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Abstract—In vehicle-to-vehicle wireless communications the
time-variability of the propagation conditions is a challenge for
channel estimation. The width of the Doppler spectrum depends
on the propagation delay and the velocity vectors of the vehicles.
So far, the time-variant width of the Doppler spectrum has
been derived for single-bounce scattering close to the line-of-
sight delay and for infinitely large delays. In this contribution, we
generalize the time-variant, delay-dependent limiting frequencies
for vehicle-to-vehicle channels for arbitrary delays and velocity
vector configurations. The limiting frequencies are obtained by
considering the geometric-stochastic channel representation in a
prolate spheroidal coordinate system and determining the poles

of the resulting Doppler spectrum. The poles in the spectrum are
caused by the extrema of the Doppler frequency. Since the global
maximum and minimum of the Doppler frequency define the
limits of the spectrum, the time-variant, delay-dependent width
can be calculated in closed form.

Index Terms—V2V channel, geometry-based stochastic channel
modeling, prolate spheroidal coordinates.

I. INTRODUCTION

VEHICLE-TO-VEHICLE channels belong to the class

of mobile-to-mobile (M2M) channels that are currently

being actively studied amongst others in the framework of

5G communications technologies [1]. Understanding vehicle-

to-vehicle (V2V) channels becomes particularly important in

the perspective of novel transportation systems that depend

on reliable data exchange for situation awareness. The stan-

dard wide sense stationary uncorrelated scattering (WSSUS)

stochastic channel model was introduced by Bello in [2].

Shortly thereafter, the Doppler spectrum, which possesses two

poles at the edges, for uniformly distributed scatterers for a

moving receiver was derived in [3]. Subsequently, the Doppler

spectrum for multi-bounce scattering was presented in [4] and

it possesses also two poles for unequal vehicle speeds.

V2V channels, however, are characterized by their non-

stationary behavior [5] and thus the validity of WSSUS

models is limited to stationary scenarios. It has been shown

in [6] that the class of geometric-stochastic channel models

(GSCMs) are well suited to describe non-stationary channels.

In [7], the authors propose a combination of line-of-sight

(LOS) components, a two-sphere model, and multiple confocal

elliptic-cylinder models to describe the non-stationary channel;

a semi-ellipsoidal non-stationary channel model is proposed in

[8]. Yet, analytical tractability of these GSCMs is limited. In

contrast, the single-bounce ellipsoidal model in [9] permits a

tractable analysis of non-stationary channels when expressed
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Fig. 1. Prolate spheroidal coordinate system with the transmitter and receiver
in the foci of the ellipses and hyperbolas. The half-planes are given by ϑ = 0
and ϑ = π (shaded). The relationship to the Cartesian coordinate system is
displayed.

in a prolate spheroidal coordinate system (PSCS). In [10], the

limiting frequencies for the Doppler spectrum close to the LOS

and for infinite delay were derived in closed form. The results

for arbitrary delays are, however, still elusive.

In this contribution we use PSCS to study the delay-

dependent limiting frequencies. The use of PSCS allows us

to conduct an algebraic analysis of the Doppler frequency.

The performed analysis reveals a sixth order polynomial that

describes poles of the time-variant, delay-dependent Doppler

probability density function (pdf).

II. PROLATE SPHEROIDAL COORDINATE SYSTEM

An algebraic analysis of the Doppler spectrum in a Cartesian

coordinate system is often prohibitively complex and cum-

bersome. Instead, the PSCS offers an elegant way to obtain

algebraically tractable channel representations in terms of

rational polynomials, which significantly simplify the analysis.

As first discussed in [9], the PSCS is particularly suitable to

solve two center problems, which are characteristic for the

V2V channels as shown in Fig. 1.

