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Abstract 
 
High-maintenance or critical systems require a robust but affordable Condition 
Monitoring (CM) to be economical. Existing CM concepts can only be suitable for a 
limited number of applications and their real monitoring performance can only be 
estimated after intensive tests or while in actual operation. Due to the large number of 
methods available, it is difficult to decide for a specific one. Additionally, expert 
knowledge is required to select the most suitable technique for each case. This paper 
presents a strategy to select appropriate CM methods by showing example results from 
investigations on monitoring electro-mechanical actuators intended to be used as 
primary flight control servo drive systems. In detail, it presents how the proposed 
strategy works with vibration and motor current data of the main actuator bearing and 
subsequently discusses the implication for the actuator in its entirety. The strategy in this 
example consists in the application of different signal processing techniques on the 
performance metrics defined here, with a subsequent analysis of the techniques by 
means of a statistical evaluation of their performance. The suggested strategy quantifies 
the potential of a series of available CM techniques based on measurement data. Thus, it 
can be very useful to select the most suitable ones for the actual application when the 
variety of the CM techniques is available.  
 
1. Introduction 
 
Since machinery failures can cause serious consequences such as financial loss, 
environmental contamination or physical injury, there is a need for technologies and 
strategies that are desired to avoid those scenarios. No system is perfect, so it is 
necessary to determine the risk of failure and if this risk is too high, failure prevention 
techniques have to be implemented. Failure prevention strategies that end up in 
maintenance follow one or a combination of three categories: preventive, condition-
based and predictive. Preventive strategy is the most basic one: it does not consider 
actual operation-related usage and is implemented by scheduled maintenance. 
Condition-based strategy considers detected initiating faulty states towards failure 
before conducting countermeasures. Predictive strategy is about the use of the estimated 
remaining useful life (RUL) for planning countermeasures. 
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To maximize efficiency in maintenance the condition-based strategies can be considered. 
This way, maintenance is only necessary if the part in question is actually likely to fail 
soon, which implies that real costs on unnecessary maintenance effort can be saved. The 
main issue here is to reach a balance between expenditures and the result. This balance 
relies on the accuracy of the condition-determination. Thus, reliability of condition-
monitoring systems became the overall objective of many researches. Literature also 
shows significant potential for cost saving when condition-based and predictive failure 
prevention are combined (1). Forecasting of failures makes it easier to schedule 
maintenance activities, reducing downtime and, hence, contributing to cost saving. 
 
Accurate fault detection is accomplishable for single components such as bearings and 
gears or simple machine systems such as induction motors; however, it is difficult to 
implement in systems with a more complex structure (2). Techniques and methods to 
monitor simple machine systems are available in a number of works, as explained in (3). 
Some sources deal with prognosis, compared to diagnosis, mainly containing 
approaches and references to forecast the remaining useful life (RUL). The accuracy of 
both diagnosis and prognosis outputs strongly depends on the specific application and 
the specific approach that can involve virtual models, expert knowledge, statistical 
information and representative data. When applying those approaches, good virtual 
models as well as expert knowledge are difficult to obtain. Firstly, models for complex 
machine systems are not simple to create (3). Secondly, expert knowledge can be 
achieved through experiences or extensive testing and analyzing data of a high number 
of machine samples. Statistical information is generally collected by the machine 
operator. 
 
Mechanical components undergo a natural deterioration process, which can be modelled 
and, hence, is theoretically predictable. However, the failure of a dynamic system, as a 
consequence of deterioration, appears stochastically. Further unforeseeable failure-
causes such as incorrect assembly or insertion of dirt also contribute to a random failure 
event. Since permanent monitoring is the basis for efficient failure prevention, 
measurement instrumentation has been used to make the internals of a system accessible. 
It is generally known that measurement data have been successfully analyzed to check 
for machine faulty conditions and to predict the remaining useful life.  
 
