𝑓6(𝐹𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 , 𝑣𝑙𝑖𝑓𝑡_𝑐𝑦𝑙)  (15) 

𝑃𝑡𝑖𝑙𝑡 = 𝑓7(𝐹𝑡𝑖𝑙𝑡_𝑐𝑦𝑙 , 𝑣𝑡𝑖𝑙𝑡_𝑐𝑦𝑙)  (16) 

where 𝐹𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 and 𝐹𝑡𝑖𝑙𝑡_𝑐𝑦𝑙 are the forces on the lift 

and tilt cylinder. 𝑣𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 and 𝑣𝑡𝑖𝑙𝑡_𝑐𝑦𝑙 are the 

velocities of the lift and tilt cylinder. This is the 

control signal for the hydraulic actuators. The 

functions 𝑓6 and 𝑓7 are tabulated values from test 

rig measurements.  

In the loading phase, see Figure 11, the cylinder 

forces and velocities are determined in the DEM 

gravel simulation via a Volvo internal kinematic 

model of the lifting unit in the same way as the 

propulsion; see (7) and (8). In the rest of the work 

cycle, transporting and unloading, the cylinder 

forces are computed in (17). 

(𝐹𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 , 𝐹𝑡𝑖𝑙𝑡_𝑐𝑦𝑙) = 𝑓8(𝑝𝑜𝑠𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 , 𝑝𝑜𝑠𝑡𝑖𝑙𝑡_𝑐𝑦𝑙)  (17) 

where 𝑝𝑜𝑠𝑙𝑖𝑓𝑡_𝑐𝑦𝑙 and 𝑝𝑜𝑠𝑡𝑖𝑙𝑡_𝑐𝑦𝑙 are the cylinder 

positions, which are the states for the hydraulic 

system, and 𝑓8 is derived from the Volvo internal 

kinematic model of the lifting unit.  

The wheel loader model is described by equations 

(8), (11) to (17) and is built of quasi-static power 

loss maps for each component that originate from 

real test rig measurements. The maps correspond to 

𝑓2 to 𝑓8 in the equations. Maps are an accurate way 

to model the wheel loader because the true, 

measured losses are accounted for and good 

opportunities for analysis of the different major 

sub-systems are possible. All the major components 

are included: in the driveline; wheels, axles, 

transmission, electrical machine and power 

electronics and for the working hydraulics; lifting 

unit, hydraulic cylinder, hydraulic machine, 

electrical machine and power electronics. 

Furthermore, indexed search in the maps enables 

fast computations. 

5.4 Trajectory Generation 

Figure 13 shows the simulation process employed: 

the bucket trajectories, generated in MathCad or 

Matlab, have been transferred as text files to the 

DEM particle simulation run in Pasimodo, as 

reported in [33]. The results have been transferred 

back to MathCad for post processing, for example 

converting the forces acting on the bucket into 

cylinder forces and rim pull demand. The results are 

then either passed on to Matlab and the optimal 

control algorithm running the wheel loader 

simulations or kept within MathCad to compute the 

simple performance indicators published in [5]. 

 

Figure 13 – Workflow for calculating the numerical 

theoretical global optimum, including the trajectory 

generation process [48]. 

The MathCad parts in this process could just as 

well have been performed in Matlab too. In the 

aftermath of this work, all scripts and the toolbox 

developed for such calculations, have in fact been 

ported to Matlab. 



Ideally the DEM simulation would be part of the 

overall simulation that includes the optimal control 

calculations. In this way, both physical properties 

and optimality would be ensured. However, no 

traditional optimal control algorithm can be used as 

the overall problem is not, and cannot, be made 

convex. This in turn precludes the use of gradient 

descent optimization. Instead the proposed 

algorithm based on dynamic programming may be 

used. However, running one big simulation with a 

complex machine model in a sufficiently detailed 

environment, controlled by an adaptive operator 

model is impossible with the calculation resources 

typically available today, because the 

computational costs using dynamic programming 

would be extraordinary high. This can of course 

change in the near future, considering cloud 

computing [48].  

The forces on the bucket at a given point in a 

trajectory through the pile are highly dependent on 

the history of where the bucket has been in past 

time samples. This means that if dynamic 

programming is to be used in the “Loading” phase 

then at each discrete time step, when a decision is to 

be taken about whether the bucket should be lifted, 

tilted or penetrate the pile further, the complete 

trajectory has to be recalculated in the DEM gravel 

pile model. This co-simulation would require 

excessive computation power and computation 

time. Instead a dynamic programming inspired 

brute force exhaustive search of all possible 

trajectories through the pile was done. This works 

by simulating, in the DEM gravel pile model, as 

many trajectories as possible that are in the viable 

region, where the wheel loader can perform the 

trajectory, and then use these ready simulated 

trajectories in the dynamic programming 

framework that is used in the “Transport with 

load”, “Unloading” and “Transport without load” 

phases. The reason for using the dynamic 

programming framework and not only an 

exhaustive search is that the end-positions of the lift 

and tilt are not the same in all the trajectories 

resulting in different input to the “Transport with 

load” phase. 

