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RAZER — A Human-Robot Interface for
Visual Task-Level Programming and
Intuitive Skill Parametrization

Franz Steinmetz®, Annika Wollschliger?, and Roman Weitschat!

Abstract—Maintaining competitiveness and mitigating health
issues test test caused by unergonomic working conditions are
two main reasons for automating production processes. But
such automation is expensive, also because test test experts are
required to program the robots. One approach to lowering these
costs is to enable shop-floor workers to program robots by
providing task-level programming tools. Task-level programming
is an established approach, yet appropriate workflows for experts
and shop-floor workers remain to be defined. The objective of
this paper is to evaluate RAZER, a framework for robot task-
level programming, in which skill programming and parameter
interface definitions are integrated. The framework provides
workflows for both experts — creating skills and providing their
parameter interfaces — and for shop-floor workers — using these
skills to create executable robot tasks in an intuitive human-robot
interface (HRI). The HRI is a graphical user interface that runs in
a browser, and provides access to other man-machine-interfaces,
such as Programming by Demonstration. Two pilot and two user
studies proof that RAZER fulfills the demands of both experts
and novice users.

Index Terms—Software, Middleware and Programming En-
vironments, Human-Centered Automation, Intelligent and Flex-
ible Manufacturing, Factory Automation, Human Factors and
Human-in-the-Loop

I. INTRODUCTION

UTOMATING production processes is expensive, not
Aonly because of the machines and robots that are re-
quired, but mainly because experts are constantly needed
to program them. As this is only cost-effective for high
batch sizes, small and medium-sized enterprises (SME) cannot
afford such automation. At the same time, the batch size in
manufacturing is also decreasing for large companies, e.g.,
due to products becoming more and more customized.

To cost-effectively automate production further, shop-floor
workers should be enabled to instruct a robot at their work
place. To achieve this, the expertise required to program robot
must be lowered drastically. One suggested solution for this is
task-level programming with robot skills [1]. It raises the level
of abstraction of programming, making it more accessible.
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Fig. 1. The RAZER HRI runs in a browser. Here, an active drilling task with
five skills executed by two robots is shown.

Task-level programming is an established approach, yet ap-
propriate workflows for experts and shop-floor workers remain
to be defined. Experts program skills and require a framework
that does not place any restrictions on the underlying language
or middleware that is used. They need to write complex
programs that are generic and error-tolerant. In addition, they
have to define the skill parameter interface for shop-floor
workers.

In contrast, shop-floor workers typically do not have pro-
gramming skills. They require a user-friendly human-robot in-
terface (HRI) that allows them to easily and quickly sequence
skills and parameterize them intuitively, e.g., with the help
of man-machine-interfaces (MMIs) allowing for kinesthetic
teaching. Workers should be able to execute and monitor tasks
that they have created.

These requirements have guided the development of
RAZER, our task-level programming framework for both ex-
perts and shop-floor workers. It can be used to create programs
for typical industrial tasks in the area of assembly, machine
tending, material handling and processing.

The objective of our paper is to develop and evaluate a
framework for robot task-level programming. It aims at provid-
ing workflows for both experts — creating skills and providing
their parameter interface — and for shop-floor workers — using
these skills to create executable robot tasks in a intuitive
HRI. In addition, we describe parametrization approaches and
their tight integration into the framework. Experts can define
parametrization procedures and conversion routines. These
procedures are followed by the frontend in expressive user
dialogs, simplifying the parametrization process for the user,
who is confronted only with task-oriented parameters.
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II. RELATED WORK

Programming by Demonstration (PbD) is a well-known
approach to reducing both the effort and expertise required for
robot programming [2]. In PbD, a robot is taught by an op-
erator via teleoperation, observational learning or kinesthetic
teaching. Hereby, complex and previously unknown motions
can be shown to a robot once or multiple times. These motions
are modeled and often generalized, e. g., by utilizing Dynamic
Movment Primitives (DMPs) [3].