CM methods include the type of measurement instrumentation as well as the processing 
and the analysis of measurement data. Oftentimes, one has to compare the variety of 
these methods for a certain purpose, for instance to aim at the minimized 
instrumentation effort or the maximized CM reliability. The strategy we present in 
section 2 leads to the selection of best methods based on measurement data with sole 
respect on the CM reliability. The objects of comparison are the fault indicators, 
quantities that carry abstract information about the machine condition. They are the 
result of the application of methods on measurement data. A fault indicator is also 
known as health parameter, which is needed to produce a diagnosis, or to form a 
condition trend that is used for prognosis. This establishes a foundation for reliable 
diagnosis and accurate prognosis. The proposed strategy helps ascertaining the most 
suitable fault indicators among a high number of others. 
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2. Strategy 
 
This strategy was developed considering the two reliability aspects of CM methods 
defined here, which are robustness and performance certainty. Robustness means giving 
the correct diagnosis in any operation condition of a certain application, and 
performance certainty is the ability of a CM method to meet the constraints of that 
application. These same concepts can be applied directly on fault indicators to analyze 
CM methods, since fault indicators are results of applied CM methods. 
 
The following subsections explain our strategy to manage evaluations on databases of 
fault indicators that have been extracted from measurement data by applying different 
CM methods. The strategy comprises two approaches named 1 and 2. In approach 1, we 
derive two equations to obtain valuable information from this kind of data using the 
basic understanding in diagnosis and prognosis. In approach 2, we introduce a 
procedure to visualize the evaluation results in order to restrict the scope of the search 
for the best fault indicators. 
 
2.1 Approach 1 
 
This approach is about the first essential reliability aspect of diagnosis and prognosis 
that is the performance certainty of the CM technique. Therefore, we introduce the term 
performance metric. Performance metric is a quantity to express the result of 
comparison between two condition states and is used to assess the performance 
certainty of a fault indicator. The overall performance certainty of a fault indicator 
increases with the increase of that metric.  
 
A general problem with databases is the high volume of similar and redundant data that 
have to be compressed in a certain way for evaluation. A fault indicator database is a 
database obtained after applying different CM methods on a measurement database. For 
example, a measurement database originated from the investigation on bearing faults 
based on a series of testing (see section 3). These tests were executed under different 
conditions, and the test samples vary in their predefined degradation state. Additionally, 
each test also includes iterations. As a consequence, a fault indicator value varies 
slightly from test to test, and therefore, the very first challenge here is how to obtain a 
good representative value, e.g. for every tested bearing degradation state. This is 
conventionally done by averaging all correspondent sample values. However, outliers 
can be expected. To reduce the effect of outliers, we propose to apply the median 
instead of the mean. 
 
In fault indicator domain, a certain difference between the value nomV  of the non-fault 
(nominal) case and those of fault cases faultV  is necessary to make a correct diagnosis. If 
this is always the case, the indicator can be considered a robust one. The difference 
between these two values can be defined as the deviation D  which is the absolute 
difference of faultV  and nomV .  
 

||Deviation nomfault VVD −=                                  (1) 
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This represents the diagnosis performance metric in this paper. 
 

In prognosis, one needs health parameters with which it is possible to calculate a trend. 
The trend is considered ideal if it is monotonically increasing or decreasing. When 
considering fault indicators as parameters of machine health, several points along the 
deterioration scale are needed to generate such a trend. For example, each point 
represents a degradation state of a bearing. We introduce the prognosis performance 
metric in equation (2) as the gradient G  of the linear fitting of all deviations D  within 
the discrete degradation variable x  (e.g. increasing fault size). 
 

{ }{ })(fittinglinear GradientGradient xDG =           (2) 
 

2.2 Approach 2 
 
In CM, signal processing techniques are used for preprocessing and for extracting of 
well-defined signal abstraction like descriptors and features, the most essential fault 
indicating information. The application of the sole extraction or the combination of both 
techniques creates fault indicators. Generally, application-specific preprocessing 
improves the reliability of fault indicators and a combination that reaches good fault 
indication is desired. A well selected fault indicator reduces uncertainty or increases 
fault detection performance, compared to a universal one. The challenge is to find that 
combination, from evaluating a high number of different combinations on measurement 
data. We propose the following evaluation procedure. 
 
For NM × combinations ( N  is the number of preprocessing techniques and M  is the 
number of the specific fault indicator), each combination of technique and description 
was given an identification. 
 
