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Abstract

Currently about one-quarter of the world’s urban population live in slums. Slums are defined by

the United Nations (UN) as informal settlements or areas deprived of access to water, sanitation

and durable housing. The buildings in slums are overcrowded and lack land tenure security.

Slum-identification studies are very much driven by the persistence and growth of slums and

the emergence of new slums being inexorably part of contemporary urbanization processes, par-

ticularly in the global south where rapid slum development is linked to the failure of formal

land markets and low planning capacity. Identifying slums is an import aspect in urban envi-

ronments of mega-cities. The information on location, boundaries and population in informal

settlements is of great need for social economic studies and thus providing beneficial insight for

a sustainable urban development. Beyond the identification of informal settlements and their

physical parameters it is of great interest to provide these areas with an optimal fresh water-pipe

infrastructure, since their supply of water is very limited.

The view from above using remote sensing data makes it possible to grasp the physical spa-

tial settlement structures and, accordingly, to approach the characterizing parameters of slums

and with this in mind image class segmentation on slum mapping can be done using different

approaches. In recent years mainly object based, machine learning and texture classification

approaches have been used to identify slums in urban areas. Regular machine learning tasks are

limited because of their manually designed features. Another disadvantage of those methods is

the inability to transfer the classifier to different datasets. This study provides a combination

of methods in deep learning to achieve respectable accuracies in mapping informal settlements.

Detected slums provide the prerequisite for establishing an optimal water supply network for all

informal settlements. Since this procedure depends very much on the input geo-data, multiple

ways of slum mapping using deep convolutional neural networks are presented and the cost of

an optimal water-pipe network supplying all slum dwellers with water is calculated for Mumbai

and Delhi.

Class segmentation performance was evaluated using overall and class based accuracy metrics.

Using a pre-trained fully convolutional network resulted in an overall Pixel Accuracy for informal

settlements of 78% and a mean Intersection over Union of 68%, while fine-tuned FCNs could

achieve an overall Pixel Accuracy for informal settlements of 75% and a mean intersection over

union of 63%. Using the best performing FCN a water supply infrastructure was built optimized

to the shortest path connecting all slums using different approaches. The investment of a pipeline

network providing clean water would cost about 16 million e for Mumbai and 12 million e for

Delhi after 10 years of operation.
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Kurzfassung

Derzeit lebt etwa ein Viertel der urbanen Bevölkerung in Slums. Slums werden von den Vere-

inten Nationen (UN) als informelle Siedlungen definiert, in denen ein massiver Mangel an Zu-

gang zu Wasser, sanitären Anlagen und dauerhaftem Wohnraum besteht. Die Behausungen

in Slums sind überfüllt und es fehlt ihnen an baulicher Sicherheit. Studien zur Identifizierung

von Slums basieren auf der Einbeziehung von Ausbreitung, Beständigkeit und Neuentstehung

von Slums in die heutigen Urbanisierungsprozesse. Der Hauptgrund für die rasche Slumen-

twicklung, insbesondere im globalen Süden, ist das Versagen der Stadtplanung in Hinsicht auf

den stetig wachsenden Zuzug in die Großstädte. Die Kartierung von Slums in Mega-Cities

liefert wichtige Informationenen zu Ort, Grenzen und Bevölkerungszahl in informellen Siedlun-

gen. Die daraus resultierenden Erkenntnisse sind das Fundament für sozialökonomische Studien

und eine nachhaltige Stadtentwicklung. Durch eine möglichst genaue Identifizierung von Slums,

kann somit auch deren größter Mangel, der limitierte Zugang zu Wasser, durch eine optimiertes

Wasserversorgungs-Netzwerk behoben werden.

Der Blick von oben, ermöglicht es die physischen Siedlungsstrukturen zu erfassen und räumliche

Parameter zu erhalten. Die Segmentierung von Slums kann mit unterschiedlichen Methoden

erfolgen. In den letzten Jahren wurden vor allem objektbasierte Methoden, maschinelles Ler-

nen und Textur-basierte Ansätze zur Kartierung von informellen Siedlungen verwendet. Bish-

erige Methoden basieren lediglich auf nutzerdefinierten Bildmerkmalen, des Weiteren ist die

Übertragung der Klassifizierungsmethode auf andere Datensätze nur begrenzt möglich. In

dieser Thesis werden mehrere Neurale Netzwerke verwendet, um eine höhere Genauigkeit bei

der Kartierung von informellen Siedlungen zu erreichen. Diese Daten dienen als Grundlage für

die Errichtung einer optimierten Wasserversorgungskette.

Die Segmentierung wurde anhand von gesamt- und klassenbasierten Genauigkeitsmetriken be-

wertet. Die Verwendung von pre-trained fully convolutional neural networks (FCN) ergab eine

Pixelgenauigkeit informeller Siedlungen von 78% und einer mean Intersection over Union von

68%. Fine-tuned FCNs konnten eine Pixelgenauigkeit informeller Siedlungen von 75% erreichen

und eine mean Intersection over Union von 63%. Mit dem besten FCN wurde eine Wasserver-

sorgungsinfrastruktur geplant, welche auf einen kürzesten Weg optimiert ist und alle Slums

mit Wasser versorgt. Die Investition eines Wasserversorgungsnetzwerks für Mumbai würde

eine Ivestition von 16 Millionen e nach zehnjähriger Laufzeit zur Folge haben während ein

Wasserversorgungsnetzwerk für Delhi rund 10 Millionen e nach zehn Jahren kosten würde.
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1 Background and problem

statement

Humanity is in a process of migration that has resulted in dramatic changes to the global settle-

ment landscape [Taubenböck & Wurm, 2015a]. The city of today is permanently changing and

more dynamic than ever before. Suburbs are endless, cities merge and the centres grow into the

sky. Urbanization is an elementary part of global change and since 2007 more people live in cities

than in rural areas [UnitedNations, 2011]. Currently, about one quarter of the world’s urban

population lives in slums, which are defined by the United Nations (UN) as informal settlements

or areas deprived of access to safe water, acceptable sanitation and durable housing [Kuffer et al.,

2016]. The supply with fresh and clean water for peopling living in these areas is one of the main

goals of modern civilization according to the UN [UnitedNations, 2015a].

The dynamic of urbanization varies locally. Thus, especially in developing countries, urban

regions are experiencing rapid growth. This speed of today’s growth is astounding. Cities such

as Delhi, Lagos or Dhaka grow by 300,000 inhabitants per year [Burdett & Rhode, 2010]. This is

even more extensive if one compares the population development with the available area in urban

space. Cities occupy only a tiny space in relation to the entire land surface. Around four billion

urbanites are concentrated in a space of about 0.24 − 2.75% of the earth’s surface [Schneider

et al., 2009]. So what drives this process of urbanization? Migration of people can be explained

by two effects: pull factors attract people from rural areas propelling them into the city. This can

be statistically proven by a significant correlation between urbanization and well-being [Glaeser,

2010]. There are agglomeration effects that can provide a highly diversified supply and jobs,

health care, educational and cultural offerings and infrastructure [Taubenböck & Wurm, 2015a].

These location factors give the city a radiance that magically attracts the rural population. The

pull factors have mainly positive effects on the city and the newly arrived population, but there

are still about one billion people living in slums of big cities. This can be attributed by so-called

push factors, which pressures people into urban agglomerations. One example for such a push

factor is the rise of new technologies for agricultural industrialization, which in turn means fewer

jobs in the primary sector. This pressure from large agricultural companies is often flanked by

globalisation of the economy [Harvey, 2013]. Thus, the rural population is forced to seek new job

opportunities in the city by losing jobs in agriculture.

This gigantic migration into cities has significant consequences for the urban population, its

influence on our environment and the face of urban planning in respect to general infrastructure.

Today, more than half of the population live in urban areas and produce more than 80% of

global gross domestic product [UnitedNations, 2011]. This can be particularly harmful to the

environment, since 60− 80% of the global energy is consumed in cities and in turn causes about

75% of global CO2 emissions [Kamal-Chaoui & Robert, 2009]. This challenge must be considered

when planning the infrastructure of big cities in the future.
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At the same time, the design of physical space has a profound impact on social coexistence

and social cohesion [Burdett & Rhode, 2010]. The rapid increase in people moving to urban areas

has led to extremely diverse developments in how this concentration of immigrants is absorbed.

Depending on the location, the change in our cities has taken on threatening forms. In developed

countries, for example, the urban population only increases moderately and an orderly urban

planning is possible. In contrast, developing countries are experiencing rapid growth. Between

1990 and 2000, urban space grew by about 50% in developing countries [Angel et al., 2005]. With

this extreme area growth, structured urban planning is very demanding. Thus questions arise

as to whether there is enough information about the effect of global urbanization and how to

spot such an explosion in population growth in urban areas in a timely manner so that global

urbanization does not get out of control.

This rapid growth in mega cities can lead to informal settlements, where slums are forming

a spatially disordered cluster with no uniform infrastructure [Friesen et al., 2017]. These cir-

cumstances negatively affect the physical and psychological health of the slum dwellers [Snyder

et al., 2014]. This led the United Nations to record their goals for sustainable development. One

goal addresses the right of every human to access to water. In reality this is not an easy task,

especially in informal settlements where not much official information exists concerning location,

boundaries and the number of inhabitants.

1.1 Global urbanization and its effects on urban poverty

Many people think of slums as poor, neglected, very dense and randomly arranged cottage set-

tlements. In our perception a slum is first a place with a certain physical expression. This is

also stated in the United Nations report [UnitedNations, 2009] as a combination of physical and

socio-structural parameters. According to their definition, a slum is described as having poor

access to clean water, lack of sanitation, poor infrastructure and physical parameters such as

poor terrain, overcrowding and unsafe status in relation to the place of residence. The names of

slums vary strongly across countries and literature, e.g. favelas, barriadas, shantytowns, informal

/ spontaneous / marginal / squatter settlements, gececondus, ashwa’iyyat, bidonville and town-

ships are used to describe urban poverty in various physical manifestations featuring a wide range

of built-up structures [Wurm & Taubenböck, 2018]. In this thesis the term slum and informal

settlements will be used synonymously.

Although this description applies to a large part of globally distributed slums, in general the

physical structure of informal settlements is always different than formal buildings, but at the

same time slums also always differ from each other. This heterogeneity makes it very difficult to

identify all poverty areas on earth. Depending on continent and culture, slums never have exactly

the same physical structure. For example, slums in Mumbai can be used as a single-storey hut

with a corrugated iron roof; in Bucharest, pointed and hipped roofs are the norm; and in São

Paulo multi-storeybrick structures are standard [Taubenböck & Kraff, 2015]. A universal physical

definition is therefore very difficult to find [Wurm & Taubenböck, 2018]. Using state-of-the-art

earth observation data from remote sensing satellites, slums can be identified on a large scale. To

develop successful slum mapping methods it is especially important to deal with the properties

of informal settlements to understand the behavior of their physical parameters.

Today, around the world, a quarter of the urban population live in slums [UnitedNations,

2016]. In developing countries 881 million urban residents live in slum conditions. In 1990, this

figure was 689 million. This represents an increase of 28% in slum population over the past

26 years, even though the proportion of the urban population in developing countries living in

slums has declined from 39% to 30% during the same period. This shows the sheer dimension of
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agglomeration effects in urban areas. In Asia and the Pacific, home to half of the urban population

of the world, 28% of the urban population resides in slums [UnitedNations, 2016]. Considering

the predicted migration waves and urbanization rates, cities will not be able to oppose the huge

demand for living space in the future [Taubenböck & Kraff, 2015].

Informal settlements are areas deprived of access to safe water, acceptable sanitation and

durable housing [Kuffer et al., 2016]. These circumstances negatively affect the physical and

psychological health of the slum dwellers [Snyder et al., 2014]. The supply with fresh and clean

water for people living in these areas is one of the main goals of modern civilization according to

the UN [UnitedNations, 2015a]. This led the United Nations to record their goals for sustainable

development where one goal addresses the right of every human to access to water. The aim

is to support urban planning globally in such a way that it is both prepared for migration and

urbanization in a sustainable manner. Another aim is to recognize the current state of global

urban poverty and to improve it through recent urban planning methods with the help of which

enough fresh water could be provided for slum dwellers. At the moment, however, there is only

rudimentary knowledge about the location, quantity, area size, growth, settlement structures or

population of the slums all around the world and hence providing a water supply chain for slum

dwellers is not an easy task. The duties of a global and urban generation must therefore be

able to spatially grasp these areas and accurately measure their structural features. This is why

the collection, monitoring and water supply of slums has become the focus of interest for the

work with the Millennium Goal 7D [UnitedNations, 2015b]. With the increasing availability of

accessible satellite data, modern methods can be used to significantly increase the understanding

of slum processes and to help cities improving living conditions in slums with sustainable urban

planning.

1.2 Introduction to the study areas

The goal of this study is working towards a method that can be used in multiple scenarios rather

than concentrating on one specific location. The methodology is tested and validated for the cities

of Mumbai, India and New Delhi, India. Both cites share the same architectural structure, but

its informal settlements are different enough to test the method on various geospatial entities. As

seen in table 1.1 both cites are extremely big and experienced an exceptional growth in the last

60 years.

Mumbai Delhi

Census Population Growth rate [%] Population Growth rate [%]

1950 2,857,000 0.0 1,369,000 0.00

1975 7,082,000 21.87 4,426,000 25.35

1990 12,436,000 19.68 9,726,000 32.78

2000 16,367,000 14.37 15,732,000 26.80

2010 19,422,000 8.56 21,935,000 17.49

2017 21,690,000 3.07 27,197,000 5.81

Table 1.1: According to the census in 2011 [Office of the Registrar General & Census Commis-
sioner, 2011], the population of the city of Mumbai and Delhi in comparison.

Mumbai is the capital city of the Indian state of Maharashtra. It is one of the most populous

cities in India with an estimated city center population of 12.4 million as of 2011. Along with
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Figure 1.1: Overview of the study areas used in this thesis. The illustration on the top shows the
city of Delhi, while the one on the bottom left shows Mumbai.

the neighboring regions of the Mumbai Metropolitan Region, it is the second most populous

metropolitan area in India, with a population of 21.3 million as of 2016. Mumbai is the financial,

commercial and entertainment capital of India. It is also one of the world’s top ten centers

of commerce in terms of global financial flow [Rashmi, 2011], generating 6.16% of India’s GDP

[MMRDA, 2008] and accounting for 25% of industrial output. All these factors are pull-factors

bringing in people from rural areas in search for work and success.

New Delhi is the capital of India and one of the eleven districts of Delhi City. Although collo-

quially Delhi and New Delhi are used interchangeably to refer to the National Capital Territory

of Delhi, they are two distinct entities, with New Delhi forming a small part of Delhi. Delhi

has served as the political and financial centre of several empires of ancient India and the Delhi

Sultanate, most notably of the Mughal Empire from 1649 to 1857. During the early 1900s, a

proposal was made to the British administration to shift the capital of the British Indian Empire,
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as India was officially named, from Calcutta to the east coast, to Delhi. Delhi is the largest

commercial center in northern India. As of 2016 recent estimates of the economy of the Delhi

urban area have ranged from $167 to $370 billion (PPP metro GDP) ranking it either the most

or second-most productive metropolitan area of India.

