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Abstract 
The training data selection and update are crucial steps for the space-time adaptive processing (STAP) operation, 
since contaminated training data result in a decreased clutter suppression performance, an incorrect constant 
false alarm rate (CFAR) threshold and target cancellation by self-whitening. This paper presents a promising al-
gorithm that selects the training data by applying a moving window, taking into account the changes of the clutter 
statistics over space and time. The goal is to improve the clutter suppression capability and, thus, to increase the 
number of true detections. The benefits of the proposed algorithm are verified using real 4-channel X-band radar 
data acquired by the DLR’s airborne F-SAR. 

1 Introduction 
The clutter covariance matrix (CCM) estimation is an 
essential step of space-time adaptive processing (STAP) 
algorithms, since the interference spectral properties are 
rarely known in practice and must be estimated using 
training data. However, in reality the training data are 
frequently contaminated by discrete scatterers and inter-
fering targets, resulting in an incorrect CCM estimation 
and threshold setting that can cause target cancellation. 
Therefore, the selection of the training data plays an im-
portant role for the STAP operation [1-2]. 

An interesting literature review about training data se-
lection methods is presented in [3]. However, several of 
the discussed algorithms are time-consuming (e.g., de-
signed for joint-domain STAP, which requires more 
sample support and processing time) or may require a 
massively complex series of decisions to be made in 
real-time, which is especially the case of knowledge-
aided (KA) algorithms [4-5]. 

Training data selection and STAP processing are even 
more challenging when the aircraft is equipped with a 
low-cost fixed-mounted antenna array which does not 
allow the zero-Doppler beam steering. In this case, the 
time-varying acquisition geometry has to be considered 
during processing in order to obtain accurate detection, 
position and velocity estimation results.  

Exemplarily, Figure 1a shows an F-SAR image of the 
Memmingen area in Germany (area on ground: 9.4 x 
1.8 km2). As it can be seen in Figure 1b, atmospheric 
turbulences result in time-varying changes of the yaw, 
pitch and roll angles of the aircraft. Figure 1c shows the 
change of the Doppler centroid (and therefore the an-
tenna pointing), especially due to the yaw and pitch an-
gles of the aircraft. Figure 1d shows the change of the 
texture (estimated using the heterogeneous clutter model 
presented in [6]) over time and slant range.  

 
Figure 1: Examples of real-world problems on F-SAR 
data acquisition: (a) SAR image, (b) change of the yaw, 
pitch and roll angles, (c) change of the average Doppler 
centroid over time, and (d) change of the texture over 
time and slant range. 

To combat the real-world problems shown in Figure 1, 
the training data must be updated regularly in order to 
reduce the errors in the estimated parameters of the 
STAP detections and, besides, to take into account po-
tential changes in the clutter statistics. 

This paper presents a promising algorithm for training 
data selection that can be applied on two ground moving 
target indication (GMTI) processors: the post-Doppler 
(PD) STAP-only and the PD STAP with road map in-
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formation [7-8]. The goal is to improve the clutter sup-
pression capability and, thus, to increase the number 
of true detections. The proposed algorithm is evaluated 
using real 4-channel aperture switching data acquired by 
the DLR’s airborne F-SAR [9]. 

2 Training Data Selection 
This section describes two algorithms for selecting the 
training data for the CCM estimation: algorithm 1 is an 
example of a conventional method employed for PD 
STAP (used as reference) and algorithm 2 is novel. In 
both cases, the CCM is estimated according to [1]: 

 ( ) = ( , ) ( , ) , (1) 

where  is the Doppler frequency,  is the number of 
range bins used for averaging, ( )  is the Hermitian op-
erator and ( , ) is the multi-channel data generally 
composed of: 

 = + + +  , (2) 

where  is the vector of the target signal,  the clutter,  
the noise and  a possible jammer signal. For the CCM 
estimation, it is important to note that the multi-channel 
vectors  are almost free of strong discrete scatterers 
and moving target signals. This condition has to be en-
sured by a proper training data selection algorithm. 