A mapping method is needed to have an overview on the diversity of the results. We use 
an evaluation table. Table 1 shows the principle of that idea, which contains a column 
for the performance metrics introduced in Approach 1 (either “Deviation” or 
“Gradient”) and a column for the “Combination identifier”. Each column has NM ×  
entries. In order to compare performance metrics and to obtain a good overview of the 
most valuable combinations, we recommend the three following steps. 
 
In the first step, all performance metric values maxmin VVV ≤≤  in the table should be 
normalized by their corresponding fault indicator value nomV  of the nominal case. Thus, 
equation (1) changes to 
 

1Deviation  normalized −=
nom

fault

V
V

D  .          (3) 

 
In the second step, an overview can be reached by sorting the evaluation table based on 
the values in the performance metric column. We suggest a descending order with the 
greatest value on top of the table. To exclude very poor combinations beforehand, it 
makes more sense if there is a minimum threshold on the value of the performance 
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metric. However, it is up to the experts of specific application to define a performance 
minimum that fulfils their diagnosis constraints. Combinations that have values under 
that minimum are discarded, thus, only those above remain for the third step of the 
evaluation. The new length L of the table is smaller than NM × . 
 

Table 1. Evaluation table principle 
 

 Combination identifier Performance metric 
1 1X  maxV  

M M M 

NM ×  MxNX  minV  
 

In addition to the performance metric, we also introduce the fault indicator probability 
as a second evaluation parameter that allows the consideration of robustness, as this is 
the second essential aspect that should be considered in diagnosis and prognosis. The 
probability calculated this way shows how often a combination appears throughout the 
database that has performance metric value higher than the predefined minimum 
threshold mentioned above. Now, one can count the appearance of every single 
combination, throughout all evaluation tables. There are as many evaluation tables as 
the number of tested operation conditions of the target application. The probability iP  
of a combination iX  can be calculated based on the number of appearances and the total 
number of evaluation tables, obtained from a fault indicator database. While the tables 
of the type of Table 1 contain all intermediate results, the final evaluation result is 
mapped in one table of the type of Table 2. This table type differs from the type of 
Table 1 in the column “Probability”. 

 
Table 2. Evaluation table principle: probability included 

 
 Combination identifier Performance metric Probability 
1 1X  maxV  1P  

M M M M 

L  LX  LV  LP  
 

3. Example evaluation 
 
This section explains an evaluation on a database of bearing fault indicators that has 
been created in order to investigate critical mechanical faults in primary flight control 
actuators. The investigation was motivated by the risk of jamming of mechanical parts 
of the actuators. The bearing is one of the main components that are directly affected by 
that risk, for example due to incorrect assembly, wear, etc. Once that jamming occurs, it 
can cause unexpected down time for an operative aircraft, since aeronautical regulations 
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(4) are very stringent. Down-time is very costly and this makes CM for aircraft 
components especially important.  
 
The main idea behind the example evaluation is to obtain the best fault indicators from 
analyzing the effects on universal signal descriptors when using only a certain 
component of the measurement signal instead of the raw one. The measurement data 
originate from tests using a simple bearing test rig. The descriptors are well-known 
stochastic variables and the different signal components were obtained through a signal 
decomposition technique based on wavelet analysis. In the following paragraphs, we 
explain the test rig, the signal descriptors and the signal decomposition technique. 
 
3.1 The test rig 
The measurement signal database is the same that has been used in several related 
works, e.g. Pham gives a good overview on the database (5). The present paper has a 
focus on the physical system and describes the test rig in detail.  The test bench used to 
perform the bearing tests can use multiple test specimens and can load the bearings with 
axial forces while controlling the rotation speed. The bearing is isolated in the test 
bench, which prevents contamination of the results by mechanical defects of the test 
bench itself. The test rig is composed of a motor to which a belt transmission is coupled.  
The test specimen is made of two metal components that hold the bearing at center (see 
Figure 1). For general monitoring purpose: a thermocouple was measuring the 
temperature in the upper surface of the bearing, an encoder was used for measuring the 
speed, and the axial load was measured with a load cell. In particular, the bearing was 
monitored with a piezotronic accelerometer and the current consumed by the motor was 
monitored using two hall-effect sensors. The three-phase motor was star connected, so 
that measurements in two of the phases were sufficient.  
 