Two methods have been used to create the 

trajectories that were simulated in the DEM gravel 

pile model. First a set of trajectories were created 

using recursive programming [47] by discretizing 

the three actuators and moving one, two or three of 

the actuators one discrete step during each time 

sample, see the blue trajectories in Figure 14. At the 

desired discretization level, several hundred 

thousand trajectories would need to be simulated in 

DEM, which is not feasible due to computation 

time. A lower discretization level was chosen [48] 

in the recursive programming instead. Additionally 

and a set of analytical trajectories were created 

manually as a complement, see the red trajectories 

in Figure 14. The analytically created trajectories 

are motivated by engineering experience of 

different bucket filling strategies observed from 

professional operators [33]. All trajectories are 

simulated in the DEM gravel pile model. Altogether 

5781 trajectories were simulated on a cluster of 800 

CPU-cores, taking a week to calculate in 2013. 

 

Figure 14 - Simulated bucket fill trajectories in DEM. The 

bucket tip trajectory is drawn. The black lines are the 

ground level and gravel pile surface. The blue trajectories 

originate from the recursive programming and the red from 

the analytically created trajectories. The green trajectory is 

the numerical theoretical optimal trajectory and the yellow is 

the trajectory of the best empirically found operator from 

Figure 6. 

The global optimum trajectory has to be calculated 

together with the complete work cycle, as have 

been proved in [48]. This is done in the dynamic 

programming framework presented in Section 5.2. 

The optimum trajectory can be guaranteed to be 

global with respect to the level of discretization in 

the recursive programming. Due to the fact that 

there is no analytical solution the optima will 

always depend on the discretization level. 

5.4.1 Discrete Element Method 

To compute the arc-cost in the loading phase, 

consequently the energy, the forces acting on the 

bucket during loading must be known. The bucket 

is modeled as a rigid body interacting with the 

gravel pile. Many ways for modeling gravel can be 

seen in literature, often by simplified models that 

are computationally fast but are not that accurate at 

calculating the bucket forces [49,50]. An attempt to 
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combine the two methods of “simplified gravel 

piles” and “Discrete Element Method” can be found 

in [51], however obtaining the correct forces seems 

to be a challenge. The decision was made to use the 

more accurate gravel pile simulation method DEM, 

Discrete Element Method, that has proven to be a 

reliable method of modeling gravel and 

cohesionless soil [52,53]. 

In the DEM, the gravel pile consists of discrete 

particles that interact with each other through a 

simplified contact law. Two particles are allowed to 

slightly overlap and a repulsive force proportional 

to the overlap pushes particles apart according to 

(18). 

F𝑛 = 𝑘𝑛 ∙ 𝛿𝑖𝑗 + 𝑑𝑛 ∙ 𝛿̇𝑖𝑗 (18) 

where, 𝛿𝑖𝑗 is the overlap between two particles 

indexed by 𝑖 and 𝑗. 𝑘𝑛 is the normal stiffness 

coefficient and 𝑑𝑛 is the damping parameter. It 

becomes possible to formulate a scale invariant 

model by correlating the normal stiffness to the 

Young’s modulus of the material [54,55]. 

The majority of the draft forces acting on the bucket 

are caused by inter-particle friction. In the 

following, the model for Coulomb friction is 

outlined. Once two particles are in contact, the 

contact points 𝐱𝑖 and 𝐱𝑗 on both particles are stored, 

as well as a contact normal n that is orthogonal to 

the surfaces of the two particles. As soon as the 

particles move, the relative position of the contact 

points is projected onto a plane orthogonal to n to 

obtain the tangential deformation vector according 

to (19). 

𝝃𝑡 = n∙(𝐱𝑖 − 𝐱𝑗) (19) 

The tangential force tF  is computed in (20). 

𝐅𝑡 = 𝑘𝑡 ∙ 𝝃𝑡 + 𝑑𝑡 ∙ 𝝃𝑡, (20) 

where 𝑘𝑡 and 𝑑𝑡 are the tangential stiffness and 

damping parameters respectively. If the magnitude 

of the calculated tangential force is greater than the 

Coulomb limit 𝜇 ∙ F𝑛, the contact is in sliding 

mode. In this case, the tangential force is clamped 

to the Coulomb limit, i.e. 𝐅𝑡 = 𝜇 ∙ 𝐅𝑛, and the 

deformation vector is updated according to (21). 

𝝃𝑡
∗ =

𝜇∙F𝑛

𝑘𝑡
∙

𝝃𝑡

‖𝝃𝑡‖
 (21) 

If 𝐪𝑖 and 𝐪𝑗 are the centers of mass of the two 

particles respectively, 𝐱𝑎 = 𝐪𝑖 +
𝐫𝑖

𝐫𝑖+𝐫𝑗
∙ (𝐪𝑖+𝐪𝑗) is 

called the actuation point of the contact. The 

contact points on the particles are updated to 

𝐱𝑖 = 𝐱𝑎 +
𝝃𝑡

∗

2
 and 𝐱𝑗 = 𝐱𝑎 −

𝝃𝑡
∗

2
 and stored in the 

local coordinate systems of the particles for use in 

the next time step. The tangential force is 

recalculated accordingly. As a result, the particles 

are in sliding mode.  