1.3 Background on deep learning and neural networks

The perceptron based model is the foundation of the earliest Neural Networks (NNs). This bio-

inspired model for binary classification aims to mathematically formulize how a biological neuron

works, which can be seen in an comparison of perceptron and artificial neural networks (ANN)

in figure 1.2. Neurons are the basic computational units of the human brain, which receive input

signals from dendrites and send output signals through axons. This coarse mathematical model

of linear combination can be seen in equation 1.1. The centre of every ANN consists of the input

data x and learnable weights w, where weights act excitatory or inhibitory. If these integrated

weighted inputs exceed a certain threshold, the neuron fires and carries the information through

the network. This firing rate is controlled by the activation function.

Figure 1.2: A comparison of a bio-inspired perceptron model and an artificial neural network
[Körner, 2016].

xTw+ w0

xT : input data

w : learnable weights

(1.1)



20 1. Background and problem statement

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt [Rosen-

blatt, 1958], inspired by earlier work of Warren McCulloch and Walter Pitts [McCulloch & Pitts,

1943]. Today, it is more common to use sigmoid neurons seen as the cell body in figure 1.2. The

sigmoid neuron has multiple inputs x0, x1, x2, . . . , but instead of being just 0 or 1 as present in

perceptrons, these inputs can also take on any values between 0 and 1. Also just like a percep-

tron, the sigmoid neuron has weights for each input w0, w1, w2, . . . and an overall bias b. But the

output is not 0 or 1. Instead, it is σ(wx+ b), with σ being called the activation function.

The general terminology of the architecture in ANNs makes it possible to name different parts

of a network. This can be exemplified with illustration 1.3. The leftmost layer in this network is

called the input layer, and the neurons within the layer are called input neurons. The rightmost or

output layer contains the output neurons, or, as in this case, a single output neuron. The middle

layer is called a hidden layer, since the neurons in this layer are neither inputs nor outputs. In a

feedforward neural network, which means that there are no loops in the network an information

is always fed forward, an algorithm finds weights and biases so that the output from the network

approximates y(x) for all training inputs x. To quantify how well this goal is achieved, a loss

function is defined as seen in equation 1.2.

Figure 1.3: Layer-wise organization of an artificial neural network containing input-, hidden- and
output layers. [Körner, 2016].

C(w, b) =
1

2n

∑

x

||y(x)− a||2

C(w, b) : Quadratic cost function or mean squared error

(1.2)

Inspecting the form of the quadratic cost function, C(w, b) is non-negative, since every term

in the sum is non-negative. Furthermore, the cost C(w, b) becomes smaller, i.e., C(w, b) ≈ 0,

precisely when y(x) is approximately equal to the output a for all training inputs x. So the

training algorithm is effective if it can find weights and biases so that C(w, b) ≈ 0. By contrast, it

is not effective if C(w, b) is large; that would mean that y(x) is not close to the output for a large

number of inputs. Consequently the aim of that training algorithm will be to minimize the cost

C(w, b) as a function of the weights and biases. In other words, a set of weights and biases which

make the cost as small as possible is searched. Using an algorithm known as gradient descent this

process can be achieved.
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Assuming a function C(v) that has to be minimized and at the same time being a function of

just two variables v1, v2, the point where C achieves its global minimum has to be found. Using

calculus to try to find the minimum analytically is ruled out since in a real scenario the C(v)

does not have just two variables but billions of weights. After a random starting point is chosen

the momentum is moved a small amount ∆v1 in the v1 direction, and a small amount ∆v2 in

the v2 direction. The gradient descent algorithm works by repeatedly compute the gradient ∇C,

and then to move in the opposite direction. To make gradient descent work correctly, choosing

the right learning rate η is crucial, where ∆C ≈ ∇C∆v would be a good approximation. At

the same time, η shouldn’t be to too small since that will make the changes ∆v tiny and thus

the gradient descent algorithm would work very slowly. In practical implementations, η is often

varied, recognizing that ∆C ≈ ∇C∆v remains a fine approximation, but not slowing down the

algorithm. This makes it possible to follow the gradient to a minimum, even if C is a function

of many variables, by repeatedly applying the update rule, which can be seen in equation 1.3. It

enables to repeatedly change the position v in order to find a minimum of the function C this is

a powerful way of minimizing the cost function.

v → v′ =v − η∇C

∇C =(
∂C

∂v1
, ...,

∂C

∂vn
)

(1.3)

Training neural networks is an optimization problem containing a forward and backward

propagation through the network. For each neuron in the network extremal values in an objective

function f(x) are searched and its partial derivates express the sensitivity of f on each parameter.

During forward propagation the data goes straight through each layer. Back-propagation is about

understanding how changing the weights and biases in a network changes the cost function.

Ultimately, this means computing the partial derivatives. Back-propagation is based around

computing both the error and the gradient of the cost function, which can be seen in the four

fundamental equations in 1.4 [Nielson, 2015].

δLj =
∂C

∂aCj
σ′(zLj )

δLj : Error in the output layer L and j-th output activation [I]

δl =((wl+1)T )δl+1
⊛ σ′(zLj )

δl : Error in the next layer [II]

δlj =
∂C

∂blj

δlj : Rate of change of the cost with respect to bias [III]

al−1

k δlj =
∂C

∂wL
jk

al−1

k δlj : Rate of change of the cost with respect to weight in the network [IV]

(1.4)

The first equation in 1.4 is a very natural expression. The first term on the right, ∂C/∂aLj
just measures how fast the cost is changing as a function of the j-th output activation, while the
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Figure 1.4: Range of a rectified linear units [Körner, 2016].

second term on the right, σ′(zLj ), measures how fast the activation function σ is changing at zLj ,

which is the weighted input to the neurons in layer L for the j-th output activation. This first

equation is a component wise expression for δL. The second equation is for the error δl in terms

of the error in the next layer δl+1. The error δl+1 at the l+1-th layer is known and the transpose

weight matrix (wl+1)T , can be intuitively thought of as moving the error backward through the

network. This provides some sort of measure of the error at the output of the l-th layer. The

Hadamard product ⊛σ′(zLj ) moves the error backwards through the activation function in layer l,

supplying the error δl in the weighted input to layer l. By combining the first two equations the

error σl can be computed for any layer in the network. At first equation 1.4[I] is used to compute

σL, then equation 1.4[II] will compute σL−1. Equation 1.4[II] is computed again to gain σL−2,

and so on, all the way back through the network. The third equation 1.4[III] establishes the rate

of change of the cost with respect to any bias in the network. That is, the error δlj is exactly

equal to the rate of change ∂C/∂blj . The last equation 1.4[IV] has the purpose to measure the

rate of change of the cost with respect to any weight in the network. This shows how to compute

the partial derivatives ∂C/∂wL
jk in terms of the quantities δl and al−1. Here it is understood that

al−1 is the activation of the neuron input to the weight w, and δlj is the error of the neuron output

from the weight w.

There are other insights along these lines which can be obtained from the four equations in

1.4. Starting with illustration 1.4 and considering the term σ′(zLj ) in equation 1.4[I]. The rectified

linear unit (ReLU) activation functions are in the range of [0,∞]. When the activation function

is less than 0, the term σ′(zLj ) is also 0. Consequently a weight in a layer will stop learning for

negative values and increase for positive values. In the first case it’s common to say the output

neuron has saturated and, as a result, the weight has stopped learning. Similar remarks hold also

for the biases of neurons.

To adapt a ANN to a Convolutional Neural Network (CNN) some changes to its architectures

are necessary. A CNN consist of various types of layers all working together and being equally

important to the success of the classification. Each layer accepts a 3D volume as input and

produces another 3D volume as output by differential functions. A CNN consists of convolutional,

fully connected, pooling and activation layers. While convolutional and fully connected have

learnable parameters that can’t be tuned by the user, the aforementioned and pooling layers

have hyper-parameters that can change their definition of passing data through the network by

adapting their 3D volume parameters. The following list gives an overview on the most common

layer types:

❑ Convolutions compute a weighted sum wTx of input pixels from a small region that can

be regarded as a linear convolution operation. The source regions can overlap, which is

considered as a stride. Convolutions extract low-level, mid-level and high-level features

throughout the network.
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❑ Pooling layers usually follow convolutional layers and reduce the size of an image patch by

downsampling. Most prominently by a max operator.

❑ Fully connected layers are the final output layer and compute a vector of class probabilities.

These layers reduces the full image to a vector of class scores.

❑ Activation functions, most commonly rectified linear units (ReLU) act as a firing unit to

carry information through the network when a certain threshold is exceeded. ReLUs accel-

erate the learning with their linear structure and are zero centered which adds the benefit

of having not only positive gradients during the training operation.

1.4 Working hypothesis on identifying slum areas in mega cities

The aim of this study is to explore the capabilities of deep learning techniques to detect slums

using very high resolution optical imagery. For this purpose two mega cities in India, Mumbai

and Delhi, are chosen for investigation and covering in total almost 200qm2. The area of interest

contains about 341 official named slums of various sizes, structures and are within a different

urban context between the two cities.

In a broad experimental setup, the ability to transfer knowledge learned from a deep convo-

lutional neural network (DCNN) is used to detect informal settlement in different urban envi-

ronments. Results are compared with multiple training techniques from the same DCNN. Large

scale training data is created, containing at its core a random forest classification using texture

based and spectral features. Since slum dwelling often occupy only a small share of a city’s to-

tal area [Taubenböck & Wurm, 2015b], a pixel based classification has to take this imbalanced

class distribution into account [Wurm et al., 2017]. This common field of data mining [Weiss,

2004] also occurs in remote sensing applications [Wright & Gallant, 2007], [Williams et al., 2009].

This imbalance of informal settlements and formal build-up structures is reworked using enforced

learning techniques during the training phase and its classification method of a DCNN.

A comprehensive work flow is used to produce a high quality mask for informal settlements in

Mumbai and Delhi. These results provide geodata which is used as an input for a mathematical

optimization to find optimal routes for a water supply chain connecting all informal settlements to

a fresh water pipe network. Prior studies researching optimal water supply networks for informal

settlements used only large slums and pipeline networks not along the road infrastructure [Rausch

et al., 2018]. In this thesis a thorough approach on connecting all detected informal settlements

to an optimal water supply network along the road infrastructure is presented.

This study of slum mapping using a DCNN for different learning techniques and connecting all

detected informal settlements with an optimal fresh water pipe network is guided by the following

research questions:

❑ Is it possible to use DCNNs to differentiate formal from informal settlements?

❑ Using transfer learning, which are the optimal scenarios for best possible slum mapping

results?

❑ How can a water supply infrastructure be positioned in an optimal network connecting all

detected informal settlements?

At the beginning of this thesis the geospatial structure of informal settlements and its textural

features is discussed in section 2.1.1. Afterwards a state of the art review on deep learning in
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remote sensing context is given in section 2.2. The proposed method of class-segmentation on

urban poverty to provide water for the poor in explained in section 3. The classification process

is described in detail in section 3.1 including its data preprocessing and the creation of high

quality ground truth data and the used DCNN for the classification of informal settlements.

Section 3.2 explains the mathematical optimization of the fresh water pipe network. An extensive

experimental set up was done to provide large-scale research data on transfer learning methods

of different variation using the DCNN and is present in section 4. The final results are shown in

section 5 with a following discussion and conclusion in section 6.
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2 State of the art

There is a growing international motivation to reduce the number of slum dwellers by gathering

information of informal settlements for policy relevant organizations [UnitedNations, 2015a]. With

more available high and very high resolution satellite data and advances in geospatial processing

tools, a growing number of methods for urban classification are present [Kuffer et al., 2016]. Even

though informal settlements show different morphological characteristics as seen in Table 2.1,

slum mapping still suffers from rather low identification accuracies [Vaz & Berenstein, 2004]. This

challenge is part of the motivation of providing better identification results than previous methods

by using state of the art classification algorithms and combine these with expert knowledge to

identify informal settlements.

Features Slum areas Formal built up areas

Size Small buildings/huts Larger building sizes

Density High roof coverage density Low to moderate building density

Lack of public (green) spaces Provision of public (green) spaces

Pattern No orderly infrastructure arrangement Regular and planed infrastructure

Site Hazardous locations (flood prone or Land has basic suitability

characteristics steep slope) for built up areas

Table 2.1: Morphological features typical for slum areas according to [Kuffer et al., 2014] and
[Baud et al., 2010].

2.1 Geospatial structure of urban poverty

Very high resolution (VHR) remote sensing imagery provides a detailed representation of the

physical elements and characteristics of informal settlements. Since the definition of what con-

stitutes as a slum is very complex, multiple variations exist depending on global, continental or

regional factors [Risbud, 2002]. This is proven by the fact that all mapped informal settlements

are characterized by incomes below the poverty line [Wurm & Taubenböck, 2018]. The houses or

huts in informal settlements and the resulting unorganized structure in theses areas do not share

a universal form. A comparison of selected houses in slums reveals significant differences: These

are masonry one-storey buildings with corrugated iron roofing (in Dharavi, Mumbai, India), or

pointed roof and hipped roof (in Tei Toboc, Bucharest, Romania) over multi-storey brick struc-

tures (in Paraisopolis, Sau Paulo, Brazil) or a makeshift collection of different building materials

up to two stories per cottage (in Kayekitsha, Cape Town, South Africa). Figure 2.1 shows four

informal settlements for both Mumbai and Delhi and their differences within informal settlements

and the change to its counterpart of formal buildings indicates that a universal definition in terms

of physical structure is very ambiguous.
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Figure 2.1: Informal settlements in Mumbai and Delhi illustrating the differences between each
other and their surrounding formal buildings. The top row shows slums in Delhi, while bottom
row shows slums in Mumbai.

Nevertheless, a physical approach to identify and characterize slums is applicable. Especially

useful is the availability of modern earth observation data in the style of the Big Data Revolution

in area-wide and consistent datasets. These datasets make it possible to record small-scale urban

structures and to aim for cross-city analyses. Therefore, the aim is to record the location and

morphological characteristics of exemplary informal settlements. The focus of this study is to

determine how slums can be physically detected from earth observation data. Furthermore gaining

knowledge of spatial analyses and location characteristics to improve slum mapping. Lastly it

is of great interest to gain information about morphological differences of informal settlements

between different cities on a single continent. The view from above makes it possible to grasp the

physical and spatial settlement structures. This makes it possible to identify the characterizing

parameters of slums. In order to localize urban poverty with earth observation data, a connection

between the top down view and the physical spatial features of informal settlements must be

produced. This can be seen in 2.1, the data excerpts show poverty districts in different cultivated

areas in very high-resolution optical satellite data. In the process, the high density of the building

structures, which are also unevenly arranged and have very heterogeneous building types, emerges

as a visual characteristic.

2.1.1 Urban geographic analysis and geospatial metrics

significant to slum mapping

Space plays a central role in urban geographic analyses and comparisons. Against this background,

[Taubenböck & Kraff, 2015] give an overview of the structural and morphological analysis of

informal settlements, which are subsequently carried out on two spatial levels; the level of the

city as a whole and the level of the slums. As seen in illustration 2.1 it is visible that informal

settlements contain a high building density. These buildings are unequally distributed with a high

diversity their structures.
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[Taubenböck & Kraff, 2014] state that a building density for slums is with about 75% significant

higher than the 40% for formal building structures. The variance of building sizes and heights

is significantly lower in informal areas, with consistently lower building size and height. This

exemplary, morphological proof, that poor building structures can be differentiated from earth

observation data from formal bites, establishes the basis for classifying informal settlements in a

comprehensively monitored manner.