  
 

Figure 1. Bearing test rig: assembly principle (left), photography (right) 
 
3.2 Mathematical description of the signals 
Statistics is a powerful mathematical tool to describe time varying signals that are 
treated as random variables. The simplest form of statistics is the presentation in 
probability density parameters such as arithmetic mean and standard deviation. A well-
known example in the praxis is the use of the root mean square (RMS), which is defined 
as the square root of mean square, as the name suggests. Further forms of statistics are 
also known as moments (e.g. variance) or higher order statistics (e.g. kurtosis). Machine 
fault diagnosis has used statistics as a method by solely applying those definitions or 
combining them with signal processing techniques such as the Fourier transform (2). 
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Statistical parameters are commonly used in vibration signal analysis, giving good 
results (6). In the case of the motor current in the bearing example, they have been 
obtained from the processed signal, as there is evidence of their relation with the health 
state of the monitored rotating machinery elements(7). 
 
3.3 Signal decomposition 
 
As a pioneering attempt to overcome the limitations of windowed Fourier transform in 
the analysis of signals, i.e. fixed resolution in the time and frequency domains(8), 
Grossmann and Morlet proposed an analysis procedure based on the signal 
decomposition into a family of functions(9). The evolution of this approach gave place to 
wavelet analysis, which expresses the signal as a linear combination of a particular set 
of functions, obtained by shifting and dilating one single function called mother wavelet 

(10). The main advantage of the wavelet analysis is the variation of the time-frequency 
aspect ratio, giving good frequency localization at low frequencies, and good time 
location at high frequencies. It demands fewer processing resources than windowed 
Fourier transform for the analysis. 
 
Wavelet analysis can mainly be applied in two ways. The first one is continuous 
wavelet transform and the second one is the discrete wavelets transform (11). In the case 
of the discrete wavelet transform, the signal is decomposed in two frequency bands, the 
lower frequency band (approximate level) and the high level band (detail level). Multi-
resolution analysis can be performed, decomposing the signal into a number of detail 
levels and an approximate level (Figure 2). The outputs 1D , 2D , ..., Dn of a so 
decomposed signal are called wavelet coefficients, where n is the maximal 
decomposition level. That signal can be reconstructed by a linear combination of the 
functions, weighted by the wavelet coefficients. An exact reconstruction of a signal can 
be achieved with the correct number of coefficients. The segmentation produced by this 
variation of the time frequency aspect ratio is particularly adequate for transient nature 
signals.  
 

 
Figure 2. Discrete wavelet decomposition tree 
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We focused on the discrete decomposition wavelet, as it is more economical in 
computational resources. The equation for the discrete wavelet analysis is the following: 
 

∑∑ ∑
−

=

Φ+Ψ=
1

0
,0,0,, )()()(

J

Jj k k
kJJkjkjJ tttX λγ                                                    (4) 

 
Where j  and k  are the level of data translation, )(tX J  is the signal, both parts of the 
equation denote the details and the approximate levels respectively. The )(tΨ  is the 
wavelet function, the )(tΦ  is the scale function, and γ and λ  are the coefficients of the 
functions. The number of decomposition levels is given by 0JJ − . 
 
4. Result 
 
We investigated monitoring methods for bearing, as a main mechanical component of 
drive servo actuators, based on vibration and current measurement data and created a 
database. That database was obtained through testing with the test rig described above. 
We tested in total one nominal bearing and three different bearings with three different 
sizes of artificial defect (simulated spall). Each bearing specimen was tested by eight 
different combinations of test conditions (constant speed and constant load) and each 
test was repeated three times. Detailed information about the test condition is described 
in (5).  
 
In this paper, a database of fault indicators was created based on the database described 
above. This database includes analysis results of both current and vibration data from a 
set of 14 statistical descriptors (see below), 10 different signal components (8 detail 
levels including 1 approximation level and the raw signal) and 106 mother wavelets. 
We obtained 14840 combinations in total. 
 