Task-level programming with robot skills is another ap-
proach to facilitate robot programming. An early development
into this direction was by Archibald and Petriu [4] and
was later refined by Bggh et al. [5]. The approach uses
a three-layered architecture. The lowest level is formed by
device primitives (sometimes also called skill primitives) for
simple motion control. The next level is defined by skills that
are composed of these primitives, combined with logic and
sensory input. Skills are parameterizable to tailor them to the
task at hand. This parametrization is performed for tasks, the
highest level, where skills are sequenced. Skills can also have
pre- and postconditions, allowing both their applicability and
outcome to be checked.

Both of these approaches are combined in this work, exploit-
ing their advantages and reducing their drawbacks. PbD by
itself lacks capabilities such as decision making depending on
sensory input. Skills on the other hand often require complex
parameters. Therefore, we use skills to define the execution
logic and PbD for complex parameter specification.

If an operator is to program a robot (so-called end-user
programming), a HRI is required. The less experienced a user
is, the higher are the demands on intuitiveness and usability.
Such an interface is usually based on a graphical frontend.
From the beginning of task-level programming, an icon-
based programming interface has been part of the system [4].
There have been initiatives to establish standards, such as
the MORPHA style guide [6]. However, none of these have
become widely accepted. Thus, the variety of concepts used by
HRIs and robot programming systems is large. An overview
is given in [7].

Up to now, a variety of end-user programming frameworks
have been developed, which target at users with different levels
of expertize. The following incomplete list is approximately
sorted by decreasing demands on the user.

The RoboGraph robot programming framework uses Petri
nets for the implementation of robot programs [8]. It is shown
how complex multi-robot tasks can be handled by the system.

Behavior trees are also used for task-level programming.
One example is the HRI of CoSTAR [9]. The system also
integrates a perception module and interfaces to various com-
ponents. The official HRI of Baxter, called Intera, can also be
named here, though information about it can only be found
on their website!.

Many graphical programming interfaces are based on
Scratch or its concepts [10]-[12]. The system described in [10]
allows to define skills either using a graphical user interface
(GUI) or kinesthetic teaching, but focuses on autonomous skill

Ihttp://mfg.rethinkrobotics.com/intera/

learning and error detection using its episodic and composi-
tional memory. Hammer integrates a 3D environment into the
Android-based GUI, which can be used to teach in poses or
trajectories [11]. Code3 lets programmers without experience
in robotics first create CustomLandmarks and CustomActions,
before they can be used for manipulation tasks in a drag-and-
drop programming interface based on CustomPrograms [12].

Simpler interfaces restrict the logical flow to a series of
chained skills. In [1], a simple GUI allows for skill sequenc-
ing. As part of the HRI, parameters of the skills can be
defined using gestures. The HRI for the mobile manipulator
AIMM in [13] splits the task specification into a specification
and teaching phase. Kinesthetic teaching is used for the
parametrization. The authors admit that the GUI is not yet
intuitive enough. The system described in [14] focuses on a
skill design based on compliant motions, but also provides
a thought-out GUI for combining skills and parametrization
also using kinesthetic teaching. Advanced users can extend
the logical flow using branches and loops.

The frontend of none of these systems reach the usability
and intuitiveness of RAZER. In addition, no concept exists on
how experts provide skills for novice users.

The parametrization is considered in most of the listed
frameworks, whereas its importance is neglected. We have
already argued on the relevance of the parametrization process
in [15] and have suggested a number of guidelines for the
process to be more intuitive and user-friendly. Many of these
concepts have been adapted in this work.

III. ENTITY DEFINITION

The fundament of RAZER is a class hierarchy, which we
have established for the definition of all available entities
(skill, tasks, etc.), shown in Fig. 2. Every class derives from
the base class Entity. This base class provides interfaces
both for JavaScript Object Notation (JSON) serialization (re-
quired for inter-process communication (IPC)) and object-
relational mapping (ORM) integration (required for database
storage). It also defines common attributes, such as name and
description. This class hierarchy, as well as all other com-
ponents are written in Python, allowing the straight-forward
integration of huge variety of other languages, middleware and
systems.