While DEM allows for many complex contact 

models, the simple normal and tangential contact 

models introduced here suffice for the purpose of 

measuring draft forces in dry gravel [33,53]. Dry 

gravel is used to be able to compare with the 

measurements done inside the tent, see Figure 5. 

Once the contact forces are known, they can be 

explicitly integrated to obtain the velocities and 

positions of all particles in the gravel pile. The 

contact forces resulting from contacts between 

particles and the bucket of the wheel loader are 

used to compute the arc-cost of the loading phase. 

The simulation setup is identical to the one in [33]. 

The gravel pile is 5m high, see Figure 15. To save 

computational cost, a 1m wide slice of the pile is 

used in the simulation. The forces on the bucket are 

then corrected via an appropriate weighting factor 

according to the width of the bucket. Comparisons 

to a full three dimensional simulation were 

performed to make sure this is a reasonable 

simplification. The slice of the gravel pile consists 

of approximately 16,000 spherical non-rotational 

particles. The material parameters are chosen 

according to a known material that has previously 

been parameterized with the help of laboratory 

tests.  

 

Figure 15– Snapshots of a DEM simulation using a 5m high, 

1m wide gravel pile. 



6 Comparison Analysis 

To be able to compare the numerical theoretical 

optimum with measurements in a fair manner, the 

fuel efficiency in the measured trajectories has to be 

computed backwards through the same machine 

model and environmental model as is used in the 

optimization. The cycle used for comparison is 

shown in Figure 14 and Figure 16. To ensure that it 

is valid to compare the operator behavior in the 

larger empirical study, which is performed on a 

conventional wheel loader, with a new machine 

concept, such as the precursor [36] to the recently 

revealed concept wheel loader “LX1” [37], a 

smaller set of measurements, done on the machine 

concept in the optimization algorithm is considered 

as well. The smaller set of measurements, done 

only on a couple of operators, performing a handful 

of work cycles each show the same pattern as in 

Figure 6, but with fewer data points. 

7 Results 

The main result is that the optimal control 

algorithm, based on dynamic programming, works. 

The result shows about 14% better energy 

efficiency than the best work cycle that could be 

found empirically. The best measured work cycle is 

around 30% better than the average in the 

measurement. The trajectories for the three 

actuators; propulsion, lift and tilt, in the full work 

cycle comparison are shown in Figure 16 together 

with the accumulated energy, the operator 

trajectories in dashed blue and the optimal control 

result in solid black. 

The small differences in initial vehicle speed, hinge 

pin height and attachment angle in Figure 16 is due 

to the simulation setup of the gravel pile 

simulations discussed in Section 5.4. The final 

vehicle speed, hinge pin height and attachment 

angle is adjusted to have the same offset as the 

initial values. 

 

Figure 16– Actuator comparison between the best operators’ 

most fuel efficient cycle in Figure 6, dashed blue line, and the 

optimal solution, solid black line. Hinge pin height is 

computed from lift cylinder position and attachment angle is 

computed from tilt cylinder position. Normalized axes due to 

Volvo internal results. 

The 14% energy efficiency gain, in Figure 16, is 

fairly distributed throughout the cycle. The energy 

used by the operator and the optimal control 

algorithm is compared in each phase to find the 

energy saving contribution per phase. The result is 

shown in Table 2. 

Table 2 – Energy efficiency gain in each phase and the 

energy efficiency gain distribution per phase for the 

complete work cycle in Figure 16. 

 
Efficiency 

gain 

Efficiency gain 

distribution 

Loading 10% 28% 

Transport with load 15% 44% 

Unloading 79% 9% 

Transport without load 14% 19% 

Complete work cycle 14% 100% 

In the loading phase, the numerical theoretical 

optimal solution slices through the pile while the 

best operator keeps on pushing into the pile at the 

end of the bucket filling phase, as can be seen in 

Figure 14 and Figure 16. The optimal control 

solution avoids the last push, where high power is 

needed, but not that much more material ends up in 

the bucket, therefore the optimal control solution 

needs less force than the best operator found in 

Section 2. The optimal bucket filling strategy is 

fully investigated and explained further in [48]. In 

the transport phases the majority of the savings 



come from hard acceleration and deceleration and 

keeping a low constant speed longer rather than 

accelerating and decelerating slowly during the 

complete transport, sees Figure 16. The gain is 

higher in the transport with load due to higher gross 

vehicle mass and simultaneous lifting. In the 

unloading phase the reasons are similar to the travel 

phase, however with more focus on the tilt out 

function. The actuators, mostly tilt in this case, are 

used closer to the optimum working point, which in 

this case means tilting at higher constant speed. The 

fuel efficiency gain distribution is highly dependent 

on the work cycle and the operator. More detailed 

studies on more operators, comparing to the 

optimum are presented in [24]. 

