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Introduction:  The ~500 km Rheasilvia impact on 

Vesta is the most recent basin-forming event on Vesta 

as indicated by the basin morphology that is not super-

imposed by any other basin [1,2]. Rheasilvia itself su-

perimposes the older ~370 km diameter Veneneia ba-

sin, including its central peak area.  Hydrocode impact 

modelling [3] indicated that the combined effect of 

both impacts likely excavated material not only from 

the basaltic crust but also from the mantle of Vesta. 

Observations by the Dawn spacecraft did not reveal 

large amounts of olivine, indicative of mantle material 

on the surface of Vesta [4]. Olivine that was identified 

on the surface of Vesta, appears not to be related to the 

Rheasilvia impact and has been linked to a likely ex-

ogenic origin [5], leaving the question for the missing 

Rheasilvia – excavated olivine unanswered. Color ratio 

data does show diogenitic material that stretches out 

from inside the Rheasilvia basin into the northern hem-

isphere. Here we investigate whether the observed dis-

tribution of diogenitic material  is consistent with Rhe-

asilvia ejecta.  

Methods: For the identification of diogenitic mate-

rial on the surface of Vesta we use the F3(749 

nm)/F4(917 nm) color filter ratio of the Dawn Framing 

Camera [6]. This ratio is usually used for the green 

color channel in Dawn - “Clementine” color ratios e.g. 

[7].   

     We developed an ejecta model based on the 

ejecta scaling by [8] and crater scaling by [9] ] to cal-

culate the trajectories and distribution of excavated 

material. The ejecta tracer particles do not interact with 

each other but are simulated interacting with the gravi-

ty field of Vesta. The gravitational disturbances of the 

major planets as well as the Vestan gravity anomalies 

are taken into account up to degree 20 [10]. For sim-

plicity, we further use the current state of rotation and 

topography of Vesta in our simulation, although both 

likely changed during the formation of the Rheasilvia 

basin. In order to simplify the calculations, the Vestan 

topography and gravity field were generalized to arrays 

with 1 by 1 degree resolution. We further assume a 

symmetrical geometry of the particle ejection angles 

and velocities. All particles are ejected at an angle of 

45° with respect to the local surface and at the same 

velocity, if the distance of their ejection point from the 

center of impact is equal. As center coordinates of the 

Rheasilvia basin we use 310°E longitude and 75°S 

latitude and a basin diameter of 505 km.  

Results: Due to the high rotation rate of only 5.3 

hours per revolution crater ejecta on Vesta are subject 

to strong Coriolis effects. Similar simulations on Ceres 

[11,12,13] did show a NW-SE oriented arcuated accu-

mulation of reimpacted tracer particles a few degrees 

east of the source crater for craters in the southern 

hemisphere. This feature is a result of the change in 

propagation direction of the backfalling ejecta curtain 

for eastward ejected material. The change in propaga-

tion direction occurs only for very high and far flying 

particles. The feature is most prominent for craters 

close to the equator and disappears if the source crater 

is located at very high latitudes.  

In our simulation of Rheasilvia ejecta we find the 

feature described above in the northen part of Feralia 

Planitia continuing into NW direction in the northern 

part of Postumia and further into the North Pol area. It 

is essentially parallel to but north of Saturnalia Fossae 

(Fig. 1, center panel).  

In the F3/F4 color ratio the region around Feralia 

Planitia between 210°E and 100°E and from the rim of 

Rheasilvia to at least 75°N shows relatively high val-

ues. With highest values correlated with fresh craters 

e.g. Fabia and Teia possibly indicating an optical matu-

ration of the surficial material with respect to deeper 

situated material [14]. The center of this region shows 

lower values, while the eastern part is more pro-

nounced with high values (Fig. 1, bottom panel). 

In general the location of the modelled Coriolis 

force related ejecta accumulation is in the region of 

relatively high F3/F4 color ratios. However, correlation 

in shape and extent of color ratios and modelled ejecta 

accumulation is much less obvious than found in a sim-

ilar simulation conducted for the relatively young Ur-

vara crater on Ceres [12,13]. Rheasilvia may not be the 

one and only source of diogenitic material on Vesta but 

other large craters may have excavated deep situated 

material as well. Also, prolonged impact gardening 

could have diluted the signature of the Rheasilvia relat-

ed accumulation of impact ejecta. Further, it may be 

possible that assumptions and simplifications in our 

model do not reflect the formation conditions of the 
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Rheasilvia ejecta very well. Although our ejecta model 

did produce results in very good agreement with obser-

vations on Ceres and the mid-sized Saturnian satellites 

[13], there are questions yet to be answered in the case 

of Vesta. Solving these issues may improve our under-

standing in terms of cratering and ejecta distribution on 

Vesta. 

 
Fig.1: Top Panel: Global clear filter map of Vesta 

color coded with topographic data. Warmer colors 

represent higher elevation with respect to a two axial 

ellipsoid. White outlines indicate the rims of the Rhe-

asilvia and Veneneia basins. Center Panel: Kernel 

density map of impact positions of Rheasilvia ejecta 

tracer particles. Warmer colors give higher relative 

densities. Bottom Panel: F3/F4 color ratio map high-

lighting diogenitic material on the surface of Vesta. 

Warmer colors indicate higher ratio values, indicative 

of higher content of diogenitic material.    
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