2.1 Algorithm 1 (Reference) 
The principle of this algorithm is shown in Figure 2. In 
this case, the CCM is estimated only once per coherent 
processing interval (CPI), using all the samples of the 
CPI as training data (cf. red box in Figure 2). The main 
steps of this algorithm are listed below: 

1. Obtain the CPI by segmenting the multi-channel 
data in time domain (e.g., by using 128 azimuth 
samples). Use all the available range samples ; 

2. Obtain the training data by using the full content 
of the CPI. Then, transform the training data to 
range-Doppler domain via an azimuth FFT; 

3. Estimate the CCM for each Doppler frequency  
according to (1), using = =  range bins; 

4. Apply the PD STAP processor on the CPI and 
estimate the CFAR threshold (according to [6]); 

5. Detect the moving targets applying the CFAR 
threshold, then estimate their positions and line-
of-sight velocities (using the equations in [1]). 

It is pointed out that this algorithm does not perform da-
ta selection, since the full CPI is used as training data.  

 
Figure 2: Principle of algorithm 1 (reference). The 
training data (red box) are obtained by using all samples 
of the CPI. The CCM is estimated only once per CPI. 

2.2 Algorithm 2 (Novel) 
The principle of this algorithm is shown in Figure 3. 
This algorithm applies a moving window over range 
and azimuth, where the training data (cf. red box in 
Figure 3) contain = 2 +  truncated CPIs with  
range bins. The CPIs marked as  (blue box) are pro-
cessed by the PD STAP, while the adjacent CPIs 
marked as  are used only as training data. 

The training data are built by: 1) “stacking” the  
CPIs in time domain and 2) transforming the data to 
range-Doppler domain via an azimuth FFT (cf. detail 
in Figure 3). Thus, the training data have =  
available range bins. The main steps of this algorithm 
are listed below: 

1. Select the data patch using  CPIs and  range 
bins by segmenting the multi-channel data in time 
domain; 

2. Build the training data by “stacking” the  CPIs; 

3. Estimate the CCM for each Doppler frequency  
according to (1), using = =  range bins; 

4. Apply the PD STAP processor on the training 
data and estimate the CFAR threshold; 

5. Apply the PD STAP processor on the CPIs  and 
detect the moving targets using the CFAR thresh-
old. Finally, estimate the positions and the line-
of-sight velocities of the moving targets. 

 
Figure 3: Principle of algorithm 2 (novel). The training 
data (red box) are updated as the window slides over 
range and azimuth. On the right, the detail shows the 
CPIs stacking technique for building the training data. 
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3 Experimental Data 
Both training data selection algorithms were tested 
using real 4-channel aperture switching data acquired 
by the DLR’s airborne F-SAR. The flight campaign 
was conducted over the Allgäu airport in Memmingen 
in February 2007. Figure 4 shows an optical image of 
the scene, where the cars 1-4 moved on the edges of 
the runway and car 5 moved off-road in circles. A de-
tailed experiment description is found in [9-10]. The 
data take had 1024x16384 range-azimuth samples. 

The positions and the velocities of the cars were 
known. The cars 1, 2 and 4 were equipped with radar 
reflectors in order to enhance their RCS and car 4 had 
a differential GPS (DGPS) receiver for retrieving reli-
able geographical reference positions and velocities.  

The data were processed using CPIs of 1024x128 range-
Doppler samples and the beamformers were applied us-
ing direction-of-arrival (DOA) angle steps of 0.05° 
within an interval determined by the azimuth antenna 
beam width. The probability of false alarm of the CFAR 
detector was set to = 10 . 

 
Figure 4: Optical image of the Allgäu airport in 
Memmingen. The cars 1-4 moved on the edges of the 
runway and car 5 moved off-road in circles [9-10]. 

3.1 Moving Window Length 
The length of the moving window for algorithm 2 (i.e., 
the choice of the parameters ,  and ) plays a big 
role for the STAP performance. Thus, in this subsection 
the impacts caused by different moving window lengths 
are shown and discussed using the experimental data. 
Two experiments were carried out, where the PD STAP 
with road map information [7-8] was used for counting 
the number of detections relocated to the runway. 

3.1.1 Experiment 1: Parameters D and T 
Figure 5a shows the number of true detections of cars 
1-4 (i.e., True#1-4) as a function of the parameters  
and . In this case, all the available range bins were 
used (i.e., = 1024). Besides, the detections of car 
5 were not counted since it moved off-road and thus 
its detections were discarded after applying the road 
map information. Figure 5b shows the number of 
false detections relocated to the runway as a function 

of the parameters  and . In this case, the number of 
false detections was calculated by subtracting the 
number of relocated detections from the number of 
true detections (True#1-4). 

For instance, a good compromise can be achieved when = 15 and  = 12, where 450 true detections and 
only 2 false detections were obtained. Therefore, these 
parameters were chosen for the moving window applied 
on algorithm 2, so that = 2 + = 39 CPIs (nearly 
two seconds of data).  