8 Discussion 

A secondary result is that the optimal control 

algorithm is ready to be used as input to operator 

assist systems, automatic functions and autonomous 

construction machine control [24]. Once the DEM 

simulations have been simulated in advance they 

can be used as a library, then the computation time 

for the optimization takes around 4 hours on a 

laptop. This is of course not feasible to implement 

in an on-board ECU today. Rather the lessons learnt 

from the optimal control results have to be used to 

develop, for example, a fast heuristic controller that 

can help the operator in an operator assist system or 

in automatic functions and autonomous 

construction machine control. 

Another secondary result is that the optimal control 

algorithm can be used in a concept evaluation, 

between different hybrid wheel loader concepts for 

example, and system optimization, with regard to 

components sizes, for each individual concept. This 

has been done in [21]. In concept evaluation and 

system optimization the computation time, 4 hours, 

is not that significant. The computations are easily 

parallelized. This means that on eight cores and one 

week a batch of 336 machine setups can be 

simulated, which is acceptable. 

Due to the fact that a prediction of the exact 

properties of the gravel pile, and the fact that many 

of the savings comes from harsh accelerations and 

decelerations in the other phases, it is estimated that 

a gain of around 10% energy efficiency should be 

possible in a real-world production chain wheel 

loader in a bucket application. Depending on the 

amount of operator assistance, the 10% can shift a 

bit up and down. In an operator only scenario, with 

only operator training, it can be as low as 5% 

higher fuel efficiency, while in a full autonomous 

wheel loader where harsh accelerations and 

decelerations do not matter since there is no 

operator in the machine, the fuel efficiency could be 

well over 10% higher than the best manually 

operated wheel loader. 

Further validation is needed regardless of whether 

the results from the method presented in this paper 

are to be used as: input to operator assist systems; 

automatic functions and autonomous construction 

machine control; or in early development phases, 

performing system optimization and concept 

evaluation. For a complete evaluation of the 

algorithm, before it is used in production, many 

more work cycles and applications have to be 

analyzed. This ensures that cycle-beating does not 

occur. This is even more important in off-road than 

in on-road applications because many working 

machines, such as the wheel loader, operate in a 

vast variety of environments. If cycle-beating is not 

considered, the wheel loader manufacturer can end 

up with a machine that performs excellently in 

some applications but underperforms in other. 

9 Conclusions 

The main challenge when optimizing actuator 

trajectories in a complete work cycle of a wheel 

loader in bucket applications is the extensive 

computation power needed to calculate the bucket-

soil interaction in the bucket fill phase. 

The optimal control method and the implemented 

algorithms presented in this paper finds a numerical 

theoretical global optimum that has 14% higher fuel 

efficiency comparing to the most fuel efficient 

operator’s best work cycle found empirically. Since 

the best operator is about 30% more fuel efficient 

than the fleet average, in the empirical study, the 

potential for using the optimal control results on a 

larger fleet of operators could be in the range of 

40-45%. This is dependent on the operator and 

application according to the measurements in the 

empirical study in Section 2. The algorithm can be 

used to optimize productivity, or a combination of 

fuel efficiency and productivity, as well. 

The optimal control results can be used as input to 

operator assist systems, automatic functions and 

autonomous construction machine control. 

The algorithm can serve as a tool in early 

development phases when performing concept 



evaluations and system optimizations on new 

machine concepts. Using the method presented will 

minimize the dependency on control engineer 

experience, development time, operator deviations 

and test repeatability. 

10 References  
(Internet links verified 2018-01-29) 

                                                           
[1] Frank, B., Skogh, L., Alaküla, M., “On wheel loader fuel 

efficiency difference due to operator behaviour 

distribution”. Proceedings of the 2nd Commercial Vehicle 

Technology Symposium (CVT2012), Kaiserslautern, 
Germany, March 13-15, 2012, pp 329-346, Berns, K. 

(ed.), Schindler, C. (ed.), Dreßler, K. (ed.), Jörg, B. (ed.), 

Kalmar, R. (ed.), Zolynski, G. (ed.). ISBN: 978-3-8440-
0798-5. 