[Hollis, 2013] raises the question if slums are a universal phenomenon or whether each ne-

glected neighbourhood arises due to individual reasons and its own history and accordingly form

the varying settlement structures. A comparison of [Taubenböck & Kraff, 2014] aims at whether

the phenomenon of slums actually creates a universal settlement structure. The measured build-

ing densities in slums are very high compared to planned settlements. The medians consistently

show building densities higher than 50%. Likewise, a fundamentally low building size is evident

in all examined slums. The medians are approximately 20 to 35 square meters per building. The

dimension of this combination - high density and small buildings - is also clear from the fact that,

projected on a square kilometer in Paraisópolis, São Paulo Brasil, more than 33.200 buildings are

present. The intensity of this land use is extremely high in all informal settlements. However, the

sometimes high variances in building densities and sizes in slums show that organic settlement de-

velopment do not form homogeneous structures, but rather an individual, heterogeneous network

of settlements develops within each slum. The fact that organic settlement development does

not form homogeneous structures becomes quantitatively measurable through the heterogeneity

of informal settlements.

A physical analysis is therefore useful to spatially identify and characterize areas and to

understand the morphological processes. To come to a conclusion, there are physical features

that globally characterize the settlement structures of slums, but there are no universally valid

parameters.

2.1.2 Recent slum mapping approaches

The complexity of physical slum characteristics requires advanced sensor systems for mapping

purposes. The following section provides an overview of the requirements and recent trends in

slum mapping. As stated above the physical parameters of slums are explored in a high building

density and small building sizes, so the spatial and radiometric requirements for slum mapping

are quite high. Spectrally most of the optical imagery have 2-3 bands in the visible range and 1-2

bands in the infra-red. [Jacobsen & Büyüksalih, 2008] report that the ground sampling distance

(GSD) for building objects should be 2m, however detailed building object information requires a

GSD of 0.5m and a sufficient contrast between buildings and its surroundings according to [Jensen

& Cowen, 1999]. In a detailed study [Kuffer et al., 2016] present an overview of recent trends in

slum mapping. Among the reviewed studies, multiple methods have been used to classify slums.

The majority of slum classification analyses study the extraction on entire slum areas as seen in

table 2.2. Apart from object based image analysis, visual image representation and standard pixel

based image classification a recent trend shows an increase in machine learning methods, where

researchers used neural networks [Persello & Stein, 2017][Dell’Acqua et al., 2006], random forest

[Wurm et al., 2017] or support vector machines [Huang et al., 2015]. Machine learning tasks are

information driven approaches that allow for a repetitive learning from a large and rich set of

training data [Niebergall et al., 2008].

Since the report on an expert meeting on slum mapping in 2008 [Sliuzas et al., 2008] more

methods have been explored, expanding the global knowledge repository of slum characteristics

and their variability. According to [Brito & Quintanilha, 2012], feature extraction of optical

data is the most commonly used for slum mapping, but there is no clear agreements on the
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Methods

Machine Object- Statisical Texture Visual Image

Learning Based Model Morphology Interpretation

Identification 11 15 2 9 11

of slum areas

Table 2.2: Frequency of methods for slum mapping using VHR imagery according to [Kuffer et al.,
2014].

most successful method. Thus there is a strong need for new approaches in automatic image

understanding on remote sensing data interpretation.

The last dimension of the analysis deals with the performance of these methods, measured

by their reported accuracy levels. According to the review of [Kuffer et al., 2016], advanced

approaches, such as mathematical and morphological analysis, have a better performance than

standard classification methods [Giada et al., 2003]. The highest mean accuracy is obtained by

machine learning approaches, but also texture and statistical based methods, while the variance of

object based approaches is rather large, due to the very complex and heterogeneous environments

of informal settlements.

As of right now, only few other studies used convolutional neural networks in their approach

to detect informal settlements [Persello & Stein, 2017][Mboga et al., 2017]. While these recent

studies show promising results of using patched based CNNs and fully convolutional networks

(FCNs) with overall pixel accuracies from 81% up to 92%, both use rather shallow networks of

3−6 hidden layers. When working towards a wider continental approach of slum mapping, where

the transferability of learned knowledge in DCNNs becomes necessary, no study has been done yet

generalizing semantic class segmentation of multiple cites to classify informal settlements, since

the use of transfer learning is very successful in various scenarios [Oquab et al., 2014].

In conclusion machine learning methods tend to work very good if aiming at extracting slum

areas at a city scale and object based approaches were found quite successful to extract single

buildings in informal settlements. However, there are no studies on evaluating the transferability

of using DCNNs on a large scale slum mapping approach of different cities.

2.2 Deep learning for remote sensing satellite data

Most machine learning methods work well because of human-designed representations and fea-

tures, in this case machine learning becomes optimizing weights to make an optimal prediction.

Representation learning attempts to automatically learn good features or representations, which

works well for small problems. But manually designed features are often over-specified, incom-

plete, and take a long time to design and validate. Deep learning algorithms attempt to learn

multiple levels of representations and outputs [Körner, 2016]. So it is no surprise that deep learn-

ing is one of the fastest growing trend in machine learning tasks as seen in illustration 2.2. Deep

learning is driven by neural networks which exploit feature representation exclusively learned from

its input data. Recent advances in the field have proven deep learning a very successful set of

tools, sometime even able to surpass human ability to solve highly computational tasks [Zhu et al.,

2017]. Especially for image representation convolutional neural networks have proven to excel at

extracting mid- and high level abstract features from raw images. Recent studies indicate that

the feature representations learned by CNNs is greatly effective in large scale image recognition
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[Krizhevsky et al., 2012][Simonyan & Zisserman, 2014], object detection [Girshick et al., 2016]

and especially relevant for this study semantic segmentation [Long et al., 2015].

Figure 2.2: Popularity of research papers in machine learning and the rise of neural networks
[Körner, 2016].

2.2.1 Semantic image segmentation with convolutional neural networks

Semantic segmentation means understanding an image at pixel level i.e., each pixel of an image is

assigned an object class. Before deep learning took over computer vision, people used approaches

like Support Vector Machine [Mountrakis et al., 2011] and Random Forest based classifiers [Wurm

et al., 2017][Belgiu & Drăguţ, 2016] for semantic segmentation with remote sensing datasets. As

with image classification, convolutional neural networks (CNN) have had enormous success in

solving segmentation problems. One of the popular initial deep learning approaches was patch

classification where each pixel was separately classified into classes using a patch of images around

it. The main reason to use patches was that classification networks usually have full connected

layers and therefore required fixed size images. In 2014, Fully Convolutional Networks (FCNs)

[Long et al., 2015] popularized CNN architectures for dense predictions without any fully con-

nected layers. This allowed segmentation maps to be generated for images of any size and it was

also much faster compared to the patch classification approach. Almost all subsequent state of

the art approaches on semantic segmentation adopted this paradigm. Apart from fully connected

layers, one of the main problems using CNNs for segmentation are the pooling layers. Pooling

layers increase the field of view and are able to aggregate the context while discarding the lo-

cation information. However, semantic segmentation requires the exact alignment of class maps

and thus, needs the ‘where’ information to be preserved. Two different classes of architectures

evolved in the literature to tackle this issue [Sasank, 2017]. While encoder-decoder architectures

work with an encoder which gradually reduces the spatial dimension with pooling layers and a

decoder that gradually recovers the object details and spatial dimension, fully convolutional net-

works use so-called dilated/atrous convolutions [Yu & Koltun, 2015] and do away with pooling

layers.

The work from [Long et al., 2015] for fully convolutional neural networks is probably the

most important work in deep learning for semantic segmentation. The key observation is that

fully connected layers in classification networks can be viewed as convolutions with kernels that

cover their entire input regions. This is equivalent to evaluating the original classification network

on overlapping input patches but is much more efficient because computation is shared over the

overlapping regions of patches. To perform this task, the output of the final fully connected layers

of the CNN must be of the same pixel size as the input and not a vector shape assigning pictures
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to classes. The network of [Long et al., 2015] introduces many significant ideas, for example

like end-to-end learning, where an up-sampling algorithm down-samples the activations size and

then up-samples it again. Using fully convolutional architectures allows the network to use input

images of arbitrary sizes as an input since there is no fully connected layer at the end that requires

a specific size of activations. And lastly the FCN introduces skip connections as a way of fusing

information from different depth in the network for a multi-scale interference. Section 3.1.2 on

page 36 provides a closer look into the architecture of the used FCN in this study.

Figure 2.3: Architecture of the fully convolutional network from [Long et al., 2015]. This network
introduced end to end learning for semantic segmentation, with the help of upsampling with
deconvolutional layers.

2.2.2 Deep learning in remote sensing

Deep learning in remote sensing presents new challenges, since satellite image analysis raises some

unique questions that have to be considered when using this new methods. A review on deep

learning for remote sensing tasks from [Zhu et al., 2017] tackles some of these ambitious questions:

❑ Remote sensing data are geo-located and every pixel corresponds to a spatial coordinate.

This opens up very interesting procedures of multi sensor data fusion when combining

satellite imagery with geo-tagged images from social media. At the same time one has to

make sure that during the training process of the image data the geo-location information

is kept with the trained image due to random shuffling of the data tiles.

❑ Remote sensing data are geodetic measurements with controlled quality, which enable the

user to retrieve geo-parameters with confidence estimates. However, different from purely

data-driven approaches, the role of prior knowledge about the sensors adequacy and data

quality becomes even more crucial. Even when using same ground sampling distances if the

inclination angles are different the learning process can be more enduring.

❑ Remote sensing also faces the big data challenge. In the Copernicus era, very large and ever-

growing data volumes are often available on a global scale. For example, even if they were

launched in 2014, Sentinel satellites have already acquired about 25 Peta Bytes of data. Not

only with the Copernicus program the amount of freely available satellite image data calls

for global applications, as a consequence, algorithms must be fast enough and sufficiently

transferable to be applied for the whole earth surface. On the other hand, these data are
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well annotated and contain plenty of metadata. Hence, in some cases, large training data

sets might be generated (semi-) automatically.

Scene classification of VHR satellite images, which aims to automatically assign a semantic

label to each scene or pixel in an image, has been an active research topic in the field of high-

resolution satellite images in the past decades. Generally, scene classification can be divided into

two steps: feature extraction and classification. With the growing number of images, training a

complicated non-linear classifier is time consuming. Hence, to extract a holistic and discriminative

feature representation is the most significant part for scene classification. Traditional approaches

are mostly based on the Bag-of-Visual-Words model [Sivic & Zisserman, 2003][Zhu et al., 2016],

but their potential for improvement was limited by the ability of experts to design the feature

extractor and the expressive power encoded. The deep learning architectures discussed in Section

2.2.1 have been applied to the problem of scene classification of high-resolution satellite images

and led to state-of-the-art performance [Zou et al., 2015][Penatti et al., 2015][Castelluccio et al.,

2015]. As deep learning is a multi-layer feature learning architecture, it can learn more abstract

and discriminative semantic features as the depth grows and achieve far better classification

performance compared with the mid-level approaches [Zhu et al., 2017].

Training deep learning-based methods can be done using three different methods. Using pre-

trained networks trained on a image dataset, e.g., OverFeat [Sermanet et al., 2013], GoogLeNet

[Szegedy et al., 2015] or ImageNet [Deng et al., 2009], have led to impressive results on scene

classification of high-resolution satellite images [Hu et al., 2015][Zou et al., 2015]. Making a pre-

trained model adapt to the specific conditions observed in a dataset under study, one can decide

to fine-tune it on a smaller labeled dataset of satellite images. For example, [Nogueira et al.,

2017] fine-tuned some high-level layers of the GoogLeNet [Szegedy et al., 2015]. This can help to

further exploit the intrinsic characteristic of satellite images [Zhu et al., 2017]. Training new

networks from scratch in addition to the above-mentioned ways to use deep learning methods

for classifying satellite images. For example, [Castelluccio et al., 2015] train the networks by only

using the existing satellite image dataset. This suffers a drop in classification accuracy compared

with using the pre-trained networks as global feature extractors or fine-tuning the pre-trained

networks.
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3 Using deep learning to identify

slums for an optimal water

supply infrastructure

The supply of fresh water for the poor in areas of urban poverty is one of the main millennium

development goals for modern civilization [UnitedNations, 2015b]. To provide an optimal water

supply chain for inhabitants of informal settlements, a multidisciplinary approach is necessary.

In this thesis a method is presented that combines a state of the art deep convolutional neural

network to identify informal settlements in urban agglomeration areas and uses this information

for designing a mathematical optimization to find optimal water supply structures. Since the

result is very dependent on the input data a comparison between the original mapped slum data

and the result from a DCNN segmentation is done. The general work-flow for supplying fresh

water for slum dwellers using geodata from DCNN segmentation can be seen in figure 3.1. The

method is split into two parts, first a DCNN is used to identify the informal settlements and in

a second step the information about the slum’s area and boundaries is used to calculate a water

supply network optimized by its shortest path to provide each informal settlement with enough

fresh water for its inhabitants.

Figure 3.1: Proposed procedure for using deep learning to identify slums for an optimal water
supply infrastructure.
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3.1 Class segmentation of informal settlements

Semantic class segmentation means understanding an image at pixel level for specific groups,

where each pixel in the image is assigned an object class. In this thesis multiple land use and land

cover classes are used to classify an optical remote sensing image and extract detected informal

settlements as polygons for a water supply chain optimization. The segmentation result contains

land cover classes, which are considered the observed physical cover on the surface, and land use

classes, which are characterized by the arrangements and inputs people undertake in a certain land

cover type. The class segmentation contains vegetation, water and built-up land covers, where

the built-up land use is split into formal building structures, informal buildings and lastly roads,

railways and bare soil are combined into a ground land use class. Table 3.1 gives an overview on

the used land use and land cover classes.

Class Label

1 Formal buildings

2 Ground

3 Vegetation

4 Water

5 Informal buildings / slums

Table 3.1: Labels used for class segmentation of a DCNN.

3.1.1 Large scale ground truth data

Training a DCNN for class segmentation of remote sensing data requires a lot of reference data.

Figure 3.2 illustrates the work-flow to create large scale high quality ground truth data used for

training multiple DCNNss for slum mapping.

Quad-tree based segmentation: A quad-tree segmentation is used to assign the first four land use

/ land cover classes from table 3.1 to the resulting image objects. To produce the quad-tree image

segmentation, the remote sensing VHR image is recursively split into quadrants and subquadrants

until all pixels in a subquadrant meet the criterion of homogeneity (e.g., if all the pixels in the

block are within a specific dynamic range [Finkel & Bentley, 1974]). Quad-tree segmentation

performs very fast on large scale remote sensing data.