The conversion between the Cartesian coordinate system

and the PSCS is given according to [11] by

x = l
√

(ξ2 − 1)(1− η2) cosϑ ,

y = l
√

(ξ2 − 1)(1− η2) sinϑ ,

z = lξη , (1)
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where l is the focus distance, i.e., half the distance between

transmitter (TX) and receiver (RX). The PSCS coordinates are

defined as ξ ∈ [1,∞), η ∈ [−1, 1], and ϑ ∈ [0, 2π). Note that

iso-surfaces of the ξ-coordinate are ellipsoids. Here, ξ , τ
τlos

is the relative delay obtained by normalizing the propagation

delay τ to the LOS delay τlos. The distance dsc from TX to

RX via an arbitrary scatterer can be described by using only

the ξ-coordinate as follows

dt = (ξ + η) l, dr = (ξ − η) l, dsc = dt + dr = 2ξl , (2)

where dt is the distance from the TX to the scatterer, and dr
is the distance from the scatterer to the RX. The total delay

is thus given by τ = dsc

c
= 2ξl

c
, where c is the speed of light.

The Doppler frequency according to [9] is calculated as

fd(x) =
(

v
T
t ∇dt(x) + v

T
r ∇dr(x)

) fc
c
. (3)

Here, the 3D instantaneous Doppler frequency is calculated by

the gradient of the distance projected onto the velocity vectors

of TX and RX. The expression in (3) can be recast in the PSCS

according to [10] as

fd(t; ξ, η, ϑ) =

(

√

(ξ2 − 1) (1− η2)

ξ + η
(vtx cosϑ+ vty sinϑ)

+

√

(ξ2 − 1) (1− η2)

ξ − η
(vrx cosϑ+ vry sinϑ)

+
ξη + 1

ξ + η
vtz +

ξη − 1

ξ − η
vrz

)

fc
c
. (4)

Note that the Doppler frequency is a function of time due to

time-dependency of the Cartesian components of the velocity

vectors vt = [vtx, vty, vtz ]
T

and vr = [vrx, vry, vrz]
T

of TX

and RX, respectively. The 2D Doppler frequency for the V2V

channel is then obtained by restricting the angle to ϑ ∈ {0, π}.

We model the delay-dependent pdf of the uniformly dis-

tributed scatterers according to [9]. To this end, we fix the

ξ-coordinate, which defines a certain delay ellipse. We further

assume that for a fixed ξ = ξ∗ the scatterer distribution on the

selected delay ellipse is independent of time t and consider

the parameter η ∈ [−1, 1] of the half-ellipse that specifies

scatterers lying on it. It was shown in [9] that the conditional

pdf p(η|ξ) can be computed by applying standard rules of

probability density transformations [12] as

p(η, ϑ = 0|ξ) = p(η, ϑ = π|ξ) =
1

2E
(

1
ξ2

)

√

1− η2

ξ2

1− η2
, (5)

where E
(

1
ξ2

)

:=
∫ 1

0

√

1− η2

ξ2

1−η2 dη is the complete elliptic

integral of the second kind.

Following the derivation in [9], we compute the time-

variant, delay-dependent Doppler pdf as

p(t; fd|ξ) =
∑

η′∈{F−1(fd)}

1

2

p(η, ϑ = 0|ξ)
∣

∣

∣

∂fd(t;η,ϑ=0|ξ)
∂η

∣

∣

∣

∣

∣

∣

∣

∣

∣

η=η′

(6)

+
∑

η′∈{F−1(fd)}

1

2

p(η, ϑ = π|ξ)
∣

∣

∣

∂fd(t;η,ϑ=π|ξ)
∂η

∣

∣

∣

∣

∣

∣

∣

∣

∣

η=η′

,

with the Doppler frequency fd(t; ξ, η, ϑ) being computed

according to (4) and F−1(·) denoting the inverse relationship

between η and fd. The sum in (6) accounts for the fact that

one Doppler frequency can be related to multiple values of η,

which is sometimes referred to as a multivalued function. It

can be shown, however, that there are at most four values of

η that lead to the same Doppler frequency fd.