[2] Nezhadali, V., Frank, B., Eriksson, L. ”Wheel loader 

operation-Optimal control compared to real drive 
experience”. Control Engineering Practice, Volume 48, 

Pages 1–9, March 2016. DOI: 

https://doi.org/10.1016/j.conengprac.2015.12.015  
[3] Nezhadali, V., Eriksson, L., Fröberg, A., ”Modeling and 

optimal control of a wheel loader in the lift-transport 

section of the short loading cycle”, 7th IFAC Symposium 
on Advances in Automotive Control AAC 2013 Tokyo, 

Japan, 4–7 September 2013. In IFAC Proceedings 

Volumes, Volume 46, Issue 21, pp 195-200, 2013. 
Kawabe, T. (ed.). ISBN: 9783902823489 DOI: 

https://doi.org/10.3182/20130904-4-JP-2042.00083  

[4] Backas, J., Ghabcheloo, R., Tikkanen, S., Huhtala, K., 
”Fuel optimal controller for hydrostatic drives and real-

world experiments on a wheel loader”, International 

Journal of Fluid Power”, 17:3, 187-201, 2016. DOI: 
https://doi.org/10.1080/14399776.2016.1202081  

[5] Filla, R., “Evaluating the efficiency of wheel loader 

bucket designs and bucket filling strategies with non-
coupled DEM simulations and simple performance 

indicators”, Fachtagung Baumaschinentechnik, 

September 16-17 2015, Dresden, Germany, 2015. DOI: 
https://doi.org/10.13140/rg.2.1.1507.1201  

[6] Johannesson, L: “Predictive Control of Hybrid Electric 
Vehicles on Prescribed Routes”. Department of Signals 

and Systems, Chalmers University of Technology, 

Göteborg, Sweden, 2009. ISBN: 978-91-7385-263-0 
[7] Ottosson, J., “Energy Management and Control of 

Electrical Drives in Hybrid Electrical Vehicles”. 

Department of Industrial Electrical Engineering and 
Automation, Lund University, Sweden, 2007. ISBN: 

978-91-88934-46-8 

[8] Larsson, V., “Route Optimized Energy Management of 
Plug-in Hybrid Electric Vehicles” Chalmers University of 

Technology, Göteborg, Sweden, 2014. ISBN: 

978-91-7597-002-8 
[9] Hung, C-W., Vu, T-V., Chen, C-K., “The Development of 

an Optimal Control Strategy for a Series Hydraulic 

Hybrid Vehicle”, Applied Sciences 6, no. 4: 93, 2016. 
Lin, C. J. (ed.) DOI: https://doi.org/10.3390/app6040093  

[10] Molla, S., Ayalew, B., “Power management strategies for 

a Series hydraulic hybrid drivetrain”, International Journal 
of Powertrains, Vol. 1, No. 1, pp.93–116, 2011. DOI: 

https://doi.org/10.1504/IJPT.2011.041911  

[11] Wu, B., Lin, C-C., Filipi, Z., Peng, H., ”Optimal power 
management for a hydraulic hybrid delivery truck”, 

International Journal of Vehicle Mechanics and Mobility, 

Vol. 42, Nos. 1-2, pp. 23–40, 2004. DOI: 
https://doi.org/10.1080/00423110412331291562  

[12] Nilsson, T., “Optimal Predictive Control of Wheel Loader 

Transmissions”, Linköping University, Sweden,ISBN: 
978-91-7519-171-3, 2015. 

                                                                                    
[13] Frank, B., Fröberg, A., “Establishing an Optimal Work 

Cycle for an Alternative Wheel Loader Concept”. 

Proceedings of the International Exposition for Power 
Transmission (IFPE2014) , ch 11.1., Las Vegas, USA, 

March 4-8, 2014, ISBN: 0-942220-49-8, 2014. 

[14] Zimmerman, J., Hippalgaonkar, R., Ivantysynova, M., 
“Optimal Control for the Series-Parallel Displacement 

Controlled Hydraulic Hybrid Excavator”, ASME 2011 

Dynamic Systems and Control Conference and 
Bath/ASME Symposium on Fluid Power and Motion 

Control , Volume 1, Paper No. DSCC2011-5996, pp. 129-

136, Arlington, Virginia, USA, October 31–November 2, 
2011. ISBN: 978-0-7918-5475-4, DOI: 
https://doi.org/10.1115/DSCC2011-5996  

[15] Hippalgaonkar, R., Ivantysynova, M., Zimmerman, J., 
“Fuel savings of a mini-excavator through a hydraulic 

hybrid displacement controlled system”, 8th International 

Conference on Fluid Power (IFK), Dresden, Germany, 
March 26-28, 2012. 

https://www.researchgate.net/publication/282650613_Fue

l_savings_of_a_mini-

excavator_through_a_hydraulic_hybrid_displacement_co

ntrolled_system  
[16] Wang, F., Zulkefli, M. A. M., Sun, Z., & Stelson, K. A., 

“Investigation on the energy management strategy for 

hydraulic hybrid wheel loaders”, ASME 2013 Dynamic 
Systems and Control Conference, Volume 1: Aerial 

Vehicles; Aerospace Control; Alternative Energy; 

Automotive Control Systems; Battery Systems; Beams 
and Flexible Structures; Biologically-Inspired Control and 

its Applications; Bio-Medical and Bio-Mechanical 

Systems; Biomedical Robots and Rehab; Bipeds and 
Locomotion; Control Design Methods for Adv. 

Powertrain Systems and Components; Control of Adv. 