Services define the interfaces to MMIs. These services
are mainly used for the parameterization of skills (see Sec-
tion IV-E) and are accessed via a representational state trans-
fer (REST) interface (see Section IV).

A robot task program is described by a Task. A Task
holds a sequence of skills and a list of robots it requires, i.e.,
robots that are supposed to execute one of these skills.

Each real-world robot is represented by a Robot object.
A robot has a list of parameters, specifying for example its
number of joints. It also holds links to one or more programs
(libraries) responsible for the initialization of the robot
(see Section IV-B).

Robot Skills are the fundament of the system as they
represent actions a robot can perform. A skill does not contain
the robot program itself, but only a link to the program
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Fig. 2. Simplified class diagram of the RAZER entities, with Ent ity as common base class. Missing classes are for example Library or Trajectory.

(libraries). It does contain the list of available parameters.
Some skills also take a pattern as attribute.

An AbstractPattern defines a pattern with a single
or multiple poses, which can have a geometric shape, such
as a grid or a line. Each pattern class must implement a pose
generator, calculating for example all grid poses based on three
corner poses and the number of rows and columns.

One focus of the system is on the definition of parameters,
which can be specified for robots, skills and patterns. There are
different types of parameters, such as SimpleParameter
for base types (int, float,...) or ListParameter for a
selection between predefined options. Parameters always have
a type and a value.

For all parameters, a procedure can be defined. A
procedure contains a list of Steps defining how a parameter
value is retrieved. Each step references a Service together
with a command and optional parameters for the REST
request. A list of options specifies what the user can do
(e.g., cancel, confirm or just wait).

Parameters can be grouped into a ParameterGroup
or a ParameterSequence. The latter defines an or-
der in which a user has to specify values of these pa-
rameters. A further class for grouping parameters is a
ParameterDeducer. Hereby, subclasses must implement
a deduce_parameters method. This method allows for
converting a set of input parameters (specified by the user) to
a set of output parameters (forwarded to the skill implemen-
tation), see Section VI-A for examples.

IV. SYSTEM ARCHITECTURE

This entity system is used throughout the RAZER frame-
work. The framework is kept modular, allowing single com-
ponents to be easily substituted. Most of the components
are implemented as web services in Python. There is no
communication between the following components, except for
the frontend, which uses REST and WebSockets to share
information with all other components.

A. Storage

All information is stored in a central SQL database. This in-
cludes the definition of available services, patterns, skills with

parameters and tasks created by the user. The information is
modeled using the aforementioned entity system and can easily
be converted for the usage in a database using the custom
ORM system. This storage is equipped with a lightweight
REST interface, supporting the direct read and write access
over a network connection using standardized requests (GET,
POST, etc.) [16].

B. Conversion

A task created by a user initially only exists in form of a
Task object with all its entities. The conversion module is
responsible for the conversion of such an object into a robot
program. A REST interface is used for passing tasks in form of
JSON strings that have to be translated. For this, the conversion
requires a Library for each Robot and Skill. There
can be different kinds of libraries listed in the libraries
attributes, implemented in different languages. Analogously,
one can write different conversion modules.

In our system, a Library refers to a RAFCON state
machine [17] and also the conversion creates a (wrapping)
state machine. First, the state machines for initialization of the
robots listed in the Task are instantiated and connected with
transitions. Next, all state machines of the skills are instanti-
ated and sequenced in their order. If a skill has a pattern, the
skill is instantiated once for each pose. The referenced libraries
(in our case the state machines) need to accept the parameters
defined in the Skill. The conversion then passes the user
defined values of each skill parameter to the corresponding
parameter of the library. For ParameterDeducers, the
parameters are first converted using its deducer method.