Decision tree based classification: The segmentation result uses domain specific features and a

mutli-threshold procedure to create labels for a training dataset to perform a supervised classifica-

tion. Feature construction is one of the key steps in data representation and largely conditioning

the success of the following machine learning classification. For this purpose spectral, line and

texture features are selected for data representation. Table 3.2 gives an overview on the applied

features for a decision tree classification. A training dataset is created using a multi-threshold ap-

proach for land use / land cover classes formal buildings, ground, vegetation and water. A random

forest (RF) classifier [Breiman, 2001] is applied to predict unlabelled image objects of the quad-

tree dataset. The RF classifier creates 300 individual decision trees based on randomly picked

samples from all training observations. During the classification phase an unlabelled observation

is determined by the most frequent result of all trees.
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Figure 3.2: Work-flow to create a reference dataset for training DCNNs. The process is split into
five parts, where the input dataset is used to create large cover ground truth data.

Features Type

Spectral red, green, blue, near-infrared, ndvi

Line canny edge detection, median filter on edges

Texture contrast feature of a gray level co-occurrence matrix

on all available spectral bands

Table 3.2: Feature construction for a training dataset to classify with a decision tree.

Multi-resolution segmentation: Although the quad-tree segmentation performs very well on rect-

angular objects, the segmentation lacks precision on round object shapes. To improve the ground

truth dataset on vegetation image objects a separate segmentation using a multi-resolution ap-

proach is used. The multi-resolution segmentation algorithm locally minimizes the average het-

erogeneity of image objects for a given resolution of image objects [Trimble, 2014]. This algorithm

consecutively merges pixels based on a pairwise region merging technique. The resulting image

objects present more precise boundaries between vegetation and the other land use / land cover

classes.

Intersect slum reference data: The ground truth data for the land use class of informal settle-

ments was acquired from Wikimapia [Koriakine & Saveliev, 2006], which utilizes an interactive

web map with a geographically referenced wiki-system. Since official data about slums and its

boundaries is very rare, Wikimapia provides a special category for slums where all districts con-

taining informal settlements are tagged. If slums are clearly visible in the used remote sensing

scene the boundary is vectorized on the basis of the used satellite data. Since Wikimapia is a

privately owned open-content collaborative mapping project some inconsistencies are present and



36 3. Using deep learning to identify slums for an optimal water supply infrastructure

depending on the date of the satellite image slums are either not yet present or have already

transformed to formal settlements.

3.1.2 Class segmentation of informal settlements using

deep convolutional neural networks

Deep convolutional neural networks are driving advances in recognition. DCNNs are not only

improving whole-image classification [Krizhevsky et al., 2012][Szegedy et al., 2015], but are also

making progress going from coarse to fine inference where a prediction is made at every pixel. In

this section a fully convolutional network is introduced which is used to classify urban environ-

ments with the task to differentiate formal buildings from informal buildings.

Fully convolutional network FCN-vgg19

FCNs, first introduced by [Long et al., 2015] make it possible to train end-to-end and pixel-to-

pixel on semantic segmentation for predicting dense outputs from arbitrary sized input images.

Both learning, which is considered fitting the hyper parameters of the model for all examples

and inference, which reflects the task of learning the values of the latent variables for a specific

example are performed at a whole image by dense feedforward computation and backpropagation.

Within the network upsampling layers enable a pixelwise prediction and learning with subsampled

pooling.

The network in figure 3.3 uses the proven classification architecture VGG19 network from

the Visual Geometry Group of Oxford university [Simonyan & Zisserman, 2014]. Throughout

the whole CNN rather small 3x3 receptive fields are used which are convolved with the input

at every pixel. In this way a stack of two 3x3 convolutional layers has an effective receptive

field of 5x5 (See illustration 3.4). And four such layers have a 9x9 effective receptive field. This

gives the advantage of incorporating four non-linear rectification layers instead of a single one,

which makes the decision function more discriminative. Secondly, it decreases the number of

parameters. 4(32C2) = 36C2 produces less trainable weights than a single 9x9 convolutional

layer 92C2 = 81C2.

To adapt the architecture from the vgg19 DCNN to a FCN some adaptions are required. The

final classifier layer is discarded and replaced with a 1x1 convolution and a channel dimension

of the number of used classes. Afterwards deconvolutional layers are introduced to bilineary up-

sample coarse outputs to pixel dense outputs. In this case upsampling through deconvolutional

layers means using backwards strided convolutions (transpose convolutions). This operation sim-

ply reverses the forward and backward passes of the convolution. Upsampling is performed for

end-to-end learning by backpropagation from a pixelwise loss [Long et al., 2015].

As seen in figure 3.3 the FCN-vgg19 uses skips, which combines the final prediction layer

with lower level layers with finer strides. Fusing fine layers and coarse layers lets the model make

local predictions that respect global structure. The FCN fuses the output of the vgg19 network

architecture with the predictions computed on top of the forth convolutional block (Layers 9-12)

at stride 32 by adding a 2 times upsampling layer and summing both predictions (see figure 3.3

first transpose convolution). The upsampling is initialized by bilinear interpolation with learnable

parameters. The next step is to fuse predictions from the third pooling layer with a two times

upsampling of predictions fused from the forth pooling layer and 18th fully connected layer,

building the complete FCN-vgg19 architecture.
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Figure 3.3: Architecture of FCN-vgg19 from [Long et al., 2015] with 19 convolutional (conv), 5
pooling (pool) and 3 transpose convolutional layers.

Training methodology for the fully convolutional network

As presented in section 2.2.2 CNNs can be trained using three different methods. In this study

learning from pre-trained networks and fine-tuning on different layers of the FCN are used in

various ways.

❑ Pre-trained FCN: The FCN is trained on all layers with pre-trained Image-Net weights.

ImageNet is an image dataset organized according to the WordNet hierarchy. As of 2016,

over ten million images have been hand-annotated by ImageNet to indicate what objects are

pictured. Training from scratch often does not improve classification results significantly

[Nogueira et al., 2017]. Also it takes considerably more time to train a new dataset from

scratch, which is why pre-trained weights for a vgg19 CNN trained on the ImageNet dataset

are used. All layers are trainable by backwards propagation through the whole network. The

FCN is trained for 100 epochs, where one epoch is considered a complete pass through of

the given dataset. These results will work as a reference for the other training methods. In

Addition a combined dataset from both cites will be used to test, if the FCN can generalize

to multiple cities [Maggiori et al., 2017].

❑ Fine-tuned FCN: The FCN is fine-tuned from one cities dataset to the other and vice versa

from two different points in the FCN. In addition the pre-trained FCN of the combined

dataset of multiple cities is used to fine-tune the network for each city. The FCNs are

initialized from the previous best performing pre-trained networks. From the third and

fourth convolutional block in figure 3.3 layers are fully trainable while the other convolutional

blocks are frozen for learning with the pre-existing weights as seen in table 3.3.

❑ Enforced fine-tuned FCN: Since an imbalanced class distribution is expected for slum map-

ping approaches, where informal settlements only cover a fraction of the complete samples,

an enforced dataset is created and fine-tuned based on the results of the pre-trained FCN.

The enforced dataset only uses image tiles containing labels for informal settlements.

Table 3.3 gives an overview on the training methodology for the FCN. The naming procedure

used for training the pre-trained networks is labeled as FCN datasetxyz nE , dataset being the
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image data for each city, xyz the image data channels used for feeding input data through the

network and nE being the number of epochs used for training. When using fine-tuning approaches

the nomenclature is changed to FTd datasetxyz nE Ln, where FTd stands for fine-tuned on

dataset for Mumbai M , Delhi D and MD for the combined dataset (datasetE : enforced learning

on the dataset) and Ln indicates from which convolutional layer block learning was enabled. When

the pre-trained Mumbai FCN is fine-tuned to the Delhi dataset for 100 epochs with learnable layers

from the fifth FCN block the resulting data would be labeled as FTM Delhi 100 L5.

FCN

FCN block 1 2 3 4 5 6 7 8 9 10

Layer conv conv conv conv conv fc fc conv’ conv’ conv’

FCN dataset nE X X X X X X X X X X

FTx dataset nE L4 x x x X X X X X X X

FTx dataset nE L5 x x x x X X X X X X

FTx datasetE nE L4 x x x X X X X X X X

FTx datasetE nE L5 x x x x X X X X X X

Table 3.3: Training methodology for the fully convolutional network. The checkmark indicates
learnable weights, while the cross freezes the FCN block for learning. conv represents convolu-
tional layers, fc fully connected layers and conv’ transpose convolutional layers.

Experimental framework

Deep learning framework: The implementation of the FCN is based on the TensorFlow frame-

work [Shekkizhar, 2017]. TensorFlow is an open-source software library for machine intelligence

and commonly used for deep learning. The FCN is trained on a single Nvidia Titan-X GPU with

12gb ram.

Data augmentation: Deep networks need a large amount of training data to achieve good perfor-

mance. To build a powerful image classifier for remote sensing, where often limited training data

is available, image augmentation is usually required to boost the performance of deep networks.

Image augmentation artificially increases training images through splitting the data with an over-

lap of 28 pixels into multiple images tiles. The input data is split into image tiles of 224x224

pixels and with a radiometric resolution of 8bit unsigned values and three image channels.

Receptive fields: The receptive field is defined as the region in the input space that the FCNs

feature is affected by. The FCN uses 3x3 receptive fields throughout the whole network as seen

in illustration 3.4. A receptive field of a feature can be fully described by its center location and

its size. The number of output features in each dimension can be calculated using equation 3.1

[Dumoulin & Visin, 2016]. The number of features learned by the FCN are approximately 140

million parameters.
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Figure 3.4: This figure shows a receptive field, applying a convolution conv with kernel size
k = 3x3, padding size p = 1x1 to extend the original image boundaries, stride s = 1x1 on an
input map 5x5, an output feature map 3x3 (green map) is created [Dang, 2017].

nout = (
nin + 2p− k

s
) + 1

nout : Number of output features

nin : Number of input features

k : Convolution kernel size

p : Convolution padding size

s : Convolution stride size

(3.1)

Loss function: The FCN uses cross entropy for its loss function. Cross entropy loss, or log loss,

measures the performance of a classification model whose output is a probability value between

0−1. The output from a neuron is a = σ(z), where z is the weighted sum of the inputs in equation

3.2. The cross-entropy cost function for this neuron is defined by equation 3.3. This cost function

is always non-negative. All individual terms in the sum in 3.3 are negative, since both logarithms

are of numbers ranging from 0 − 1 and there is a minus sign in front of the sum. Also if the

neuron’s actual output is close to the desired output for all training inputs x the cross-entropy

will be close to zero. Summing up, the cross-entropy is positive and tends toward zero as the

neuron gets better at computing the desired output y for all training inputs x. Another benefit

of using cross entropy as a loss function is, that it avoids the problem of learning slowing down

[Nielson, 2015].

z =
∑

j

wjxj + b

z : weighted sum of the inputs

(3.2)
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C = − 1

n

∑

x

ylna+ (1− y)ln(1− a)

C : Cross entropy loss for neuron j

n : Total number of items in training data

x : Training input

y : Corresponding desired outputs

(3.3)

Optimization: Gradient descent algorithms are one of the most popular options to perform

optimization and by far the most common way to optimize neural networks. Gradient descent is

a way to minimize an objective function J(θ) parameterized by a model’s parameters by updating

the parameters in the opposite direction of the gradient of the objective function ∇J(θ) with

respect to the parameters θ. The learning rate η determines the size of the steps taken to reach a

(local) minimum. To optimize in the right direction the cross entropy loss is minimized with the

Adaptive Moment Estimation Optimizer (Adam) [Kingma & Adam, 2017]. This gradient descent

algorithm computes adaptive learning rates and keeps an exponentially decaying average of past

gradients and squared gradients.

θt+1 = θt −
η√

v̂t + 10−8
m̂t

θ : Parameter

v̂t : Exponentially decaying average of past squared gradients

m̂t : Exponentially decaying average of past gradients

η : learning rate

(3.4)

k-fold cross validation: 4-fold cross-validation is used for training and validation of the data.

The dataset is randomly partitioned into four equal sized subsamples. Of the four subsamples, a

single subsample is retained as the validation data for testing the FCN, and the remaining three

subsamples are used as training data. The cross-validation process is then repeated four times

(the folds), with each of the four subsamples used exactly once as the validation data. The four

results of the folds are averaged to produce a single estimation. The advantage of this method over

repeated random sub-sampling is that all observations are used for both training and validation,

and each observation is used for validation exactly once.

3.2 Optimal water supply infrastructure

Informal settlements are among others characterized by a lack of access to water, sanitation or

electricity. To ensure sustainable development in informal settlements and providing water for

the poor a multidisciplinary approach is necessary. In general, supplying the slum dwellers with

fresh water is a complex problem that different studies try to solve by finding an optimal water

supply strategy [Snyder et al., 2014][Subbaraman et al., 2014]. For this study an optimal water

infrastructure with pipes of different diameters is modeled. Since an optimal water supply network

for slums has not been modelled along the street network in a recent study by [Friesen et al.,

2017], in this thesis a procedure to calculate the cost of investing in a completely new water pipe

network to provide each slum with fresh water is presented. The pipeline networks are optimized

towards a shortest possible path using multiple network approaches.
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3.2.1 Optimal water pipe network for informal settlements

Slum systems are determined by the geographical position and its area extracted by the FCN.

Based on the size of a slum and an average population density the expected daily need of water is

calculated for each slum. Running the optimization solver leads to a network showing the chosen

connections between the slums. Each slum is connected to the water works station by a path of

all slums. In this thesis three approaches for the general water supply networks are proposed to

find an optimal solution for each method, illustration 3.5 shows the basic procedure of building

these pipe connections.

Figure 3.5: Water pipe network solutions. (a) All slums are connected via a shortest path, (b)
hierarchical approach with clusters connected through the biggest slums, (c) hierarchical approach
with clusters connected through the center slums

❑ Shortest path connecting all slums: For this network in figure 3.5(a) all informal settlements

are connected optimized for the shortest possible path. There is no sorted order to connect

slum areas by any criteria whatsoever.

❑ Geospatial cluster & large slums form separate network: All slums are clustered according to

the geographical location and a hierarchical system is built as seen in illustration 3.5(b). The

largest slums form an underlying network connected by large roads and a second network

using all roads to connect all slums in their cluster. The general idea is to use pipes with

a large diameter for the underlying network and smaller pipes for the cluster networks to

lower the investment cost.

❑ Geospatial cluster & center slums form separate network: Instead of using the largest slums

of each cluster, this approach uses the centre of each cluster to form the underlying network

of the hierarchical solution in figure 3.5(c). These are connected via the road network using

only large roads and the cluster networks use all roads for the pipe network optimization.

For each network solution of figure 3.5 an origin - destination (OD) matrix is calculated. A

network-based spatial analysis algorithm solves this complex routing problem calculating all pos-
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sible lengths along the road infrastructure for all informal settlements. The OD cost matrix finds

and measures the least-cost paths along the network from multiple origins to multiple destina-

tions. The results of the OD cost matrix analyses become the input for a spatial analyses where

the network cost is measured by the length along the street infrastructure.