Combustion Engines, Building Energy Systems, 
Mechanical Systems; Control, Monitoring, and Energy 

Harvesting of Vibratory Systems, Palo Alto, California, 

USA, October 21–23, 2013 ASME 2013 Dynamic 
Systems and Control Conference, DSCC 2013 (Vol. 1). 

[V001T11A005] American Society of Mechanical 

Engineers (ASME), 2013. ISBN: 978-0-7918-5612-3 
DOI: https://doi.org/10.1115/DSCC2013-3949  

[17] Shen, W., Jiang, J., Su, X., Karimi, R H., “Control 

strategy analysis of the hydraulic hybrid excavator”, 
Journal of the Franklin Institute, Volume 352, Issue 2, 

Pages 541-561, ISSN 0016-0032, 2015. DOI: 

https://doi.org/10.1016/j.jfranklin.2014.04.007  
[18] Ohlsson-Öhman, K., “Identifying operator usage of wheel 

loaders utilizing pattern recognition techniques”, 

Linköping University, Sweden, ISRN LiTH ISY EX 
12/4591 SE, 2012. http://liu.diva-

portal.org/smash/get/diva2:537110/FULLTEXT02.pdf  

[19] Filla, R., “Optimizing the trajectory of a wheel loader 
working in short loading cycles”, 13th Scandinavian 

International Conference on Fluid Power (SICFP'13), 

Linköping, Sweden, June 3-5, 2013. 
http://www.ep.liu.se/ecp/092/030/ecp13092030.pdf  

[20] Nezhadali, V., Eriksson, L., “Optimal lifting and path 

profile for a wheel loader considering engine and turbo 
limitations”, Optimization and Optimal Control in 

Automotive Systems, Lecture Notes in Control and 

Information Sciences, vol 455. Springer, Cham, 2014. 

Waschl, H. (ed.), Kolmanovsky, I. (ed.), Steinbuch M. 

(ed.), del Re L. (ed.). ISBN: 978-3-319-05370-7. DOI: 

https://doi.org/10.1007/978-3-319-05371-4_18  
[21] Frank, B., “Using Optimal Control in Concept Evaluation 

and System Optimization of Diesel-Electric Hybrid 

Construction Machines” 4th International Conference on 
Electrical Systems for Aircraft, Railway, Ship propulsion 

and Road Vehicles & International Transportation 

Electrification Conference (ESARS ITEC 2016), 
Toulouse, France, November 2-4, 2016. ISBN: 978-1-

5090-0815-5. DOI: https://doi.org/10.1109/ESARS-

ITEC.2016.7841323  

https://doi.org/10.1016/j.conengprac.2015.12.015
https://doi.org/10.3182/20130904-4-JP-2042.00083
https://doi.org/10.1080/14399776.2016.1202081
https://doi.org/10.13140/rg.2.1.1507.1201
https://doi.org/10.3390/app6040093
https://doi.org/10.1504/IJPT.2011.041911
https://doi.org/10.1080/00423110412331291562
https://doi.org/10.1115/DSCC2011-5996
https://www.researchgate.net/publication/282650613_Fuel_savings_of_a_mini-excavator_through_a_hydraulic_hybrid_displacement_controlled_system
https://www.researchgate.net/publication/282650613_Fuel_savings_of_a_mini-excavator_through_a_hydraulic_hybrid_displacement_controlled_system
https://www.researchgate.net/publication/282650613_Fuel_savings_of_a_mini-excavator_through_a_hydraulic_hybrid_displacement_controlled_system
https://www.researchgate.net/publication/282650613_Fuel_savings_of_a_mini-excavator_through_a_hydraulic_hybrid_displacement_controlled_system
https://doi.org/10.1115/DSCC2013-3949
https://doi.org/10.1016/j.jfranklin.2014.04.007
http://liu.diva-portal.org/smash/get/diva2:537110/FULLTEXT02.pdf
http://liu.diva-portal.org/smash/get/diva2:537110/FULLTEXT02.pdf
http://www.ep.liu.se/ecp/092/030/ecp13092030.pdf
https://doi.org/10.1007/978-3-319-05371-4_18
https://doi.org/10.1109/ESARS-ITEC.2016.7841323
https://doi.org/10.1109/ESARS-ITEC.2016.7841323


                                                                                    
[22] Casoli, P., Gambarotta, A., Pompini, N., Riccò, L., 

”Hybridization methodology based on DP algorithm for 

hydraulic mobile machinery - Application to a middle size 
excavator”, Automation in Construction, Volume 61, 

Pages 42-57, January 2016. DOI: 

https://doi.org/10.1016/j.autcon.2015.09.012  
[23] Chauvin, A., Sari, A., Hijazi, A., Bideaux, E., ”Optimal 

sizing of an energy storage system for a hybrid vehicle 

applied to an off-road application”, 2014 IEEE/ASME 
International Conference on Advanced Intelligent 

Mechatronics (AIM) Besançon, France, July 8-11, 2014. 