C. Execution

A separate module, the execution, is responsible for running
a program generated by the conversion. The implementation of
the execution therefore also depends on the type of Library.
It can be commanded again using a REST interface. The
interface allows for loading a program and controlling its
execution (start, stop, pause, resume). The execution process
is constantly observed, the gathered information, e. g., which
skill is currently running, is published using a WebSocket and
visualized by the frontend.
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D. Frontend

The central module is the frontend. It is a graphical
HRI, based on web technologies (HTML, CSS [Foundation],
JavaScript [AngularJS]) and thus runs on all modern browsers
and a variety of devices (PC, tablet, smartphone, ...). The
interface was designed in cooperation with a professional
interface designer, targeting mainly at non-expert users such
as shop-floor workers.

The GUI supports the task creation and skill parametrization
process by offering wizards. The skills are sequenced and can
be reordered using drag and drop. The screenshots in Figs. 1,
3 and 4 show some example views, Section V-B gives more
details about the workflow.

E. Services

Services act as connection to arbitrary (external) man-
machine-interfaces (MMIs), such as a robot, or other com-
ponents, such as a world model. Services can be commanded
to start and stop (e.g., the gravity compensation mode), to
execute an action (e.g., closing the gripper) or to retrieve a
value (e.g., the robot’s pose) which is subsequently used as
parameter value.

V. WORKFLOW

In this section, we will show the common workflow with
the system. This workflow depends on whether the operator
is an expert/skill provider or a non-expert/user.

A. Expert’s perspective

Experts are responsible for providing parameterizable skills
to the user. If they choose RAFCON for the implementation of
these skills, there is already a conversion and execution mod-
ule. If not, they have to provide specific modules for their skill
language. Alternatively, they can wrap their implementation
into a RAFCON state machine, as presented in Section VI-B.

The RAZER architecture does not impose constraints on
how a skill should be implemented. Ideally, a skill is both
generic and robust. It should be parameterizable so it can be
adapted to specific tasks.

Having created a robot skill, the expert has to define the
interface to the skill by creating a Skill object. Hereby, its
name, description and optional icon for the skill are deter-
mined and the skill program is assigned using a Library.

The specification of the parameter interface is of impor-
tance, as it affects the workflow of the end-user. First of all,
the name and type of each parameter must be stated. Often,
it is helpful for the user if a plausible range for the parameter
value is given (RangeParameter with minimum, maximum
and step size) or if one can choose amongst certain options
(ListParameter). An example on how this is visualized in
the user interface is given in Fig. 4. The Secondary parame-
ters [15] should be set to hidden. They can still be accessed
in the frontend in an advanced mode, but are not mandatory
to be specified. If parameters of a skill are difficult to define,
but can be derived automatically from more intuitive task-
level parameters, a ParameterDeducer should be used.
As mentioned in Section III, procedures can be assigned to
parameters. A procedure defines which steps are needed to
retrieve a parameter value. For each step, a service is called, for
example to open a gripper. Section VI gives some examples.

The choice of patterns must also be considered. The ma-
jority of skills needs to know where an action has to be
performed. Furthermore, these actions are often repetitive,
i.e., they need to be done several times with changing lo-
cations (e. g., multiple drilling locations). Instead of requiring
the user to add and parameterize a skill for each of these
locations/poses, a skill can provide options for passing a
pattern consisting of multiple poses to a single skill. For
this, there are a number of predefined patterns available, such
as LinePattern for poses in a row, GridPattern for
poses forming a grid or MultiPosePattern for arbitrary
distributed poses.

Finally, the expert has to setup the required services. Ser-
vices are mainly used within procedure steps of parameters,
where MMIs should be used for the parametrization. The
service used most in our system is the gravity compensation
service, which allows users to hand-guide the robot and query
its current pose.

B. User’s perspective

Users of the system are normally non-experts that want to
define tasks for robots. They only interact with the HRI (fron-
tend) that is typically running on a tablet (see accompanying
video). When opening the HRI, the user can choose between
opening a previous task or creating a new one. A task is then
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presented on a new view as a vertical sequence of skills, see
Fig. 1. Also the chosen parameter values and the pattern type
are visualized for each skill.