 
Figure 5: Number of detections relocated to runway 
as function of parameters  and : (a) true detections 
(True#1-4); (b) false detections (Relocated - True#1-4). 

3.1.2 Experiment 2: Number of Range Bins 
In this experiment, the real data were repeatedly pro-
cessed by algorithm 2 assuming = 15 and  = 12, 
and varying the number of range bins  of the moving 
window. Once more, only the detections from cars 1-4 
were counted as true (i.e., True#1-4).  

Figure 6 shows the number of detections (all, relocated 
and true) obtained from each moving window. As it can 
be seen, the levels increased as the number of range bins 

 increased, reaching the peak at = 512. In other 
words, up to this point ( 512) the CCM estimation 
benefited from the increase of training data. Beyond this 
point ( > 512), algorithm 2 lost its robustness against 
the clutter change over range. As a result, the number of 
detections (all, relocated and true) started decreasing.  

The chosen parameter for algorithm 2 (used for obtain-
ing the results presented in the next sections) was = 512. It is pointed out that the most suitable mov-
ing window length depends on the scene and on the mo-
tion of the aircraft. Therefore, the parameters chosen in 
Subsection 3.1 were matched to the experimental data. 

 
Figure 6: Number of detections as function of the 
number of range bins  of the moving window 
( = 15 and = 12). 
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3.2 GMTI Results 
The PD STAP detections obtained by algorithms 1 

and 2 are shown in Figure 7. In this figure, the colors 
of the detections are related to their absolute ground 
range velocities. In Figure 7c, a detail is shown for 
algorithm 2 in order to demonstrate the relocation of 
the true targets to the road axis of the OpenStreetMap 
(OSM) database [11], carried out by the PD STAP 
processor with road map information [7-8]. In this 
figure, the detections are shown before (circles) and 
after (triangles) relocation, where the center of the 
runway (white line) was the road axis. The triangles 
point to the heading angles of the cars and the thin 
yellow lines connect the PD STAP detections to their 
closest road points (i.e., on the road axis).  

It can be seen from Figure 7a that algorithm 1 was 
not able to detect car 3. Indeed, in this case no train-
ing data selection was performed. The full CPI was 
used as training data (i.e., including moving target 
signals and strong scatterers), leading to the self-
whitening of car 3. In contrast, Figure 7b shows that 
algorithm 2 detected all the cars several times. For 
instance, it is possible to note car 2 overtaking car 1. 
In this case, a larger amount of training data was used 

for the CCM estimation ( = 39 CPIs and = 512 
range bins) and the moving window took into account 
the clutter change over range. 

Figure 8 shows the eigenvalues distributions (normal-
ized to the noise power) from the training data of both 
algorithms. For algorithm 1, the eigenvalues distribu-
tions exhibited spikes due to the influence of moving 
target signals and strong scatterers. In contrast, the 
eigenvalues distributions obtained from algorithm 2 
were smooth due to the increased amount of training 
data. The difference between the first and the second 
eigenvalues (  15 dB) shows the clutter suppression 
capability of the PD STAP processor. The fourth ei-
genvalue is in the noise power level. 

 
Figure 8: Eigenvalues obtained from the training data 
in the region of the runway: algorithms 1 and 2. 

 
Figure 7: Google Earth images overlaid with PD STAP detections. Algorithms 1 and 2 were applied for selecting the 
training data for the CCM estimation. The detail shows the relocation of the PD STAP detections (circles) to their 
nearest OSM road points (triangles) [7-8]. The center of the runway (white line) was the road axis. 
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Figure 9 shows the ground range velocities histo-
grams of the PD STAP detections. This figure allows 
to compare the amount of false (blue bars) and true 
detections (red bars) obtained for both algorithms. 
The true detections (True#1-5) could be counted since 
the positions and the velocities of all cars were known 
a priori. 

It can be seen that a reduced number of detections was 
obtained by using algorithm 1 and that car 3 was not 
detected due to the self-whitening. In contrast, much 
more detections were obtained by algorithm 2. In 
general, both algorithms presented accurate velocities 
estimates of the cars, being in very good agreement 
with those shown in Figure 4. The estimated posi-
tions were also accurate considering that the cars 1-4 
moved on the edges of the runway. 