DOI: https://doi.org/10.1109/AIM.2014.6878173  
[24] Frank, B., “Utilizing Optimal Control and Physical 

Measurements when Developing Operator Assist, 

Automatic Functions and Autonomous Machines”, 6th 
IEEE International Conference on Control System, 

Computing and Engineering (ICCSCE 2016), Batu 

Ferringhi, Penang, Malaysia, November 25-27, 2016. 
DOI: https://doi.org/10.1109/ICCSCE.2016.7893555  

[25] Nurmi, J, Mattila, J, “Global Energy-Optimal Redundancy 

Resolution of Hydraulic Manipulators: Experimental 

Results for a Forestry Manipulator” Energies, vol 10, 

no. 5:647, 2017. Vacca, A. (ed.). DOI: 
https://doi.org/10.3390/en10050647  

[26] Nurmi, J., Mattila, J., “Global energy-optimised 

redundancy resolution in hydraulic manipulators using 
dynamic programming”, Automation in Construction, 

Volume 73, pp. 120-134, January 2017. DOI: 

https://doi.org/10.1016/j.autcon.2016.09.006  
[27] Filla, R., “Quantifying Operability of Working 

Machines”, Linköping University, Sweden, ISBN 978-91-

7393-087-1, 2011. 
[28] Filla, R., “Operator and Machine Models for Dynamic 

Simulation of Construction Machinery”, Linköping 

University, Sweden, ISBN 91-85457-14-0, 2005. 
[29] Kaneko, S., Ikimi, T., Moriki, H., Ito, N., Yanagimoto, H. 

“Patent Application: US20130151055A1”, 2013. 

https://patents.google.com/patent/US20130151055A1/en  
[30] Bennik, C. “Wheel Loader Production Tips” 

http://www.forconstructionpros.com/article/10299484/wh

eel-loader-production-tips, 2006. 
[31] VOLVO CONSTRUCTION EQUIPMENT Media 

Library, http://images.volvoce.com/#1516039372295_0. 

[32] Guzzella, L., Sciarretta, A., “Vehicle Propulsion Systems 
- Introduction to Modeling and Optimization”, 2nd Edition, 

Softcover ISBN: 978-3-642-09415-6, Springer-Verlag 

Berlin Heidelberg, 2007. 
[33] Filla, R., Obermayr M., Frank., B. “A study to compare 

trajectory generation algorithms for automatic bucket 

filling in wheel loaders”, 3rd Commercial Vehicle 
Technology Symposium (CVT2014), Kaiserslautern, 

Germany, March 11-13, 2014. Berns, K. (ed.), Schindler, 

C. (ed.), Dreßler, K. (ed.), Jörg, B. (ed.), Kalmar, R. (ed.), 
Zolynski, G. (ed.). ISBN: 9783844025736. 

[34] Fu, J., “Logistics of Earthmoving Operations”, KTH 

Royal Institute of Technology, Sweden, 2013. ISBN: 978-
91-87353-05-5. 

[35] Rylander, D., “Productivity Improvements in 

Construction Site Operations Trough Lean Thinking and 
Wireless Real-Time Control”, Mälardalens University, 

Sweden, 2014. ISBN: 978-91-7485-173-1. 

[36] Stein, G., Fröberg, A., Martinsson, J., Brattberg, B., Filla, 

R., Unnebäck, J., ”Fuel efficiency in construction 

machines – optimize the machine as a system”, 7th AVL 

International Commercial Powertrain Conference 
Proceedings, Graz, Austria, May 22-23, 2013-3.3, 2013. 

ISBN: 978-0-7680-8156-5. DOI: 

https://doi.org/10.13140/RG.2.1.2031.4089. 
[37] Press release, http://www.volvoce.com/global/en/this-is-

volvo-ce/what-we-believe-in/innovation/lx1-and-hx1/  

                                                                                    
[38] Bryson, A., Ho, Y., “Applied Optimal Control: 

Optimization, Estimation and Control”, ISBN-13: 000-

0891162283, 1975. 
[39] Bellman, R., “Dynamic Programming”, 2010, originally 

published 1957. ISBN: 9780691146683 

[40] Diehl, M., Gros, S., “Numerical Optimal Control - 
(preliminary and incomplete draft)”, May 17, 2017. 

https://www.syscop.de/files/2017ss/NOC/script/book-

NOCSE.pdf  
[41] Betts, J.T., “Practical Methods for Optimal Control Using 

Nonlinear Programming”, 2nd edition, 2010. ISBN: 978-0-

89871-688-7. 
[42] Pourabdollah, M., “Optimization of Plug-in Hybrid 

Electric Vehicles”, Chalmers University of Technology, 

Sweden, ISBN: 978-91-7597-149-0, 2015. 
[43] PROPT, ”http://www.tomdyn.com/”, tomlab 7.9. 

[44] Bertsekas, D., ”Dynamic programming and optimal 

control”, vol 1-2, (Two-volume set), 2007. ISBN: 1-
886529-08-6. 