The user can add a new skill by clicking a button at the end
of the skill list. A wizard opens and guides the user through
the skill creation process. The first step in this wizard is to
select the robot that is to perform a certain skill (Fig. 3). This
selection updates the list of available skills, deactivating skills
not supported by the robot. After that, the user chooses a skill
and can optionally adjust the description.

In the next step, the values for the parameters are specified
(Fig. 4). All non-hidden parameters are shown with name
and inputs: For a RangeParameter, a slider allows for
choosing a value, for a ListParameter, several buttons
with icons are displayed. Parameters with a procedure are
handled specially. For those, a button “Start teaching” is
shown, leading the user in a separate wizard step by step
through the procedure. Hereby, a dialog shows information
about the current step and what the user is supposed to do.
In a retrieve step, the parameter value is determined by
querying the assigned service. When all parameter values are
specified, a further button click appends the skill to the task.

At any time, the user can alter the current task. Skills can
be deleted or rearranged via drag and drop. Their parameter
values can be changed independently without having to repeat
the whole wizard again, just by selecting them. A history
allows for undo and redo of operations.

Having finished the task, the user only needs to click the
play button to start the execution. The task is automatically
uploaded, converted and loaded by the execution. During the
actual execution, the active skill is highlighted. The execution
can also be stopped, paused and resumed by the user with the
buttons in the execution bar. Skills can make use of a special
service, allowing the user to be queried for information. This
is for example used to show a dialog after a collision, asking
whether to continue or abort.

VI. PILOT STUDIES EVALUATING EXPERT’S PERSPECTIVE

Up to now, we have successfully employed RAZER in
two projects. They are presented in the following section and
the accompanying video, providing several examples for the
various features of the system.

A. RACELab

RAZER has originally been developed for our RACELab
project, in which intuitive robot programming was one major
aim. The hardware setup consists of two KUKA LWR 4+
robots (see Fig. 5a), of which one (“Rick”) is equipped with
a custom driller, the other one (“Gordon”) with a Robotiq
gripper and mounted on a linear axis for extended reachability.
Behind the workbench, there is a shelf with plates, which
Gordon can grab. Next to Rick, there is a fixture for a single
plate with a drilling stencil for a number of holes. For the
implementation of skills, we use hierarchical state machines
created with RAFCON [17], for which our conversion and
execution modules are specifically designed.

In one scenario, Gordon is supposed to grasp a plate from
the shelf and put it into the fixture. Consequently, the task
of Rick is to drill holes, which have previously been defined
by the human instructor. Finally, Gordon picks the plate again
and stacks it on a storage.

For this purpose, there are two skills for Gordon, “Pick
plate” and “Place plate” with ListParameters “From”
and “Target”, respectively. The “Drilling” skill for Rick is
more sophisticated and implements the programming scheme
suggested in [15]. The ListParameters “material” and
“hole diameter” and the RangeParameter ‘“hole depth”
currently only serve an illustrative purpose, but could later be
used in combination with a ParameterDeducer to extract
the optimal rotational speed and contact pressure.

For a second scenario, we developed “Pick & Place” and
“Peg in hole” skills for Gordon. The skill implementation of
“Pick & Place” requires seven parameters with lists of poses
(“pre pick poses”, “post place poses”, etc.) for a via-point
interpolator. As these parameters would be too tedious for a
user to teach, one is only confronted with three parameters
“Pick trajectory”, “Place trajectory” and “Depart trajectory”.
These three parameters use the trajecotry recorder service
in their procedure for value retrieval. They are nested in
a ParameterSequence (defining that they are taught in
a row), which itself is nested in a ParameterDeducer
(converting the three trajectories into a few feature via-points
for each of the seven parameters). To give an example for
a procedure, the steps for the pick trajectory are: (1) “open
gripper”, (2) “start recording” (starts gravity compensation
mode), (3) “instruct user and wait for confirmation”, (4) “stop
recording”, (5) “retrieve trajectory” (stops gravity compensa-
tion mode) and (6) “close gripper”.