Kruskal’s algorithm is used to find the optimal path connecting all informal settlements se-

lected in the OD cost matrix [Kruskal, 1956]. This procedure is a minimum-spanning-tree algo-

rithm which finds an edge of the least possible weight of all connections. It is a greedy algorithm

in graph theory as it finds a minimum spanning tree for a connected weighted graph adding

increasing cost arcs at each step. This means it finds a subset of the edges forming a tree that

includes every vertex, where the total weight of all the edges in the tree is minimized. If the graph

is not connected, it finds a minimum spanning forest. The algorithm creates a graph, where each

vertex in the graph is a separate tree. This can be seen in the six nodes in figure 3.6. Then a set

containing all the edges in the graph is created. Nine connections in the OD matrix of figure 3.6

form the weights of the graph. If the edge connects two different trees with minimum weight it is

added to the forest, combining two trees into a single tree.

Figure 3.6: (a) Origin-Destination Matrix showing a cost variable in length of the road networks
between informal settlements. (b) illustrates the result of Kruskal’s algorithm finding the shortest
path to connect all informal settlements with each other.

3.2.2 Cost functions for network structure

Guidelines of the World Health Organization (WHO) for drinking water quality, provide guidance

on good practices for ensuring that water distribution is adequate for human health. Every person

needs a minimum of 20 liters of water per day to meet the minimum basic requirements, although
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this amount may still lead to health concerns. Governments and authorities should therefore

aim to guarantee at least 50 to 100 liters of water per person per day. [Sule, 2003] goes even

further and reports an average usage of 135 liters per consumer per day for the city of Mumbai.

This information is used to calculate the investment cost of supplying each slum dweller with

enough fresh water. To find an economical optimal infrastructure, it is necessary to define cost

functions for the different options. Different types of pipes are assumed that can be chosen using

a diameter of 60mm to 600mm. The cost functions for these pipes are taken from [Marchionni

et al., 2015] who developed cost functions for pipes in Portugal. These cost function were adapted

to informal settlements from [Friesen et al., 2017]. The costs contain variable Cvar(d, l)(operating

time depended per day) and fix costs Cfix(d, l). To model the variable costs of a pipe network

the common dissipation model for pipeflows is used, calculating the dissipated power with the

following equation, assuming turbulent flow [Spurk & Aksel, 2004]. Q is the volume flow, ∆p the

pressure loss in result of dissipation, d the diameter and l the length of the pipe.

C(d, l) = Cvar(d, l) + Cfix(d, l) (3.5)

Cfix(d, l) = (32.59 + 0.11d+ 0.00053d2)l

Cfix(d, l) : Fixed costs e

d : Pipe diameter [m]

l : Pipe length [m]

(3.6)

Cvar(d, l) =
1

η
CkWhPDiss(d, l)t

PDiss = Q∆p

Cvar(d, l) : Variable costs e

CkWh : Energy price [e/kWh]

PDiss : Dissipated Power [watt]

Q : Volume flow [l/s]

∆p : Pressure loss [m]

d : Pipe diameter [m]

l : Pipe length [m]

(3.7)
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4 Experiments

To test the proposed method from section 3 several experiments were performed. Their aim was

to test the DCNNs robustness to detect informal settlements not only for case study applications

but rather to transfer the learned process from the DCNN to two mega cities. The general idea

is to train on very high resolution optical data with a large scale ground truth data for the

class segmentation of slums and afterwards using transfer learning strategies to identify informal

settlements in other cites of the same country. Using mega cities in the same country assures

that the DCNN only has to retrain its weights in order to detect slums and not a complete

different architectural type of city structures. The optical very high resolution satellite data

contains multiple pansharpened QuickBird scenes from Mumbai and Delhi in India, which are

introduced in section 4.1. The ground truth data is created using the method from section 3.1.1

and described in section 4.1.1. Once the ground truth data is validated the DCNN and its training

process is presented in 4.2. The FCN-vgg19 is trained on small images tiles for a Mumbai-, Delhi-

and a combined dataset of the two mega-cities. Transfer learning is introduced to the FCN in

order to test the FCNs possibility of learning geo-spatial structures between the Mumbai and

Delhi dataset. Once the informal settlements are classified the method to provide a water supply

network from section 3.2 is used to test the effects of different input geodata from the extracted

slums on the water pipe network and its changes in financial investment. These results are shown

in section 4.4.

4.1 Dataset

4.1.1 Satellite dataset

For the two Indian mega cities Mumbai and Delhi, pan-sharpened QuickBird Scenes were acquired.

All available QuickBird imagery products are 4-band pan-sharpened images and combine the

visual information of four multispectral bands (blue (450 − 520nm), green (520 − 600nm), red

(630−690nm), near infra-red (760−890nm)) with 2.4m ground sampling distance (GSD) and the

spatial information of the panchromatic band of 60cm GSD. The QuickBird scene for Mumbai was

acquired on 17.11.2008 covering an area of roughly 103km2. For the study area in Delhi a scene

from 26.04.2007 was acquired. Seven areas of interest are selected due to frequent appearance of

informal settlements with a combined area of 96km2. Figure 4.1 presents both datasets used for

training the FCN.

4.1.2 Ground truth dataset

Deep learning methods are very dependent on good training data. To ensure that the network

learns in a correct manner the labels in the reference dataset need to be of high quality. In this

thesis the main goal is to identify and differentiate slums from formal city structures in an urban

environment, but since there are more land use / land cover classes to be found in this habitat the

FCN is trained for multiple classes. The labels used for training the network should represent the
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Figure 4.1: Pansharpened true colour composite QuickBird scenes for the study areas in Mumbai
and Delhi.

common structure of a global mega-city with a focus on differentiating slums areas from the rest

of the structures as good as possible. The five land use / land cover classes introduced in table 3.1

of section 3.1 were used for the class-segmentation. The ground truth dataset was created using

the method presented in figure 3.2. Illustration 4.2 to 4.4 gives an overview of the work-flow to

create large scale ground truth data for an area of interest in Delhi containing all land use / land

cover classes but water. Validation of the reference dataset is presented in section 4.1.2.

Ground truth data for the study areas.

The experimental work-flow for the ground truth data is designed to elevate accuracy of previous

reference data. For a pixel-to-pixel based class-segmentation using a FCN a processed image

patch should contain no background or missing entities. To achieve highest possible segmentation

accuracy for each image dataset a ground truth dataset was created. Figure 4.2 to 4.4 illustrates

the development of each step.

In figure 4.2 a quad-tree based image segmentation process is used to split the remote sensing

VHR image (Segment (a)) recursively into quadrants and subquadrants until all the pixels in a

subquadrant meet the criterion of homogeneity of all four available channels (blue, green, red,

near infra-red) in image (b). For every object, domain specific image features are constructed.

(c) displays the Normalized Difference Vegetation Index (NDVI), high values represent reputable

vegetation, whereas dark/low values indicate no flora. (d) represents a median (25x25pixel) filter

of a canny edge detector for the blue channel. The canny edge detector is known as an optimal

detector, where the algorithm aims to satisfy three main criteria of a low error rate, meaning a

good detection of only existent edges, good localization, represented by the distance between edge

pixels detected and a minimal response, where only one detector response per edge is accepted.
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(a) Delhi false colour 

image section  

(b) Quad-tree segmentation 

(c) NDVI (d) Median filter on 

 canny edges 

(e) GLCM-contrast feature 

Legend – Features: 

Low values 

High values 

Figure 4.2: Ground truth segmentation process and feature selection. (a) shows an area of interest
in Delhi in a false color image of the near infrared, red and green band. (b) presents the result
from the Quad-tree segmentation. In (c), (d) and (e) features for training the random forest are
shown.

The result is smoothed with a median filter since it preserves edges while filtering the image

[Arias-Castro et al., 2009]. Edges are of critical importance for differentiating built-up structures

from other entities. This is why edge features need to be optimal. High values represent multiple

detected edges in one image objects whereas dark spots are considered as object without edges.

Lastly for every image channel the GLCM contrast features were constructed ((e) illustrates the

feature for the blue channel). GLCMs are filter functions which provide a statistical view of texture

based on the image histogram [Haralick et al., 1973]. Several statistics provide information about

the texture of an image. In this case the contrast feature is used to measure the local variations

in the gray-level co-occurrence matrix to separate built-up structures from other entities. Bright

spots represent a high index for the GLCM contrast feature in one image objects while dark spots

are considered as objects of low local variations.

Labelbuilding = NDV I < x & GLCMcontrast > y & edgecanny > z

Labelground = NDV I > x & NDV I < y & edgecanny < z

NDV I : Normalized difference vegetation index

GLCMcontrast : GLCM contrast haralick feature

edgecanny : Canny edge detection

x, y, z : Feature dependent threshold

(4.1)
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(a) Delhi false colour 

image section  
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Formal Ground Vegetation Unlabeled 

Figure 4.3: Ground truth segmentation process and production of labels for a supervised classifi-
cation. (a) presents an area of interest in Delhi in a false colour image of the near infrared, red and
green band. (b) Triple threshold using edge-, NDVI- and gray level co-occurence matrix (GLCM)
features. (c) Triple threshold using two NDVI thresholds and one edge feature condition. (d)
Intersection with open street map data. (e) Labels for vegetation based on the NDVI and lastly
(f) illustrates the dataset used for training a random forest decision tree classifier.

Figure 4.3 illustrates how the domain specific features introduced above are utilized to create

labels for a training dataset to perform a supervised classification. Since feature construction is

one of the key steps in data representation and largely conditioning the success of the following

machine learning classification, labels for a decision tree classification need to be of high quality.

In (b) a the triple threshold function from the first equation in 4.1 is used to label formal urban

structures. A similar threshold operation in the second equation of 4.1 is used to label all ground

segments (bare soil, streets and other non flora ground segments) in (c). To improve the robustness

of labels in (b) and (c) Open Street Map data is used to label buildings and selected roads. A

simple NDVI threshold is used for labelling vegetation in (e). (b)-(e) are used to train a decision

tree classifier in figure 4.4. Red labels in (f) represent image objects to be predicted by the random

forest classifier.

A device for classifying unlabeled observations from a feature space is the random forest

classifier [Breiman, 2001], which is based on decision trees. A Random Forest creates a collection

of individual decision trees based on randomly picked samples from all training observations trees.

In the training phase 300 classification trees are built. In the classification phase, an unlabeled

observation is classified with all trees. The class which is ultimately assigned to the observation

is determined by the most frequent result of all trees. In figure 4.4 the result can be seen in

(b). All previous unlabeled image objects are assigned to a prediction. The current segmentation

process only contains four land cover / land use classes. Since informal settlements offer great
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Figure 4.4: Ground truth segmentation process, prediction from a random forest classifier and
the final ground truth dataset after post processing. (a) presents an area of interest in Delhi in a
false color image of the near infrared, red and green band. (b) Prediction from a random forest
classifier. (c) Polygon data for informal settlements. (d) Intersection of slums and the random
forest result (e) Final ground truth dataset used for training the DCNN.

heterogeneity it is very compute intensive and feature dependent to successfully detect slums with

regular machine learning algorithms like random forest or linear discriminant analysis [Wurm

et al., 2017]. For an accurate representation of informal settlements in the ground truth dataset

open access geo-data is intersected with the predicted result from the random forest classifier as

illustrated in (c) and (d). Wikimapia [Koriakine & Saveliev, 2006], which utilizes an interactive

web map with a geographically referenced wiki system, is used for the slum geo-data, since

official datasets about slums and its boundaries are very rare and can suffer from inconsistencies.

Wikimapia provides a special category for districts containing slums, if slums are clearly visible

in the QuickBird scene of Mumbai and Delhi the boundary is polygonized. Since wikimapia is

a privately owned open-content collaborative mapping project some inconsistencies are present.

Additionally depending on the date of the satellite image slums are either not yet present or

already advanced into formal settlements. The outcome of the random forest classification and

its intersection geo-data of informal settlements is still prone to mediocre results in vegetation and

in general objects that represent round structures, since the quad-tree based segmentation can

only approximate round features through smaller quadrants. In a post-processing mechanism a

multi-resolution based segmentation algorithm replaces vegetation features and improves a more

natural shape of greenery entities. The final result is rasterized and co-registered to the exact

same extent and pixel size of the VHR image data. The ground truth dataset shows an imbalance

of land use / land cover classes as seen in table 4.1. In Mumbai significantly more geo-data

of informal settlements was available. The difference of formal built-up structures and informal
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settlements is represented by a percentage increase of 888%, whereas in Delhi the increase in the

housing situation makes up a immense percentage increase of 1743%. This difference may be the

result of inconsistencies in the wikimapia reference. In total slums in Mumbai make up 10% of

the complete ground truth dataset, while in Delhi they only make up roughly 2%.

Class Mumbai Delhi

slum 10.12% 1.80%

formal 25.44% 33.29%

ground 22.94% 33.62%

vegetation 35.93% 29.65%

water 5.57% 1.63%

Sum 286 074 829 [pixel] 220 499 966 [pixel]

Table 4.1: Class imbalance for the ground truth dataset of Mumbai and Delhi. Mumbai contains
about 65 million more total pixels and is with an area of 103km2 23% larger than the Delhi AOI
with 79km2.

Accuracy assessment for the ground truth data

To validate the reference dataset used for training the network an appropriate sample unit was

selected. To get a good representation of the dataset when using polygons as reference data,

equation 4.2 should be used to get the total number of samples according to [Congalton & Green,

2008]. Since five land cover / land uses classes were used, 817 samples are round up to 1000,

providing 200 samples per class needed to validate the dataset. For Πi a confidence level of 95%

and four (classes− 1) degrees of freedom were used. B is calculated with equation 4.3.

n =
BΠi(1−Πi)

b2i
=

0.3593 ∗ 0.35 ∗ (1− 0.35)

0.012
= 817

where n : Number of total samples

B : χ2
4,0.99

Πi : Area of biggest class in %

b2i : Margin of error

(4.2)

χ2
k−1,index = 1− α

k
= 1− 1− 0.95

5
= 0.99

where χ2
k−1,index : Value for index

α : 1-confidence value

k : Number of classes

(4.3)

Table 4.2 and 4.3 show the confusion matrix for the reference dataset for Mumbai and Delhi

using 200 samples per class. These samples were chosen randomly throughout the whole dataset.

The confusion matrix for the ground truth dataset for Mumbai and Delhi show an overall accuracy

of 87% and a kappa value of 84% for both Datasets. Although precision scores for the land use class

slums score with over 90% very respectable, the recall values with over 83% give an indicator that

maybe not all available informal settlements are present in the ground truth dataset. Another
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interesting insight can be seen in a significant overlap of the land use classes formal buildings

and ground segments. Both classes score lowest throughout the confusion matrix. Especially in

Mumbai the ground truth data reveals that repeatedly ground segments are present in formal

labeled objects.

Classification Formal Ground Vegetation Water Slum Sum Precision

Formal 146 30 10 0 14 200 73%

Ground 8 172 14 0 6 200 86%

Vegetation 4 14 178 0 4 200 89%

Water 0 2 0 198 0 200 99%

Slum 4 10 0 2 184 200 92%

Sum 162 228 202 200 208 1000

Recall 90% 75% 88% 99% 88%

Table 4.2: Confusion matrix for the accuracy assessment of the Mumbai ground truth dataset.