III. ALGEBRAIC ANALYSIS OF THE DOPPLER SPECTRUM

So far, a tractable analysis of the poles of p(t; fd|ξ) has

been done for delays close to the LOS and for infinitely large

delays. In the following, we derive a general expression for

the delay-dependent poles of the Doppler spectrum. Note that

due to the physical limitation of the Doppler frequency in (4),

the pdf p(t; fd|ξ) has a finite support. From (6), it is obvious

that the extrema of the Doppler frequency fd(t; η, ϑ, ξ) with

respect to η lead to poles in the Doppler pdf; these naturally

include minimum and maximum frequency of the Doppler pdf.

Their location is given by

∂fd(t; ξ, η, ϑ)

∂η
= 0 . (7)

We expect that a least two poles will be located at the mini-

mum and maximum Doppler frequency due to the physical

limitation and continuity of the Doppler frequency. In the

following, we investigate the algebraic structure of the poles

and derive general properties of the Doppler spectrum. We

begin with the following theorem.

Theorem 1. In V2V channels the Doppler spectrum caused

by single-bounce scattering can possess up to six distinct real

poles.

Proof. A straightforward computation of the derivative in (7)

for both for ϑ = 0 and ϑ = π leads to the following expression

∂fd(t; ξ, η, ϑ)

∂η
=

(

∓
η
(

ξ2 − 1
)

(ξ + η)
√

(ξ2 − 1) (1− η2)
vtx

∓
η
(

ξ2 − 1
)

(ξ − η)
√

(ξ2 − 1) (1− η2)
vrx

∓

√

(ξ2 − 1) (1− η2)

(ξ + η)
2 vtx

±

√

(ξ2 − 1) (1− η2)

(ξ − η)
2 vrx

+
ξ

ξ + η
vtz −

ξη + 1

(ξ + η)
2 vtz

+
ξ

ξ − η
vrz +

ξη − 1

(ξ − η)
2 vrz

)

fc
c

= 0 . (8)

After isolating the expressions under the square root in (8),

squaring the result, and taking the fact into account that

solutions of (8) have to be combined for the cases ϑ = 0
and ϑ = π, the full set of solutions can be obtained as roots

of the following polynomial in η as

g(η) = a6η
6 + a5η

5 + a4η
4 + a3η

3 + a2η
2 + a1η + a0 , (9)
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with coefficients ai, i = 0, . . . , 6, given as

a0 =
(

(vtx − vrx)
2
+ (vtz + vrz)

2
)

ξ4 − (vtz + vrz)
2
ξ6

a1 = 4
(

v2rx − v2tx + v2rz − v2tz
)

ξ3

+ 2
(

v2tx − v2rx + 2
(

v2tz − v2rz
))

ξ5

a2 =
(

6
(

v2tx + v2rx + v2tz + v2rz
)

+ 4 (vtxvrx − vtzvrz)
)

ξ2

+
(

2vtzvrz − 8
(

v2tx + v2rx
)

− 7
(

v2tz + v2rz
))

ξ4

+
(

(vtx + vrx)
2
+ (vtz + vrz)

2
)

ξ6

a3 = 4
(

v2rx − v2tx + v2rz − v2tz
)

ξ

+ 4
(

3
(

v2tx − v2rx
)

+ 2
(

v2tz − v2rz
))

ξ3

+ 4
(

v2rx − v2tx + v2rz − v2tz
)

ξ5

a4 = (vtx − vrx)
2
+ (vtz + vrz)

2

+
(

2vtzvrz − 8
(

v2tx + v2rx
)

− 7
(

v2tz + v2rz
))

ξ2

+
(

6
(

v2tx + v2rx + v2tz + v2rz
)

− 4 (vtxvrx + vtzvrz)
)

ξ4

a5 = 2
(

v2tx − v2rx + 2
(

v2tz − v2rz
))

ξ

+ 4
(

v2rx − v2tx + v2rz − v2tz
)

ξ3 (10)

a6 = − (vtz + vrz)
2
+
(

(vtx + vrx)
2
+ (vtz + vrz)

2
)

ξ2 .