In the HRI, this complexity is hidden from the user. One
only clicks on “Start teaching” and follows the instructions.
The gripper is opened automatically, then the user is asked to
move the gripper to the pick position (with the arm in gravity
compensation mode) and to confirm this consequently. The
place and depart trajectory are recorded analogously.

B. SMErobotics

A second example, for which RAZER is used, is a demon-
stration for the automobile manufacturer Daimler. The robots
are supposed to fasten screws in a part of a motor block as
instructed by a user.

The hardware and software infrastructure were based on
the SMErobotics environment, described in an earlier version
in [18]. There are two KUKA iiwa robot arms mounted on a
table with the work-cell containing the motor block in between
(see Fig. 5b). Both robots have a parallel gripper and share
a common electric screwdriver, which they are able to pick
up and run autonomously. The robots can be commanded
using the Robotics API with Java. Thus, the skills have been
implemented in Java. In order not having to create custom
conversion and execution modules, each skill was wrapped in
a RAFCON state machine.

The “Screwing” skill picks up a screw, inserts it into the
taught hole and fastens it. The screw storage is determined
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Fig. 5. Overview over the hardware setups of the two pr(oj)ects RACELab (a)
and SMErobotics (b). Rick is the orange and Gordon the blue LWR, Diiwa
(back) and liwan (front) are the two white iiwa robots.

by a ListParameter “screw type”. For the hole, a number
of patterns are supported. The procedure of pattern make use
of a special skill execution service. They for example include
a “pick up screwdriver” step at the beginning and a “place
screwdriver” step at the end. These ensure, that the screwdriver
is automatically picked up by the robot before the teaching
process and returned thereafter.

There is also a special skill not assigned to any robot. It
allows to prompt a user dialog in the frontend. We use it as
first skill within a task to query the user at the beginning of
the execution to check whether everything is setup correctly.

C. Discussion

Despite the hardware similarities between the two setups,
the software stack beneath is completely different. Instead
of wrapping the Java programs into state machines, we
could alternatively write custom conversion and execution
components for other programming languages than Python.
As a robot expert, it is helpful not being restricted to any
specific programming language. For both projects, the required
services could be written without greater effort and reused in
different skills.

Furthermore, the skill parameter interface can be defined
with various tools. Having programmed a skill, the expert
is required to invest some additional time to provide an
appropriate parameter interface for the end user. For this,
the expert is given a number of powerful tools, allowing for
example the integration of any MMI (using services), guidance
of novice users through the parametrization (using proce-
dures) or conversion of parameters to be task-oriented (us-
ing ParameterDeducers). There is no task-programming
framework that offers similar properties.

VII. USER STUDIES EVALUATING USER’S PERSPECTIVE

The frontend of RAZER was evaluated in two user studies
to assess the usability and intuitiveness of the GUI.

A. Procedures

1) Cognitive Walkthrough: The first study was conducted
as a Cognitive Walkthrough (CW) [19], [20] with only two

R
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Fig. 6. For the thinking aloud user study, this miniature work station with
two flexible toy robots was used.
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Fig. 7. The experience with robots and programming of the ten participants
of the thinking aloud study is compared to their average rating.
participants, both robot experts. In an introduction, the par-
ticipants were put into the context of the intended target user
group: A text described the task scenario and a video showed
a shop-floor worker assembling an auxiliary heating unit fully
manually in a company. The purpose of RAZER is letting non-
expert workers instruct robots to support them in their daily
work. Besides this contextual information, the users did not
receive further instructions into the software.

They were given four tasks (see Section VII-B) with a
detailed step by step guide on which actions to perform
in order to solve the tasks. After each step performed, the
participants were asked to fill in the CW protocol, asking about
the conformity with user expectations (1), visibility of the input
(D), recognition of the input (II) and the comprehensibility of
the feedback (IV). They were also asked to speak out loud
every thought that came into their mind.