A quantitative comparison between both algorithms is 
shown in Table 1, where it is presented: the numbers 
of detections (all, relocated and true), the measured 
probability of false alarm rate  and the percentage 
of true detections relocated to the runway. The  
was estimated according to: 

 = #  , (3) 

where = 16384 and = 1024 are the numbers 
of available azimuth and range samples of the exper-
imental data, respectively. 

It can be seen from Table 1 that algorithm 2 obtained 
nearly seven times more true detections of cars 1-5 
(True#1-5) than algorithm 1. The  increased slightly, 
whereas = 5.25 × 10  is still tolerable. Besides, 
the last column of the Table 1 shows the percentage 
of true detections that remained in the final image 
(i.e., after applying the road map information). As it 
can be seen, when algorithm 2 was applied more than 
98% of the detections that remained in the final image 
were true. This value shows the great potential of our 
PD STAP with the road map information. 

The GMTI results presented in this subsection showed 
that algorithm 2 was able to detect all the cars several 
times, increasing the number of true detections and 
keeping a tolerable . Algorithm 2 is recommended 
for both PD STAP processors: with and without road 
map information. When the road map was used for 
rejecting the detections that were far from the roads, 
more than 98% of the detections that remained in the 
final image were true. 

 
Figure 9: Ground range velocities histograms of the PD 
STAP detections shown in Figure 7: all (blue) and true 
(red) detections. The detections obtained from cars 1-5 
are numbered in the histograms. 

Algorithm All Rel. True 
(#1-4) 

True 
(#1-5) 

 
[x10-6] 

True#1-4/ 
Rel. [%] 

1 134 53 51 77 3.40 96.23 
2 625 507 498 537 5.25 98.22 

Table 1: Quantitative comparison between algorithms 
1 and 2 based on the GMTI results shown in Figure 7. 

3.3 Real Traffic Scenario 
This subsection shows an application example of al-
gorithm 2 in a real traffic scenario. In this case, the 
PD STAP processor with road map information was 
applied on a data patch (2048x16384 range-azimuth 
samples) taken from the large data take shown in Fig-
ure 1a, where a part of the highway A7 is contained 
with several moving cars. The parameters of the mov-
ing window were: = 15,  = 12 and = 512. 

Figure 10 shows the GMTI results, where the moving 
cars are depicted as colored triangles pointing to their 
heading angles and the OSM road axes of the high-
way A7 are shown in white. The colors are related to 
the absolute velocities of the cars on ground. The in-
formation box shows some examples of parameters 
that were obtained for each car on the highway. 

Since no ground truth data were available in this ex-
periment, it is not possible to determine the probabil-
ity of detection, the false alarm rate and the errors of 
the estimated parameters. Nevertheless, the estimated 
velocities on the highway A7 were reasonable.  

Finally, it can be seen from Figure 7 and Figure 10 
that the PD STAP processor was able to detect each 
single car several times, revealing the potential of our 
GMTI processor for traffic monitoring applications. 
However, Figure 10 showed that it is difficult to sep-
arate the detections from cars that move close to each 
other with similar velocity. For this reason, before this 
processor can be used operationally, a clustering and 
tracking algorithm needs to be developed. 
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Figure 10: Real traffic in the highway A7. The OSM road axes are shown in white and the cars (triangles) are 
color coded according to their absolute velocities on the highway. The cars were detected and their parameters 
were automatically estimated using our PD STAP with road map information [7-8]. Algorithm 2 (proposed in 
this paper) was used for selecting the training data for the CCM estimation. 

 

4 Conclusions 
This paper presents a training data selection algorithm 
for clutter covariance matrix estimation that can be ap-
plied on post-Doppler (PD) STAP processors with and 
without road map information. The experimental results 
show that the proposed algorithm outperforms the con-
ventional one (taken as reference) by increasing nearly 
seven times the number of true detections while keeping 
a tolerable probability of false alarm rate. For our PD 
STAP processor with road map information, more than 
98% of the detections that remained in the final image 
were true. Thus, the main goal of the proposed training 
data selection and update algorithm is fulfilled.  
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Velocity: 123.34 km/h
SCNR: 30.99 dB
Frequency: 1193.22 Hz
DOA: 90.0819°
Slant Range: 2664.31 m
Dist. Road Axis: 7.76 m
Plat. Heading: 166.94°
Data Block: 8
CPI: 80
Longitude: 10.133597°
Latitude: 48.096137°
Elevation: 543.64 m
OSM Way ID: 152136541
Road Name: A7
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