Classification Formal Ground Vegetation Water Slum Sum Precision

Formal 166 16 0 0 18 200 83%

Ground 12 162 10 0 16 200 81%

Vegetation 0 10 188 2 0 200 94%

Water 0 22 0 176 2 200 88%

Slum 6 6 6 0 182 200 91%

Sum 184 216 204 178 218 1000

Recall 90% 75% 92% 98% 83%

Table 4.3: Confusion matrix for the accuracy assessment of the Delhi ground truth dataset.

4.2 Training the fully convolutional neural network FCN-vgg19

for slum mapping

The production of training data is often an expensive and laborious task. In this study large scale

ground truth data was available by virtue of the work-flow from the previous section. Using data

augmentation image tiles with an overlap are created to increase the dataset used for training

the DCNN. The aim of this section is to demonstrate the training procedure for each approach

presented in section 3.1.2 and how to work with an imbalanced dataset.

Dataset training image tiles validation image tile

Mumbai 5616 1872

Delhi 4370 1457

Mumbai & Delhi 9986 3329

Table 4.4: Dataset for training and validation and number of annotation tiles containing informal
settlements.

The dataset is trained on one single Nvidia Titan-X Gpu with 12 Gb of GDDR5 Ram. Al-

though this GPU delivers a very high compute capability training the FCN-vgg19 is very demand-
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ing. In this case only two 8bit images of 224x224 pixels can be trained simultaneously. These two

images define the batch-size of the FCN. Both datasets are converted from a 16bit four channel

scene into two datasets of 8bit three channel image-tiles with an overlap of 28pixels (1/8 of the

tile). The advantage of using an overlap is that it delivers an increased number of total image-tiles

for training. The two dataset consist of a true colour (channels red, green, blue) and a false colour

composite (channels nir, red, green) image stack. The dataset for Mumbai contains in total 5615

training images and Delhi consists of 4370 training images as seen in table 4.4. Training the

FCN for one complete pass through the dataset is called one epoch. For Mumbai one epoch takes

5616/batchsize = 2808 iterations, while for Delhi it only takes 4370/batchsize = 2185 iterations.

Both datasets are trained on all available layers of the network for 100 epochs.

Mumbai Ground Truth Mumbai 321 Mumbai 432

0 5025 Meters0 5025 Meters0 5025 Meters

0 5025 Meters

Delhi Ground Truth Delhi 321 Delhi 432

Legend

Formal

Ground

Vegetation

Slum

0 5025 Meters 0 5025 Meters

Figure 4.5: Datasets used for training the FCN-vgg19. The first row represents images from the
Mumbai dataset, while the bottom row shows images from Delhi. The first column shows the
ground truth data and the second and third column is an image tile of the size of 224x224 pixel
for a red, green and blue 8 bit composite and a false colour near infra-red, red and green 8 bit
composite.

In this thesis multiple procedures for fine-tuning the FCN are proposed. Until now, slum

mapping was often only used on small areas for investigating methodological development, but

rarely methods are capable of exhaustive slum mapping in multiple cities [Graesser et al., 2012].

Presently, few methods successfully detect the diversity of slums in multiple cities. Thus, a more

robust image-based systematic exploration of potential methods is required for the development of

a slum inventory spreading across multiple cities [Kuffer et al., 2016]. Table 4.5 presents multiple

methods of training the FCN-vgg19 used in this study to ascertain optimal class segmentation

results. The FCN is trained on all available layers for the city of Mumbai, Delhi and on a

combined dataset. These three networks are trained for 100 epochs. Two methods of fine-tuning

are introduced to see if class segmentation results differ from a regular pre-trained FCN and a

fine-tuned FCN. To test if FCNs can successfully generalize between different cities a FCN is using
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pre-trained weights from one city and then it is transfer-learned to another city and vice versa.

Another option of fine-tuning is using an enforced dataset, where the FCN relearns on image-tiles

only containing informal settlements. This methods can improve class segmentation results, but

the imbalance of informal settlements leads to fewer training image-tiles.

pre-trained fine-tuned enforced-learning

FCN Mumbai321 100 FTD Mumbai321 50 L5 FTD MumbaiE321 50 L5

FCN Mumbai432 100 FTD Mumbai321 50 L4 FTMD MumbaiE321 50 L5

FCN Delhi321 100 FTM Delhi321 50 L5 FTMD DelhiE321 50 L5

FCN Delhi432 100 FTM Delhi321 50 L4

FCN MD321 100

Table 4.5: Training methodology for the fully convolutional network.

4.3 Performance evaluation of the FCN-vgg19

4.3.1 Accuracy measures

In the field of supervised image classification, a machine learning model is applied to classify

multiple satellite image scenes. To assess the performance of the FCN it is of major importance

to determine the quality of the prediction process. Only then it is possible to receive a quanti-

tative impression of the class segmentation quality. The accuracy of remote sensing image class

segmentation can be assessed using different measures. Facing an imbalance of the land cover

/ land use classes in this study, some accuracy measures do not reflect the visual impression of

the classification quality. Since informal settlements only make up a small percentage of classes

in the dataset the accuracy of the metrics which are most important is under-represent by an

imbalanced class distribution [Mosley, 2013]. To address this shortcoming, class specific accuracy

measures can be calculated.

Overall accuracy measures

Accuracies are reported using five evaluation metrics commonly applied in semantic segmentation

and scene parsing tasks. Let nij be the number of pixels of class i predicted to belong to class j,

where there are ncl different classes, and let ti =
∑

j nij be the total number of pixels of class i.

The most common measure of determining the accuracy of a classified image is the overall Pixel

Accuracy (oPA) computed with equation 4.4.

oPA =

∑
i nii∑
i ti

(4.4)

One significant limitation of the oPA measure is its bias in the presence of very imbalanced

classes. The Intersection over Union (IoU) is an evaluation metric used to measure the accuracy

of an image segment in a particular dataset. The IoU thus takes into account both false alarms

and the missed values for each class [Csurka et al., 2013]. This solves the issue concerning oPA

and it is nowadays the standard metric to evaluate the PASCAL VOC challenge [Everingham

et al., 2010]. Computing the Intersection over Union in equation 4.5 is dividing the area of

all true positives
∑

i nii by the area of union. In this case nij is the number of pixels in class
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i predicted to belong to class j and ti the total number of pixels of class i. The mean IoU is

straightforwardly the average over all classes. Because of this, the IoU defines an evaluation metric

that rewards predicted bounding boxes for heavily overlapping with the ground-truth as seen in

figure 4.6. Predicted bounding boxes that heavily overlap with the ground-truth bounding boxes

have higher scores than those with less overlap. This makes the mean IoU an excellent metric for

evaluating class segmentation results. Scores above 50% can be considered moderate while scores

above 60% reflected respectable results [Rosebrock, 2016].

IoU =

∑
i nii

ti +
∑

j nji − nii

nii : number of correctly classified pixels

nij : number of pixels wrongly classified

ti : total number of pixels of class i

(4.5)

Figure 4.6: The Intersection over Union for various bounding boxes. Predicted bounding boxes
that heavily overlap with the ground-truth bounding boxes have higher scores than those with
less overlap [Rosebrock, 2016].

Another measure widely used for quality assessment in remote sensing segmentation studies

is the Kappa value κ [Cohen, 1960]. It is used to estimate the difference between an achieved

classification result and random chance. The κ score expresses the level of agreement between two

annotators on a classification problem. It is defined as present in equation 4.6, where p0 is the

empirical probability of agreement on the label assigned to any sample (the observed agreement

ratio), and pe is the expected agreement when both annotators assign labels randomly. pe is

estimated using a per-annotator empirical prior over the class labels.

κ =
p0 − pe
1− pe

(4.6)

Specifically for statistical accuracy measurements the confusion matrix is employed for vali-

dation purposes. The confusion matrix is a specific table layout that allows visualization of the

performance of a supervised machine learning classifier. Each row of the matrix represents the

instances in a predicted class while each column represents the instances in an actual class. In this

matrix true positives tp and true negatives tn are the observations that are correctly predicted,

whereas false positives fp and false negatives fn, occur when the ground truth class contradicts

with the predicted class. With these informations the precision and recall accuracy metric can be

produced as seen in equation 4.7. Precision is the ratio of correctly predicted positive observations
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to the total predicted positive observations. High precision relates to the low false positive rate.

Recall is the ratio of correctly predicted positive observations to the all observations in actual

class.

precision =
tp

tp+ fp

recall =
tp

tp+ fn

tp : True positive

fp : False positive

fn : False negative

(4.7)

Class specific accuracy measurements

The accuracy metrics from above provide an estimate of the classification as a whole. Since

slum mapping suffers from imbalanced class distribution, where informal settlements are under-

represented, class specific accuracy measures are used to compensate the imbalance of overall

accuracy metrics. For this purpose the accuracy metric oPA, mean IoU, precision and recall are

calculated using pixel masks for all predictions containing informal settlements.

4.3.2 Evaluation of a mosaic created from the FCN prediction

The FCN is limited by a small processing image-tile of 224x224 pixels. To produce large scale

geo-data of informal settlements a fully trained FCN is used to predict a dataset specificity set

up for this task. Mosaicking is the process of combining multiple, individual images into a single

scene, where the process yields a new raster dataset. To counter misbehaviours in classification

near the image edges, tiles overlap to the extent of 150 pixels. Using this method every predicted

pixel overlaps with six other available predictions and a modal operator produces a majority

based mosaic. For both mosaics random samples are selected in a similar fashion as presented in

section 4.1.2 to present a confusion matrix to validate the mosaics to reality data from its input

optical image data.

4.4 Water supply infrastructure based on results of different geo-

data sources

Slum systems are determined by the geographical position and its area. The settlements present

in the mosaic created from overlapping image-tiles predicted by the FCN are used as input data

to fabricate an optimal fresh water supply chain connecting all informal settlements to each other.

Using a origin destination (OD) matrix the length of each possible pipes along the street network

can be calculated as seen in table 4.6. With the OD Matrix Kruskal’s algorithm is used to

calculate the shortest path of the three configurations presented in section 3.2.1. Figures 4.7 to

4.9 show the procedure for an optimal water supply chain for informal settlements contained in

the ground truth dataset. Three methods are proposed to built an optimal water supply chain. A

shortest path connecting all slums with each other is calculated. A pipe diameter between 60mm

to 600mm can be chosen depending on the water needed to supply all slum dwellers. First a

water supply network is determined using a single pipeline connecting all slums via the shortest

path. The second methods uses a hierarchical structure for the network model. Geospatial

clusters and large slums form two separate networks. All slums are clustered according to the

geographical location and a hierarchical system is built. The largest slums form an underlying
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network connected by only large roads and providing water for all slums. The water supply

network for each cluster form a network providing water for all slums within each cluster except

the largest slum. The general idea is to use pipes with a large diameter for the underlying network

and smaller pipes for the cluster networks to lower the cost of investment. The third and last

option is a geospatial cluster, where centre slums form a separate network. Instead of using the

largest slums of each cluster, this approach uses the centre of each cluster to lower the length of

the network providing water for all slums. Centre slums are again connected via the road network

using only large roads and the cluster networks use all roads for the pipe network optimized to

a shortest path. Figure 4.7 illustrates all informal settlements for both Mumbai and Delhi in

the ground truth dataset. The slums are clustered into four groups by a Delaunay triangulation,

which ensures all group members to be proximal. This warrants that all slums in the same group

will have at least one natural neighbour in common with another slum in the same group. In

figure 4.8 the origin destination matrix (OD) is calculated for all three approaches and measures

the least-cost paths along the network from multiple origins to multiple destinations along a

given road network. Figure 4.8 only shows the OD matrices for the underlying networks of the

hierarchical approaches. Table 4.6 shows the OD matrix for the largest slums in the ground truth

dataset for Delhi. The OD matrix is used for the input weights to optimize Kruskal’s algorithm

for the shortest possible path along a given road infrastructure. Figure 4.9 shows the shortest

path in a hierarchical approach. Slums are either connected through the largest or closest to

a clusters centre using only large roads. All other informal settlements are connected using all

available roads.

Origin/Destination 1 2 3 4

1 0m 8829m 5224m 2588m

2 8829m 0m 1153m 7154m

3 5524m 11538m 0 6361m

4 2588m 7154m 6361m 0m

Table 4.6: OD matrix showing the weights of possible direction calculated by the distance along
the road infrastructure

A water supply network for Mumbai and Delhi is calculated with the help of cost functions

introduced in section 3.2.2. Results are calculated using population densities from various re-

searches to identify the water needed for all slum dwellers. Studies report an approximate area

of 0.4m2 available per person in certain slums of Mumbai [Chinmayi & Madhavi, 2013], whereas

other report densities of 280000pax/km2 to 350000pax/km2 [Fernando, 2009]. For this study a

population density introduced by [Taubenböck & Wurm, 2015b] of 0.22pax/m2 is used. For the

three available network approaches water needs are calculated with the area of each slum and

an average population density. The cost functions in equation 4.8 to 4.10 are depended on the

pipe diameter and pipeline length. Kruskal’s shortest path delivers the total water supply length

for each network approach. The pipeline diameter is calculated depending on how much water

a supply network has to carry. All three water supply network approaches use different pipeline

diameters. Since water needed to supply all slum dwellers stays the same for all three approaches

only the length determines the diameter of the pipes, where shorter networks need a larger diam-

eter and vice versa. This gives an interesting insight if the cost of water supply networks is more

depended on pipeline length or its diameter. Using a flow nomogram for polyethylene pipes and

assuming an water velocity of 1m/s the volume flow Q and pressure loss ∆p can be obtained.

These results form the input for the cost function to calculate the investment in setting up a

completely new water pipeline infrastructure. Applying the cost functions to the ground truth

dataset and calculating the cost for a water supply network connecting all informal settlements
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in Mumbai via a shortest path results in the following equations 4.8 to 4.10. The shortest path

connecting all slums is 118932m long according to the calculations from Kruskal’s algorithm in

section 3.2.1. Since this methods needs to supply all informal settlements with fresh water a

diameter of 370mm is chosen. The cost functions includes all variables for the network construc-

tion of the transmission and distribution pipes. The parameters in equation 4.8 are based on

polyethylene pipes, which are best suited for a diameter of 0.06− 0.7m [Marchionni et al., 2015].

To model variable costs in equation 4.9 the dissipated power for pipeflows is cast with the volume

flow Q and the pressure loss ∆p. The volume flow Q is determined by the diameter of pipes in use

and the velocity of water in pipes of 1m/s. The pressure loss ∆p is calculated with a hydraulic

gradient from a flow nomogram for pipework systems. A pipe diameter of 370mm with a flow

rate of 90l/s corresponds to a hydraulic gradient of 0.25m/100m. The total pressure loss along

the network is the hydraulic gradient multiplied by the length of all pipes. Total investment for a

water supply network using informal settlements present in the ground truth dataset of Mumbai

and assuming a operation time of 8 hours a day for 365 days would cost about 5 million e.