Having accomplished all tasks, the users were given the
ISONORM 9241/110 questionnaire [21] in its long form,
which is intended to evaluate software regarding the inter-
national usability standard ISO 9241, part 110. Hereby, a
software is rated by the seven software requirements suitability
for the task, self descriptiveness, conformity with user expec-
tations, suitability for learning, controllability, error tolerance
and suitability for individualization. The last requirement was
left out in the questionnaires, as it could not be judged by
purely fulfilling the given tasks. Each requirement is con-
cretized in six descriptions, for which the user gives a score
between —3 (worst) and +3 (best) on a Likert scale with seven
levels.

After a glance over the test results, mainly concerning the
oral and written feedback given, the RAZER frontend was
improved in many details.

2) Thinking aloud: With the improved version of RAZER,
a second user study was carried out. Hereby, n = 10 partici-
pants evaluated the usability in a user study based on thinking
aloud tests as described in [22]. None of these users had
seen the software before, but all were experienced with touch
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Fig. 8. The plot shows the average rating per requirement. Hereby, the small
circles and squares belong to the two users of the CW. The boxplots are the
result from the thinking aloud study.

devices (between 4 and 7 on a Likert scale from 1 to 7). The
experience with robots and programming in general, estimated
by the users again on the same Likert scale, is shown in Fig. 7.
The users were given the same introduction and tasks as in the
first study. Instead of using real robots for PbD, a miniature
work station with two model robots was provided (see Fig. 6).
For the examiner, all tasks were split in subtasks consisting of
1-11 actions (typically clicks). Although the users should think
aloud all the time, they were also encouraged to do so by the
examiner after each subtasks. Subsequently, the participants
again filled in the ISONORM 9241/110 questionnaire. Due to
the fact that this is a German questionnaire and not all users
were German native-speakers, all texts were translated into
English.

B. Tasks

The four tasks given to the users were designed to both
cover most features of the interface and at the same time reflect
typical workflows of a shop-floor worker.

1) Creation of a new task with a Pick & Place skill

(included teaching of three trajectories using PbD).

2) Addition of Drilling skill (required three parameters plus
the definition of a rectangular grid of holes using a
pattern and PbD) and saving.

3) Modification of a parameter value, saving and execution
of the task.

4) Duplication and renaming of the previous task, addition
of a user skill in between the existing ones (required
switch to home screen and skill rearrangement).

C. Results

1) Cognitive Walkthrough: The CW’s purpose was mainly
the gathering of qualitative feedback rather than quantitative
figures. Nevertheless, the average rating per requirement of the
ISONORM questionnaire have been plotted for each of the
two users in Fig. 8 with circles and squares. Except for the
self descriptiveness, the average requirement rating is above 1,
whereas the total average is 1.4.

The written and oral feedback was often very detailed and
generally helpful. The participants found inconsistencies in the
design, missed descriptions in dialogs and had issues with
some labels or the choices of colors (e.g., an orange robot
icon was interpreted as warning). Also some features were
desired, such as buttons to clear input fields.

Despite the critics, the participants agreed for the 82 actions
that had to be performed in total that criterion I was fulfilled
in 84% of the cases, 87% for II, 91% for II and 83% for IV.

250

200 |-

150 |- ,, |
100 |- - U

S

0

Programming time [s]

L L L L
Task 1 Task 2 Task 3 Task 4

Fig. 9. The boxplot visualizes the programming time required for each of
the four tasks by the participants in the thinking aloud study.

2) Thinking aloud: The average rating per user is presented
in Fig. 7, the average rating per ISONORM requirement is
given in the boxplot in Fig. 8. The overall average is 2.0.
Except for the error tolerance, the interquartile range (IQR)
is 0.8 or below. The programming time for the four tasks is
displayed in the boxplot in Fig. 9.

Besides the rating from the questionnaire, a lot of qualitative
feedback was collected. All except one user solved all tasks
without any external help. Nevertheless, three main issues
could be identified, which some users struggled with: (i)
Modification of a parameter value (they first clicked on the
skill icon in the task view instead of the parameter icon), (ii)
teaching of trajectories (they were not fully sure about the
given instructions such as “move gripper to desired object”),
and (iii) definition of a selected pattern (they were unsure
about the orientation of the grid for descriptions such as “upper
left corner of the grid”). Overall, most users were surprised
about the usability and described the software as intuitive and
natural to operate.