1. Median 8.  Kurtosis 
2. RMS 9. Minimum 
3. Deviation 10. Maximum 
4. Average 11. Variance 
5. Peak value 12. Clearance factor 
6. Crest factor 13. Impulse factor 
7. Skewness 14. Shape factor 

 
Instead of setting a specific performance constraint to shorten the evaluation tables 
(considering that the table is sorted in descending order of the performance metric, as 
explained in section 2.2), we selected a specific number of top rows of these tables. That 
number was obtained by finding a fault indicator with 100 percent probability (see 
Table 3). To realize that, a routine was created to compute the cell content for the 
probability column within a number of top rows L of the intermediate result in the 
tables of the type of Table 1. In other words, the routine checks how many times of the 
total number of evaluation tables a fault indicator appears in this part of an evaluation 
table. This routine was applied iteratively while increasing the number of top rows until 
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one fault indicator iX  at row index i  reaches a probability of 100. Once iX  is found, 
the bottom part of the evaluation table that is lower than L can be rejected. 
  

Table 3. Example evaluation for bearing  
 

 

 Combination 
identifier 

Performance 
metric Probability 

1 1X  maxV  1P  

M M M M 

i  iX  iV  100 

M M M M 

L  LX  LV  1−LP  

M M M M 

NM ×  NMX ×  minV  NMP ×   rejected 
 

 

In the bearing example, we attach high importance to the aspect robustness. Thus, the 
final evaluation table has to be sorted in the descending order of the contents in the 
probability column (instead of the performance metric column). This way, the most 
robust fault indicators can be simply found in the few very first rows.  
 
The identifier of the fault indicator is coded using a combination of the wavelet mother 
nomenclature and a four digits code, where the first two digits are reserved for 
descriptor codes and the last two digits for the wavelet decomposition levels. For the 
evaluation, the most essential task is to watch for the highest probabilities as well as 
performance metrics.  
 
The evaluation results for the bearing fault indicators are represented in Tables 4-5 (for 
bearing current data) and Tables 6-7 (for bearing accelerometer data), where only a few 
best are explicitly shown to have a clear overview.  Through rejection of rows as 
explained above, Tables 4-5 are limited to the first 315 and 335 rows respectively and 
Tables 6-7 to the first 1389 and 1457 rows respectively from the total number of rows 
14840. In Tables 4-5, the best result was found for the fault indicator with the identifier 
sym8_1006, which stands for the statistic descriptor number 10 (maximum) of wavelet 
decomposition detail level 6 where the wavelet mother with the acronym sym8 was 
used. In Tables 6-7, the best result was found for the identifier rbio3.1_0804, which 
signifies that the descriptor number 8 (Kurtosis) was applied to the signal detail of 
wavelet rbio3.1 decomposition level four.  
 
The evaluation for bearing current data excludes more fault indicators of lower 
reliability then the one for bearing accelerometer data. Additionally, one can say that 
good results are reached for current at high decomposition level while for vibration at 
the middle decomposition level, when analyzing the identifiers. Interesting is that the 
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best sorted results of both tables with deviation and gradient are similar. This indicates 
that similar adequate technique options are for both prognosis and diagnosis.  

 
Table 4-5. Evaluation for bearing current data 

 
 

No identifier deviation prob  
1 sym8_1006 1.103 100 
2 sym10_1006 1.004 75 
3 db34_1006 3.813 75 
M    

315    

 

No identifier gradient prob  
1 sym8 _1006 18.293 100 
2 sym10_1006 1.119 75 
3 rbio2.8_1006 1.160 75 
M    

335    

  
Table 6-7. Evaluation for bearing accelerometer data 

 
 

No identifier deviation prob  
1 rbio3.1_0804 977887 100 
2 rbio2.2_0804 613488 75 
3 rbio3.3_0804 578257 50 
M    

1389    

 

No identifier gradient prob  
1 rbio3.1_0804 106 100 
2 rbio2.2_0804 24 75 
3 rbio3.3_0804 23 75 
M    

1457    
 
The proposed strategy filtered out many fault indicators of lower reliability and maps 
only the more reliable ones. Additionally, the most reliable fault indicators are presented 
in the way they can be simply recognized such as on the top of a table. 
 
5. Discussion 
 
When CM methods are not applied to monitor single machine components but to 
monitor the superordinate machine system, the sufficiency of CM methods has to be 
investigated. As an extended objective of improving/developing CM, we discuss in this 
section on the basis of bearing and actuator whether the methods mentioned here can be 
applied without further ado. Since the proposed strategy can be applied at any machine 
level, evaluation results of different levels can help finding out the limitation of CM 
methods.  
 