Cfix(d, l) = (32.59 + 0.11d+ 0.00053d2)l

Cfix(d, l) = (32.59 + 0.11 ∗ 0.37m+ 0.00053 ∗ 0.372m) ∗ 118932m
Cfix(d, l) = 3886812.99e

Cfix(d, l) : Fixed costs [e]

d : Pipe diameter [m]

l : Pipe length [m]

(4.8)

Cvar(d, l) =
1

η
CkWhPDiss(d, l)t

PDiss = Q∆p

PDiss = 90l/s ∗ 297.33m = 251541W

Cvar(d, l) =
1

0.55
∗ 0.00757e/kWh ∗ 251541W ∗ 8h

Cvar(d, l) = 2946.48624e

Cvar(d, l) : Variable costs per day[e]

CkWh : Energy price [e/kWh]

PDiss : Dissipated Power [watt]

Q : Volume flow [l/s]

∆p : Pressure loss [m]

η : Pump efficiency

t : Operating time per day [h]

d : Pipe diameter [m]

l : Pipe length [m]

(4.9)

C(d, l) = Cvar(d, l) ∗ 365days+ Cfix(d, l) = 4959333.99e (4.10)
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Figure 4.7: Informal settlements in the ground truth dataset of Mumbai and Delhi. The slums
are clustered into four groups by a Delaunay triangulation.

Figure 4.8: The origin destination matrix for Mumbai and Delhi for the largest and for the centre
slums of each cluster.
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Pipe Network: Mumbai All Pipe Network: Mumbai Largest Slums Pipe Network: Mumbai Center Slums

Pipe Network: Delhi Center SlumsPipe Network: Delhi Largest SlumsPipe Network: Delhi All

Figure 4.9: Kruskal’s algorithm is used to find the optimal path connecting all informal settlements
to the road infrastructure. The illustration shows the shortest path connecting all informal
settlements using three different water supply network approaches.
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5 Results

Following the experimental setup, the class segmentation results are presented in section 5.1.

The classification results are divided into overall accuracy measurements and metrics specifically

calculated for informal settlements. The best performing FCN is used to calculate the investment

in setting up a water pipeline infrastructure for slum dwellers.

5.1 Class segmentation of informal settlements

5.1.1 Overall accuracy measurements

For the assessment of the overall classification quality, the measures overall pixel accuracy (oPA),

mean Intersection over Union (mIoU), Kappa estimate (κ), precision and recall values are cal-

culated. The accuracy metrics are presented in table 5.1 for pre-trained FCNs, in table 5.2 for

transfer-learned FCNs and for fine-tuned FCNs using a enforced dataset in table 5.3. The pre-

trained FCNs were both trained on a true (321) and a false (432) colour composite for 100 epochs.

A combination of both true colour datasets from Mumbai and Delhi is trained for 100 epochs to

test if a FCN can generalize between multiple cities. Transfer-learning learning is only tested on

datasets a FCN has not been trained on to avoid overfitting. All fine-tuned networks are only

trained on selected layers Ln for 50 epochs, where n represents the first convolutional block avail-

able for learning, while the other weights and biases are not updated from its original pre-trained

FCN.

FCN oPA mIoU κ precision recall

Mumbai321 100 81.59% 57.34% 75.75% 82.40% 82.45%

Mumbai432 100 82.96% 59.30% 75.61% 81.91% 82.03%

Delhi321 100 84.14% 61.20% 75.62% 83.31% 83.32%

Delhi432 100 88.41% 69.37% 83.39% 88.39% 88.41%

MD321 100 83.18% 60.12% 77.41% 83.42% 83.50%

Table 5.1: Overall accuracy measurements for all pre-trained FCNs. The networks are trained
for 100 epochs.

In general false colour composite datasets deliver better accuracies for both cities on all mea-

surements. The overall pixel accuracy ranges from 81% to 88% and shows respectable results. For

class segmentation methods the mean intersection over union provides a very important metric

for comparing boundaries of detected object classes. All FCNs score higher than 57%, with the

FCN Delhi432 100 achieving a mIoU of 69%. The FCN using the combined true colour image

data MD321 100 scores with an overall pixel accuracy of 83% and a mIoU of 60%.
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The kappa estimate κ of 75% to 83% indicate a substantial strength of agreements for all

pre-trained FCNs. The precision is intuitively the ability of the FCN to not label a positive

sample as a negative. With scores from 81% to 88% the precision proves to be a strong indicator

for correctly predicted pixels. The recall score, which presents the reliability of classes in the

predicted image, is the fraction of correctly predicted pixels with regard to all classified pixels.

The recall scores vary from 82% to 88% with the FCN Delhi432 100 achieving the highest score

again.

FCN oPA mIoU κ precision recall

FTD Mumbai321 50 L5 71.63% 44.55% 58.36% 69.49% 69.50%

FTD Mumbai321 50 L4 77.21% 51.24% 67.72% 76.18% 76.17%

FTM Delhi321 50 L5 78.49% 52.64% 68.95% 78.38% 78.82%

FTM Delhi321 50 L4 81.12% 56.67% 69.51% 79.32% 78.94%

Table 5.2: Overall accuracy measurements for all transfer learned FCNs. Networks are initialized
on one pre-trained FCN and fine-tuned to another city’s dataset. The fine-tuned FCNs are only
trained on the last (convolutional block 5) and penultimate (convolutional block 4) layer of the
network.

The fine-tuned FCNs in table 5.2 show overall slightly worse accuracy scores than the pre-

trained FCNs. With a Kappa score of 58% to 69% the results are still moderately acceptable, but

the overall pixel accuracy drops down to 10% compared to pre-trained FCNs. Equipping the FCN

with more features to learn increases accuracy measurements across all fine-tuned FCNs. Accuracy

gains of about 5% can be measured for all accuracy metrics when more layers are available for

learning. The mean intersection over union drops below 50% for the FTD Mumbai321 50 L5

FCN.

FTMD MumbaiE321 50 L5 93.11% 75.71% 90.57% 93.28% 93.31%

FTMD DelhiE321 50 L5 93.07% 77.93% 91.41% 93.76% 93.77%

FTD MumbaiE321 50 L5 68.44% 38.22% 56.41% 68.38% 68.12%

Table 5.3: Overall accuracy measurements for all fine-tuned FCNs on an enforced dataset con-
taining only images with informal settlements. The fine-tuned and enforced FCNs are trained
only on the last (convolutional block 5) layer of each FCN.

Results for enforced learning techniques are presented in table 5.3. Using only ground truth

images containing informal settlements a pre-trained FCN is fine-tuned a very limited set of data.

These FCNs are only trained for 50 epochs on the last (convolutional block 5) layer of each FCN.

Since fine-tuning the combined dataset MD321 100 on already learned image tiles the results

for both FCNs FTMD MumbaiE321 50 L5 and FTMD DelhiE321 50 L5 achieve accuracy metrics of

over 90% oPA and the mean IoU of over 75%. These metrics will be not considered in the final

evaluation since they can contain training images due to a random shuffel of images. Fine tuning

from the Delhi dataset to the enforced Mumbai dataset results in a oPA of 68% with a mIoU of

only 38%.
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5.1.2 Accuracy measurements for informal settlements

Because informal settlements are underrepresent in the ground truth dataset, overall accuracy

measurements tend to distort metrics of an imbalanced dataset, especially in Delhi where slums

only make up 1.8% of all available land use / land cover classes in the ground truth dataset.

The following metrics are specifically set up to extract accuracy measurements for slums. With

the overall Pixel Accuracy (oPA), mean Intersection over Union (mean IoU), precision and recall

similar metrics are chosen for benchmarking all trained FCNs.

FCN oPAslums mIoUslums precisionslums recallslums

Mumbai321 100 73.90% 65.05% 88.53% 86.84%

Mumbai432 100 77.54% 66.12% 78.86% 85.10%

Delhi321 100 44.43% 39.98% 58.38% 59.41%

Delhi432 100 53.25% 48.85% 59.86% 61.27%

MD321 100 77.70% 67.65% 78.07% 86.95%

Table 5.4: Accuracy measurements for informal settlements of all pre-trained FCNs. The networks
are trained for 100 epochs.

Table 5.4 shows accuracy metrics for informal settlements on pre-trained FCNs. The FCNs

show great differences in the used dataset. The overall Pixel Accuracies for the Mumbai dataset

range from 74% to 77%, with a mean IoU of 65%. The FCNs trained on the Delhi dataset

perform in an unsatisfactory manner. Precision and recall metrics for both Delhi datasets present

low precision and under classification of informal settlements. The combined dataset MD321 100

assumes to the task of correctly mapping a slum’s boundaries in different cites with an mean IoU

of 67%, although its precision of 78% indicates that some informal settlements were missed.

FCN oPAslums mIoUslums precisionslums recallslums

FTD Mumbai321 50 L5 66.70% 55.79% 75.84% 75.36%

FTD Mumbai321 50 L4 75.11% 62.54% 77.25% 81.90%

FTM Delhi321 50 L5 39.45% 35.76% 38.37% 15.08%

FTM Delhi321 50 L4 53.08% 45.11% 82.96% 38.80%

Table 5.5: Accuracy measurements for informal settlements for all transfer learned FCNs. Net-
works are initialized on one pre-trained FCN and fine-tuned to another city’s dataset. The fine-
tuned FCNs are only trained on the last (convolutional block 5) and penultimate (convolutional
block 4) layer of the network.

Transfer-learned FCNs gradually decline in accuracy as seen in table 5.5. A drop of 5% to

10% in overall pixel accuracy occurs if only the last layer is fine-tuned to a new dataset. The oPA

improve considerably when more layers are available for learning and the FTD Mumbai321 50 L4

FCN reaches almost same pixel accuracy of a pre-trained FCN with 75%. Similar trends of

improvement can be seen for the other FCNs when fine-tuning the FCN from the fourth convolu-

tional block. Most strikingly the FCN FTM Delhi321 50 L4 showing dissatisfactory results is able

to score very high in its precision metric of 83%, combined with a poor recall metric of just 38%.

To sum it up while most informal settlements are detected, a great deal of miss-classification is

also present.
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FCN oPAslums mIoUslums precisionslums recallslums

FTMD MumbaiE321 50 L5 93.37% 85.92% 95.73% 97.24%

FTMD DelhiE321 50 L5 90.19% 81.21% 96.38% 97.68%

FTD MumbaiE321 50 L5 71.85% 57.15% 80.86% 85.55%

Table 5.6: Accuracy measurements for informal settlements

Results for enforced learning techniques are presented in table 5.6. Using only ground truth

images containing informal settlements a pre-trained FCN is fine-tuned on a very limited set of

data. These FCNs are only trained for 50 epochs on the last (convolutional block 5) layer of

each FCN. Since fine-tuning the combined dataset MD321 100 on already learned image tiles the

results for both FCNs FTMD MumbaiE321 50 L5 and FTMD DelhiE321 50 L5 score with accuracy

metrics of over 90% oPA and the mean IoU of over 80%. They will be not considered in the

final evaluation since these FCNs can contain training images due to a random shuffel of images.

Training accuracy still scores higher with about 5% than validation image tiles for both FCNs. An

enforced learning technique to fine-tune the FCN FTD MumbaiE321 50 L5 from the Delhi dataset

to the Mumbai dataset is tested with only 1652 image tiles for training and 552 validation images.

Overall pixel accuracy is 4% worse than the best scoring fine-tuned FCN FTD Mumbai321 50 L4.

The difference can be caused by learning on a complete dataset of 5616 training images and 1872

validation image tiles. Nevertheless the enforced FCN scores better in oPA and mean IoU then the

fine-tuned FCN only trained on the last layer of a pre-trained network of FTD Mumbai321 50 L5.

Moreover FTD MumbaiE321 50 L5 proves best in class precision and recall scores for informal

settlements with scores of 81% and 86% respectively.

Figure 5.1 and 5.2 present an overview of error bars for accuracy metrics of informal settlements

of all trained FCNs. The oPA in illustration 5.1 shows that all FCNs suffer from high standard

deviations. Similar measurements are present in the accuracy scores for the mean IoU for slums

in figure 5.2. In general both illustrations confirm an improvement when training a pre-trained

FCN on a false colour composite. Mumbai432 100 and Delhi432 100 prove that FCNs can adapt

from a true color ImageNet data to false colour remote sensing images. Furthermore when using

fine-tuning techniques FCNs tend to score better if more layers are available for training. Both

FCN versions of the FTx y321 50 L4 FCN, where x and y represent the dataset for each study

area, deliver better accuracy metrics than their FTcityA cityB321 50 L5 counterpart. Training

a FCN on a combined dataset with the MD321 100 FCN shows that applying it universally to

multiple cities is possible with highest scoring results for informal settlements with an oPA of

77.70% and a mean IoU of 67.65%.

5.2 Using fully convolutional networks for

large scale slum mapping

Images used for training all variations of the FCN-vgg19 are commonly only of small sizes, since

the learning process within the neural network is very compute intensive. Since remote sensing

images cover large areas, the scenes used for the prediction informal settlements were split into

150, 000 tiles for Mumbai and 300, 000 tiles for the complete Delhi scene. With an overlap of 150

pixels for each tile enough data for an majority based mosaicking method was chosen. The area

for classifying Mumbai stays with 103km2 the same, while the Delhi area increases from 80km2
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Figure 5.1: Comparative alignment of error bars representing the oPA and its standard deviation
for all FCNs. Red error bars correspond to the Mumbai dataset, while green bars apply to the
Delhi dataset. The blue error bar describes the metric for the combined dataset of both cities.

used for training the FCN to 300km2 for classification. Class segmentation results can be seen in

figure 5.3 for the pre-trained FCN MD321 100.

Using the same random sample accuracy evaluation used for testing the ground truth data in

section 4.1.2 the mosaics predicted by the FCN MD321 100 are tested in table 5.7 for the Mumbai

mosaic and in table 5.8 for the Delhi mosaic. The confusion matrices compare the FCN prediction

to the reality of the VHR satellite image input data. An increase in performance compared to

section 5.1 can be seen throughout the accuracy metrics. Overall accuracy for Mumbai is 90.6%

with a Kappa value of 88.3% and for Delhi 89.3% with a Kappa value of 86.6%. Precision scores

for informal settlements are with 93% for Mumbai and 92% for Delhi very high. Recall values

confirm the high accuracy metrics scored by the FCN with values of 96% and even 98%. With

a sample size of 1000 random points accuracy metrics are represented by a 95% confidence level

with 1% margin of error.

Extracting informal settlements from the mosaics in figure 5.3 yields the input geo-data for

the process to provide water to the map slums via a holistic water supply network. Illustration

5.4 presents an overview on detected informal settlements in both scenes compared to the ground

truth dataset for each dataset. The y-axis showing the size of detect slums is logarithmic due a

large range in smallest and larges informal settlements. The error bars illustrate that the FCN
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Figure 5.2: Comparative alignment of error bars representing the mIoU and its standard deviation
for all FCNs. Red error bars correspond to the Mumbai dataset, while green bars apply to the
Delhi dataset. The blue error bar describes the metric for the combined dataset of both cities.

Classification Formal Ground Vegetation Water Slum Sum Precision

Formal 172 19 6 1 2 200 86%

Ground 8 179 10 2 1 200 90%

Vegetation 7 6 184 0 3 200 92%

Water 0 6 8 186 0 200 93%

Slum 10 4 1 0 185 200 93%

Sum 197 214 209 189 191 1000

Recall 87% 84% 88% 98% 96%

Table 5.7: Confusion matrix for the accuracy assessment of the Mumbai FCN.

is able to detect even small patches of informal settlements. The FCN contains 113 more slums

than the ground truth dataset in Mumbai and in Delhi the difference is 178. Minimum size for

slums in Mumbai in the ground truth dataset is 1017m2, while the FCN can detected slums as

small as 474m2. In Delhi smallest detect slums by the FCN are with 130m2 30m2 smaller than

in the ground truth dataset.