D. Discussion

The feedback of the CW was used to further improve the
usability of the RAZER HRI. The increase of the average
rating from 1.4 to 2.0 shows that this was successfully
accomplished.

The current score assesses RAZER a remarkable usability,
as 2.0 is a value higher than any of the 41 software programs
evaluated with the same questionnaire in [23]. The significance
of this value is supported by the fact that the IQR is 0.8 or
below for all requirements except the error tolerance. The
correlation between the user experience and their rating is
—0.73, indicating that the software is perceived to be even
more user-friendly for non-expert users, for which the interface
targets at. The feature coverage of the tasks and the ratings
confirm that the RAZER frontend is a highly user-friendly and
intuitive HRI, especially for novice users.

The programming times of less than three minutes per skill
(task 1, 2 and 4) indicate that users of any experience can
quickly command the robot with the HRI. Having created a
task, it can even faster be adapted to a changed parameter (task
3). Considering that the participants had neither seen the inter-
face before nor were given any instructions, the programming
time will probably decrease with continued software usage.

Despite the previous ignorance of the software, only one
time external help was needed. Nonetheless, the second study
still uncovered three issues in the usability. For issue (i), a
simple instruction into the software would have already helped.
For (ii) and (iii), the users suggested to add graphical support,
such as an image, demonstrating the needed trajectories and
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a pattern with annotations for the required teaching locations.
Furthermore, some dialogs could be more self descriptive or
show explanations on demand. The perceived error tolerance
could probably be improved by fixing some issues that were
revealed during the study. All these changes can be imple-
mented without greater effort.

Only a few other HRI mentioned in Section II have been
evaluated in a user study, making it difficult to compare them.
The study in [12] about the HRI using Scratch demonstrates
that despite intense training, novice user failed to solve 50%
of the tasks and rated the interface as marginally acceptable.
Behavior trees also provide great flexibility in terms of logical
flow. Yet, this comes at cost of intuitiveness and usability, with
programming tasks of over seven minutes for a simple task.
Almost half of the users in a study about CoSTAR state they
would need expert help to use such an interface [24]. The study
also reveals that unexperienced users have problems with the
concept of frames. The HRI of AIMM shares similarities in the
feature set of the RAZER frontend. Even though, people with
low experience level required support from the supervising
expert even for the task of adding and parameterizing a single
pick and place skill [13]. In addition, they took over five
minutes to solve the task. The approach using gestures is
restricted in the number of possible skills and their types of
parameters [1].

RAZER only allows a sequential order of skills. We do
not see this as a big restriction, as most workflows in the
targeted industrial domains (assembly, machine tending, ma-
terial handling and processing) are also sequential. When
looking at the industrial-related tasks given to the users in the
studies referenced in the previous paragraph, they are all pure
sequences. Of course, branching and loops are for example
required for error handling, but all this is hidden from the
user within a skill. In addition, the system allows for loops
in form of patterns (repeats the skill for every hole) and by
running the whole task in a loop.

For the future, we want to further extend the framework. The
system should, for example, allow for the execution of single
skills within a task, which improves the testing of new tasks.
Another essential enhancement will be the integration of pre-
and postconditions of skills. This will allow the verification of
tasks before their execution.

VIII. CONCLUSIONS

The presented software framework for task-level program-
ming, called RAZER, is a highly suitable tool for both robotic
experts — providing skills and their interface — and shop-floor
workers — creating tasks from parameterized skills. Experts
are not restricted in their software and have at the same
time a powerful toolset to define skill parameter interfaces.
Novice users can easily program tasks and parameterize skills
with the help of the confirmed intuitive and user-friendly
human-robot interface (HRI) with integrated Programming by
Demonstration (PbD).
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