According to the fundamental theorem of algebra, the poly-

nomial g(η) of degree 6 has exactly 6 roots; thus the number

of poles in the V2V Doppler spectrum cannot exceed 6. �

If the sixth order polynomial is solvable, the general formula

is provided in [13]. Let us stress that double roots can exist

and that different roots of η can cause poles at the same

Doppler frequency. Note that real roots can also be solutions

of degenerate cases, e.g., for vtx = vrx = 0. The analysis,

why the polynomial solves these cases as well, is, however,

out of the scope of this paper.

Corollary 1. If velocities of the TX and RX are such that

‖vt+vr‖ 6= 0, the V2V Doppler spectrum caused by a single-

bounce scattering is characterized by either two, four or six

real roots.

Proof. Consider the coefficient a6 in (10). It is easy to see

that a6 is zero if

‖vt + vr‖ = 0, or ξ =
vtz + vrz
‖vt + vr‖

≤ 1. (11)

Since for single-bounce scattering ξ > 1, we can conclude

that a6 6= 0 in this case. Thus, provided ‖vt + vr‖ 6= 0, g(η)
is a 6th order polynomial with real coefficients, with up to 6
real roots, or roots in complex conjugated pairs, from which

the corollary follows. �

Corollary 2. If ‖vt + vr‖ = 0, the V2V Doppler spectrum

caused by single-bounce scattering can either have two or four

real roots.

Proof. In case when ‖vt + vr‖ = 0, the coefficients a6, a5,

a3 and a1 become zero. Thus, the polynomial g(η) reduces to

a quartic polynomial with real coefficients a4, a2, and a0. �

Note that, due to symmetry, the four real roots lead to only

two poles at the maximum and minimum frequency in the

Doppler spectrum. Let us analyze the generalization of the

results in [10] for close to LOS and distant scattering.

A. Close to LOS Scattering (ξ → 1)

Using Theorem 1, we can analyze the poles of the Doppler

spectrum in the vicinity of the LOS. For ξ → 1 and assuming

six real roots, the following expressions for the six poles are

obtained by solving (9) as

f1,2(t) =
vtz − vrz

c
fc , (12)

f3,4(t) =
±‖vt‖ − vrz

c
fc , f5,6(t) =

±‖vr‖+ vtz
c

fc . (13)

These frequencies coincide exactly with the results obtained

in [10]. Note that at f1,2(t) there is a double pole in the

spectrum corresponding to the LOS frequency. It is found for

η → vtx−vrx
vtx+vrx

and the other four poles for η → ±1.

B. Distant Scattering (ξ → ∞)

Another limiting case is obtained for ξ → ∞. As we have

shown in [10], this relates to the situation when the Doppler

pdf is reduced to the well-known Jakes spectrum shape in [3].

Again, using Theorem 1, it can be shown that for ξ → ∞,

the polynomial coefficients a6, a5, a4, a3, and a1 behave as

follows

a6
ξ6

= o(ξ−3),
a5
ξ6

= o(ξ−2),
a4
ξ6

= o(ξ−1),
a3
ξ6

=
a1
ξ6

= o(1).

(14)

This implies that for large ξ, the coefficients a2 and a0
dominate the polynomial structure. As a result, (9) reduces to

a quadratic polynomial for ξ → ∞ with the two coefficients

a2 and a0. A straight-forward analysis of (9) reveals that for

η → ± vtz+vrz
‖vt+vr‖

the two limiting frequencies become

f7,8(t) = ±
‖vt + vr‖

c
fc . (15)

The result concurs with the two frequencies obtained in [10].

IV. RESULTS

For our analysis, we purposely select a V2V scenario where

six distinctive poles occur in the Doppler spectrum. The carrier

frequency is fc = 5.2GHz and the Cartesian components of

the velocity vectors of TX and RX are vt = [−90, 0, 0]Tkm/h
and vr = [−90, 0, 90]Tkm/h, respectively.