[45] Miettinen, K., ”Nonlinear Multiobjective Optimization”, 

fourth printing 2004.ISBN 0-7923-8278-1. 

[46] Marler, R.T., Arora, J.S., ”Survey of multi-objective 

optimization methods for engineering”, Structural and 
Multidisciplinary Optimization, Volume 26, Issue 6, pp 

369-395, April 2004. DOI: 

https://doi.org/10.1007/s00158-003-0368-6  
[47] http://www.cs.utah.edu/~germain/PPS/Topics/ 

recursion.html 

[48] Filla, R., Frank, B. “Towards Finding the Optimal Bucket 
Filling Strategy Through Simulation”, 15th Scandinavian 

International Conference on Fluid Power – Fluid Power in 

the Digital Age (SICFP’17), Linköping, Sweden, June 
7-9, 2017. 

https://www.iei.liu.se/flumes/sicfp17/Papersandpresentati

ons/1.723022/sicfp2017_nonreviewed_Filla_Towards_Fin
ding.pdf  

[49] Svensson, H., ”Gravel pile model verification”, Volvo 

Construction Equipment internal technical report, 
Eskilstuna, Sweden,2012. 

[50] Ericsson, A., Slättengren, J., “A model for predicting 

digging forces when working in gravel or other granulated 
material”, 15th ADAMS European Users Conference, 

Rome, October 4, 2000. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
504.6993&rep=rep1&type=pdf  

[51] Yoshida, T., Koizumi, T., Tsujiuchi, N., Jiang, Z. et al., 

"Digging Trajectory Optimization by Soil Models and 
Dynamics Models of Excavator", SAE International 

Journal Commercial Vehicles 6(2), pp: 429-440, 2013. 

DOI: https://doi.org/10.4271/2013-01-2411.  
[52] Obermayr M., Vrettos C., Kleinert J., et al. ”A discrete 

element method for assessing reaction forces in 

excavation tools”, Congress on Numerical Methods in 
Engineering (CNM 2013), Bilbao, Spain, June 28-28, 

2013. http://publica.fraunhofer.de/documents/N-

241440.html  
[53] Obermayr M., Dressler .K, Vrettos, C., Eberhard P., 

”Prediction of draft forces in cohesionless soil with the 

discrete element method“, Journal of Terramechanics, 
Volume 48, Issue 5, pp: 347-358 48, October 2011. DOI: 

https://doi.org/10.1016/j.jterra.2011.08.003. 

[54] Obermayr, M., Dresser K., Vrettos C., et al, ”A bonded-

particle model for cemented sand“, Computers and 

Geotechnics, Volume 49, pp: 299-313, April 2013. DOI: 

https://doi.org/10.1016/j.compgeo.2012.09.001. 
[55] Ergenzinger C., Seifried R., Eberhard P., “A discrete 

element model to describe failure of strong rock in 

uniaxial compression“, Granular Matter, Volume 13, 
Issue 4, pp: 341-364, August 2011. DOI: 

https://doi.org/10.1007/s10035-010-0230-7. 

 

https://doi.org/10.1016/j.autcon.2015.09.012
https://doi.org/10.1109/AIM.2014.6878173
https://doi.org/10.1109/ICCSCE.2016.7893555
https://doi.org/10.3390/en10050647
https://doi.org/10.1016/j.autcon.2016.09.006
https://patents.google.com/patent/US20130151055A1/en
http://www.forconstructionpros.com/article/10299484/wheel-loader-production-tips
http://www.forconstructionpros.com/article/10299484/wheel-loader-production-tips
http://images.volvoce.com/#1516039372295_0
https://doi.org/10.13140/RG.2.1.2031.4089
http://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/lx1-and-hx1/
http://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/lx1-and-hx1/
https://www.syscop.de/files/2017ss/NOC/script/book-NOCSE.pdf
https://www.syscop.de/files/2017ss/NOC/script/book-NOCSE.pdf
http://www.tomdyn.com/
https://doi.org/10.1007/s00158-003-0368-6
http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
https://www.iei.liu.se/flumes/sicfp17/Papersandpresentations/1.723022/sicfp2017_nonreviewed_Filla_Towards_Finding.pdf
https://www.iei.liu.se/flumes/sicfp17/Papersandpresentations/1.723022/sicfp2017_nonreviewed_Filla_Towards_Finding.pdf
https://www.iei.liu.se/flumes/sicfp17/Papersandpresentations/1.723022/sicfp2017_nonreviewed_Filla_Towards_Finding.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.6993&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.6993&rep=rep1&type=pdf
https://doi.org/10.4271/2013-01-2411
http://publica.fraunhofer.de/documents/N-241440.html
http://publica.fraunhofer.de/documents/N-241440.html
https://doi.org/10.1016/j.jterra.2011.08.003
https://doi.org/10.1016/j.compgeo.2012.09.001
https://doi.org/10.1007/s10035-010-0230-7