The measurement data obtained from the test rig operation are a good indicator for 
effects taking place in an isolated bearing, however the situation changes once a whole 
actuator is considered. There are several aspects that might heavily influence the 
characteristics of motor currents and vibration signals. They can be loosely grouped into 
four categories: bearing attachment, component interactions, environmental factors, 
operation and fault shape, and are discussed in this section. 
 
On the test rig shown in figure 1, the accelerometer is placed directly on the outer ring 
(OR) of the bearing; radial guidance of the OR is achieved by friction force to the fixed 
part and the rotating part. In the actuator, the OR will be radially guided by a tight fit to 
the surrounding structure. As a consequence, the sensor could not be placed on the same 
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spot as in the test rig but needs to be attached to the structure. This changes the 
propagation path of the signal and by that some characteristics of the measurement 
signal. For example, the eigenfrequencies excited by the force impulses resulting from 
over rolling a spall are not any longer determined by contact stiffness of the bearing and 
the rigid outer ring but by the combination of these and the structural dynamics of the 
housing. These frequencies are determined by material, geometric and fixation 
properties of the housing. This would lead to a shift of the frequency bands with useful 
information for CM, when vibration is considered. On the other hand, the housing of a 
real actuator usually consists of several different parts connected by bolts and, for 
tightness reasons, gaskets. This will introduce damping into the propagation path and by 
that reduce the information content of the signal.  In case the energy content of the force 
impulse is not sufficient or the shape of the impulse is not sharp enough to excite the 
new and possibly highly damped eigenfrequencies, the information necessary for CM 
might be completely lost. 
 
When measuring the acceleration of the housing, not only one bearing acts as an 
excitation source but also other components such as a ball screw, gears, other bearings 
and even the electrical motor itself, have an impact on the measurement result. This 
kind of composition could be interpreted as a multiple input single output problem, 
where the dynamics from each input to the output are governed by the different 
structural dynamics of the housing. Due to similar dimensions and rotational speeds of 
bearings and ball screws, also the excitation characteristics of the inputs are similar 
making the isolation of a damaged component in the CM even more challenging. 
 
When considering the working environment of a flight control actuator, obviously the 
broad temperature range has an impact on electrical properties such as phase resistance. 
Also tribological parameters as viscosity of the lubricant are affected by temperature 
changes.  This has a direct impact on the damping and frictional characteristics of the 
bearings and by that also on the vibration and current measurement signal.  
 
During flight operation, the loads and speeds for the actuator are far from being constant. 
The actuator is operated in a position control mode. During takeoff and landing the 
position demand signals coming from the flight control computer or the pilot might be 
highly dynamic resulting in high acceleration rates for the rotational speed of the 
bearing. On one hand this means that the acceleration and current spectrum will become 
smeared, on the other hand this might also lead to slippage of the rolling elements 
which would change the characteristic fault frequencies used for CM.  In the cruise 
phase of the flight, the control surface deflection is kept more or less in neutral position 
and only slight corrections are made. As a consequence, the bearing is also just rotated 
by several degrees or some turns and only very few force impulses are created. These 
few impulses are probably not enough for spectral analysis.  The loads for the actuator 
are governed by the aerodynamic loads on the control surface that are dependent on the 
flight condition of the airplane and the surface deflection and will change accordingly. 
 
6. Conclusion 
 
In this paper, we present a procedure that contributes to the process of selecting 
valuable CM techniques. We demonstrate how it works in an example that deals with 
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the evaluation of bearing fault indicators, obtained by applying combinations of signal 
descriptors and signal components. This evaluation comprises of results for two signal 
types: current and vibration. For this example, we can make a clear statement about 
which combinations are best for each signal type, after studying the results. 
Additionally, we can confidently compare the results of these two signal types. At the 
last point, we briefly discuss the effect of system (vs. single component) on content of 
measurement signal based on the structure of a typical primary flight control actuator. 
From this, we postulate that the results vary when applying the same fault indicators on 
both component level and system level, dependent on the difference in physical 
structure and position of sensor. Thus, we recommend an implementation of the 
proposed strategy not only on component level but also on system level to reduce result 
uncertainty. 
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