To get better insight in the structure of (4) and (8), we plot

the Doppler frequency as a function of η for different, but

fixed ξ = ξ∗ in Fig. 2. For ξ = 1.0001, i.e., close to the LOS

and for η → ±1, the fd-curve reaches extreme values – these

correspond to four of the total six poles in the Doppler pdf in

(6). The frequencies of these extrema are given by (13). The

other two extrema are obtained for η → vtx−vrx
vtx+vrx

= 0 and are

effectively equivalent to a split of the LOS component, which

is obtained for ξ = 1. Their frequencies are given by (12).

It can also be observed that the number of extrema decreases

for increasing ξ. For ξ = 1.0001 and ξ = 1.01 six locations

where the derivative in (7) becomes zero can be identified. For

ξ = 1.1 only four locations can be found. As ξ continues to

grow, e.g, for ξ = 1000, the number of poles drops to only two.

The reason for such a behavior is the fact that for growing ξ,

the 6th order polynomial begins to degenerate into a quadratic
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Fig. 2. Doppler frequency fd (t∗; ξ∗, η, ϑ∗) for vehicle velocity vectors vt =
[−90, 0, 0]Tkm/h, vr = [−90, 0, 90]Tkm/h, and ϑ ∈ {0, π}.

polynomial with two extreme frequencies corresponding to the

maximum and minimum Doppler frequency given by (15).

Note that the number of distinct real roots of the polynomial

in the half-open interval (−1, 1] can be found using Sturm’s

theorem [14]. According to Sturm’s theorem the number of

distinct real roots of the polynomial decreases from six to

four, and then from four to two. The number of real roots in

this particular scenario corresponds exactly to the number of

poles in the Doppler spectrum.

The delay-dependent Doppler pdf p(t; fd|ξ) is shown in

Fig. 3 for a fixed time instance t = t∗. The locations of the

delay-dependent poles of the Doppler spectrum for an arbitrary

delay ξ are displayed as dashed lines in Fig. 3. Close to the

LOS, i.e., for ξ = 1.0001, there are six poles in the Doppler

spectrum computed by (12) and (13). As we increase ξ away

from the LOS delay, the positions of the poles are determined

numerically using the polynomial in (9). At ξ ≈ 1.051 the

number of poles drops from six to four and at ξ ≈ 1.224 from

four to two, also confer Fig. 2. For large delays, we observe

a Jakes-like symmetric Doppler spectrum with only two poles

remaining, which denote the minimum and maximum Doppler

frequency. These frequencies are calculated by (15). Thus,

our findings concur the known results in the literature and

generalize them.

V. CONCLUSION

We have investigated the algebraic structure of the poles in

the Doppler spectrum for arbitrary delays and velocity con-

figurations for single-bounce scattering in a prolate spheroidal

coordinate system. The performed analysis permitted deriving

a theorem with the maximum number of poles in the vehicle-

to-vehicle Doppler spectrum. Specifically, we proved that the

Doppler spectrum has at most six poles. Their locations are

determined by a 6th order polynomial. Two of the poles

naturally reflect the minimum and maximum frequency of the

Doppler spectrum. The other poles occur inside the delay-

dependent Doppler probability density function relatively close

to the LOS delay. For large delays only two of the six poles

remain in the spectrum.
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Fig. 3. Delay-dependent Doppler pdf p(t∗; fd|ξ) and its delay-dependent
poles (dashed line) for vehicle velocity vectors vt = [−90, 0, 0]Tkm/h and
vr = [−90, 0, 90]Tkm/h with poles at f1,2 = −433Hz, f3 = 0Hz,
f4 = −867Hz, f5 = 613Hz, f6 = −613Hz close to the LOS (ξ → 1),
and f7,8 = ±969Hz for large delays (ξ → ∞).
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[5] L. Bernadó, T. Zemen, F. Tufvesson, A. F. Molisch, and C. F. Meck-
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