5.3. Investment for water supply infrastructure 67

Figure 5.3: ...

Classification Formal Ground Vegetation Water Slum Sum Precision

Formal 174 22 2 0 2 200 87%

Ground 16 172 10 2 0 200 86%

Vegetation 0 18 180 2 0 200 90%

Water 0 8 8 184 0 200 92%

Slum 5 11 1 0 183 200 92%

Sum 195 231 201 188 185 1000

Recall 90% 74% 89% 98% 98%

Table 5.8: Confusion matrix for the accuracy assessment of the Delhi FCN

5.3 Investment for water supply infrastructure

Informal settlements detected by the FCN MD321 are used as input geodata to calculate the

cost for three approaches optimized to a shortest path connecting the water supply network to all

slums. Investment cost is depended on the total length of the network and its diameter, which is

defined by the volume needed to supply slum dwellers with enough water. Since all three network

approaches use different parameters for their infrastructure, cost differs depending on pipeline

length, diameter and duration of the excepted service life. Results can be seen in table 5.9 for

the water supply network in Mumbai and in table 5.10 for Delhi. Table 5.9 shows an expected

increase in the investment for the water supply network using geodata from the FCN since it

contains more informal settlements. After 10 years of operation the water supply network using

the simplest approach connecting all slums with a pipeline via a shortest path and one unique

diameter of 300mm for all pipe costs roughly 16, 4 million e. Both hierarchical approaches are

3 − 4 million e more expensive. Differences in both hierarchical approaches are minimal with

1million e after a 10 year duration. The variable cost Cvar increases more over time the larger

the pipe diameters are. Thus the water supply network connecting the largest slums is able



68 5. Results

Figure 5.4: Boxplot showing difference in slum present in the ground truth dataset and slums
detected by the FCN.

to use smaller pipe diameters for the cluster networks and in result making the network more

cost efficient over time. Table 5.10 shows a very big increase in the investment for the water

supply network in Delhi using geodata from the FCN. Since the FCN detects 178 more informal

settlements investment cost increases considerably for the water supply network. After 10 years

of operation the water supply network connecting all slums with pipeline via a shortest path and

using one unique diameter of 117mm for all pipes costs roughly 13 million e. Both hierarchical

approaches are 300, 000-2million e more expensive. Again the hierarchical approach connecting

all slums through the largest informal settlements of each cluster costs less than a connection

through the centre slums.
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Mumbai Water supply network (WSN) GTdata FCN MD321

WSNall
slums 3,886,812e 5,858,511e

1 Day WSN large
slums 4,835,210e 6,800,944e

WSN centre
slums 4,767,982e 6,597,901e

WSNall
slums 4,932,815e 6,909,855e

1 Year WSN large
slums 5,759,028e 8,091,021e

WSN centre
slums 5,779,271e 8,011,707e

WSNall
slums 14,373,357e 16,398,605e

10 Years WSN large
slums 14,096,237e 19,733,611e

WSN centre
slums 14,905,878e 20,770,923e

Table 5.9: Investment for a water supply network for informal settlements in Mumbai. A compar-
ison of cost for the ground truth dataset and geodata predicted by a FCN for different operating
times.

Delhi Water supply network (WSN) GTdata FCN MD321

WSNall
slums 2,314,813e 6,341,265e

1 Day WSN large
slums 2,534,046e 7,022,936e

WSN centre
slums 2,807,210e 7,020,193e

WSNall
slums 2,604,498e 7,002,613e

1 Year WSN large
slums 2,821,550e 7,178,039e

WSN centre
slums 3,199,596e 7,777,477e

WSNall
slums 5,218,825e 12,971,088e

10 Years WSN large
slums 5,416,195e 13,303,030e

WSN centre
slums 6,740,774e 14,611,763e

Table 5.10: Investment for a water supply network for informal settlements in Delhi. A comparison
of cost for the ground truth dataset and geodata predicted by a FCN for different operating times.
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6 Discussion and Conclusion

6.1 Discussion

In this section the results of the study are discussed. First, the suitability of using FCNs to

identify informal settlements in urban environments is evaluated concerning the the different

training techniques of pre-trained FCNs and fine-tuned FCNs. Subsequently, an interpretation of

the investments to produce a large scale water pipe line infrastructure is discussed.

6.1.1 Interpretation of the results for FCN training techniques

Slum mapping using pre-trained FCNs

The analysis of class segmentation accuracies of multiple pre-trained FCNs reveals that deep

learning methods are very capable for slum mapping in an urban environment. The overall Pixel

Accuracies for slums reach up to 77% and up to 67% for the mean Intersection over Union. Thus

FCNs deliver a reliable classification result, considering the difficulty of extracting geo-spatial

properties of informal settlements in different cities. The difference between a false colour com-

posite dataset and its true colour counterpart perform very similar with only minor improvements

using a false colour dataset. Comparing the best results of each FCN for the true and false colour

composite shows differences of lower than one percent. This aspect is decidedly interesting since

all pre-trained FCNs are initialized with weights from the ImageNet dataset containing 3 channel

true colour composite pictures. This infers that the used FCN is quite capable adapting from non

remote sensing pictures to multi spectral satellite images.

Illustration 6.1 gives an overview of all pre-trained FCNs. In general the FCNs perform very

reliable for large scale slum mapping. Boundaries are smoother than presented in the ground

truth and show a more true to reality structure. All FCNs can recover the fine structures present

in its input image and seem to spot informal settlements independent of its size in the image tile.

Most interestingly poor results from the FCNs trained on the Delhi dataset can be explained due

to the fact of very difficult differences in formal buildings and slums. FCN Delhi321 100 in row

four shows the FCN detected an informal settlement while the ground truth dataset is labeled for

formal buildings. Neither official data nor visual inspections can interpret the result for this tile.

In the Delhi dataset formal buildings can show similar morphological structures to slums, which

makes class segmentation non trivial. These effects can be seen throughout the Delhi dataset.

The results show that the accuracies depended highly on the quality of the ground truth data.

This effect is made more challenging due to the fact that only few informal settlements are present

in the ground truth data. This can be seen in very low recall scores throughout the FCNs trained

on the Delhi dataset. The FCNs tends to perform better than the ground truth data considering

some visible artefacts of the quad-tree segmentation are neglected and adapted to the reality of

the input image. This can cause poor accuracy results when comparing the prediction to the

ground truth data.
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Figure 6.1: Comparative alignment of all pre-trained FCNs.

A combination of image tiles from Mumbai and Delhi in MD321 100 shows that a FCN can

generalize reliable between different datasets as seen in the last row of figure 6.1. The FCN

delivers with 67% the highest mIoU of all pre-trained FCNs. Semantic class segmentation of

informal settlements can be achieved using a generalized FCN containing image-tiles of different

cites. The Mumbai and Delhi dataset presents morphological structures different enough in the

ground truth data to propose a challenge for the FCN to predict semantic classes. Especially in

the aspect of the land use class of interest, because slums are not only different from its formal
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counterpart but are also always different from each other. The FCN MD321 100 manages to show

that this difficult task can be tackled.
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Figure 6.2: Comparative alignment of all fine-tuned FCNs.

Applying transfer-learning to pre-trained FCNs

Using transfer-learning techniques to test the ability of FCNs to generalize to different cities,

each city’s dataset is fine-tuned to another dataset. As shown in section 5.1.2 fine-tuned FCNs

perform with about 2% to 5% for all accuracy metrics slightly worse than pre-trained networks.

A comparative alignment in figure 6.2 shows the transfer-learned FCNs still present respectable

segmentation performance. With regard to informal settlements both FCNs trained on the Delhi

ground truth data and transfer learned to Mumbai show that enough data on informal settlements

should be present to counter the problem of an imbalanced class distribution. This effect can cause

sever problems when training the FCNs the other way around where the segmentation in row 3

of figure 6.2 shows that the FTM Delhi321 50 L5 could not identify the slum present in the

ground truth data. The FCNs trained from the fourth layer of the FCN show better results

when adapting the learning process to other cities. FTM Delhi321 50 L5 shows the importance

of layers for learning to detect informal settlements. While in FTM Delhi321 50 L5 informal
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settlements of the ground truth data are often missed, in FTM Delhi321 50 L4 the classification

performs better with about 10% for all accuracy metrics. Small differences in geomorphological

structures between formal and informal buildings present a complex challenge when fine-tuning a

FCN, while the other way around does not affect the FCN in the same manner. This reinforced

the importance of having plenty and precise ground truth data especially when dealing with an

imbalanced class distribution. Comparing the amount of slums in the ground truth data of 10%

in Mumbai and only 2% in Delhi shows that this imbalance provides a limit below the 10% where

class segmentation can be affected by low accuracy scores.

6.1.2 Analysis for large scale slum mapping using a FCN

0 21 Kilometers

0 1.000500 Meters

0 10050 Meters

0 10050 Meters

0 10050 Meters

Legend

Ground Truth

FCN

Figure 6.3: Comparison of informal settlements detect by the FCN MD321 and slums present in
the ground truth dataset in Mumbai.
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Legend

Ground Truth

FCN

Figure 6.4: Comparison of informal settlements detect by the FCN MD321 and slums present in
the ground truth dataset in Delhi.

Figure 6.3 and 6.4 show the difference in detected informal settlements in Mumbai and Delhi

in comparison to available slums in the ground truth data. The top left images show all detected

slums in the classified image. The differences between Mumbai and Delhi are quite big. While

in Mumbai slums take up much more space in Delhi informal settlements are smaller and not as

dense. The median size of slums in Mumbai is with 5385m2 606% higher than the size of slums

in Delhi with 762m2. For both figures the bottom left image shows a subsection comparing the

detected slums from the FCN in red with the slums present in the ground truth data in black. In

figure 6.3 the subsection in Mumbai shows that although many slums are present in the ground

truth dataset, some smaller patches of informal settlements could only be detected through the

FCN. In figure 6.4 the bottom left subsection show that many informal settlements are missing

in the ground truth dataset. On the right side of figure 6.3 and 6.4 three examples of a slum’s
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boundaries are presented. The FCN prediction is highlighted in red, while the ground truth

dataset is labelled in black boundaries. In both instances the FCN is able to form better and

more detailed borders around detected informal settlements.

6.1.3 Investment for a water pipeline infrastructure

The optimal water supply network for Mumbai and Delhi is a holistic approach to provide water

for the poor. Following a multidisciplinary way of working, the investment is compared for a

water pipe line infrastructure between the informal settlements in the ground truth dataset and

the best performing FCN. A mathematical approach for an optimization of a shortest path along

the existing street network is the basis for the cost functions to calculate the investment for

different periods of operating time. Comparing the cost of investment for all three approaches for

the two dataset the straightforward method of connecting all informal settlements with one unique

water pipeline can be considered the cheapest solution. Using a more complicated hierarchical

approach with multiple pipelines of variable pipeline diameters the cost increases. Water supply

networks for Mumbai and Delhi can be seen in figure 6.5 and 6.6.

Mumbai water supply network

The ground truth dataset is more biased towards larger informal settlements. While the minimum

size for slums in the reference data is roughly 1000m2 the FCN is capable of to identify even smaller

slum patches of 470m2. Figure 5.4 shows these differences, where the FCN is more capable of

slum mapping for smaller areas. This obviously enlarges the amount of informal settlements.

This aspect alone makes the investment cost of the pipeline network more expensive. Figure

6.5 illustrates the results for a water supply network optimized for a shortest path for all three

proposed approaches using different geodata. The first row represents the pipeline network using

the reference data as input, while the bottom row calculates the water supply network using

informal settlements mapped by the FCN. The first column shows some similarities with the

networks approach. All slums are connected by their shortest path along the road infrastructure.

The FCN could detected about 100 more informal settlements not contained in the ground truth

data. This has a more branched appearance. The second row in figure 6.5 shows the hierarchical

approach using two combined pipeline networks. While one network with a large diameter provides

water for all slums through the largest settlements of a geospatial cluster, the water supply

network for all slums of each cluster are connected through a shortest path, where pipes use

smaller diameters. The second hierarchical approach shown in the third column connects all

informal settlements with a separate network through the centre slums of each geospatial cluster.

Most interestingly the networks using the same hierarchical approach show no similarities in

the underlying network connecting all clusters. The shortest path connecting each cluster is

thoroughly dependent on the clusters structure and location.

Delhi water supply network

For Delhi the difference in detected informal settlements is even greater than for the Mumbai

dataset. As seen in figure 5.4 the ground truth dataset only contains 98 slums while the FCN

could map 276. This increase in detected informal settlements has an effect on the water supply

network infrastructure. Whereas the a network connecting all slums via a shortest path showed

some similarities for the Mumbai dataset, the difference in connected slums for Delhi results in

a completely new water pipeline network as seen in figure 6.6. With a pipeline length of 194km

in the FCN dataset the length for the network connecting all slums via a shortest path is 123km

longer than the 71km pipeline connecting all slums of the ground truth dataset. The second row

in figure 6.6 shows the hierarchical approach using two combined pipeline networks. While one
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Figure 6.5: Comparative alignment of all water supply networks for Mumbai. The first row show
results for a pipe network optimzed for the ground truth data, while the second row presents the
rust for geodata aquired from a FCN.

network with a large diameter provides water for all slums through the largest settlements of a

geospatial cluster, the water supply network for all slums of each cluster are connected through a

shortest path, where pipes use smaller diameters. The second hierarchical approach shown in the

third column connects all informal settlements with a separate network through the centre slums

of each geospatial cluster.

6.2 Conclusion

With the ongoing trend of urbanization, the pressure to the cities of the world is growing. Huge

urban areas with more than 10 million inhabitants are emerging. In the next two decades the

number of such mega cities is predicted to increase to 41 [UnitedNations, 2014]. Alongside, cities

face various challenges, like increasing usage of infrastructure, increasing demand for jobs or health

risks. The growing trend of urbanization also affects the conditions of the living environment.

Especially in developing countries with less possibilities to counteract these challenges, the ur-

banization leads to the development of illegal or informal settlements. Slums are predominantly

located on unappealing or even polluted land, feature no durable housing and lack access to clean

water. Until 2020 one and a half billion people worldwide will live under such sub-standard living

conditions [Arimah, 2010]. These circumstances negatively affect the physical and psychological

health of the slum dwellers [Snyder et al., 2014]. This led the United Nations to record their goals

for sustainable development. One goal addresses the right of every human to access of water.

To provide access to water, the United Nations formulated the need for analysing, mapping and

monitoring the development of slums. The methodology of geographical remote sensing using

satellite images enables land use / land cover mapping of large areas. Often only small areas of
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Figure 6.6: Comparative alignment of all water supply networks for Delhi. The first row show
results for a pipe network optimzed for the ground truth data, while the second row presents the
rust for geodata aquired from a FCN.

investigation were chosen for methodological development but few exhaustive city-wide mappings

were conducted.

With the help of recent trends in deep learning, fully convolutional networks can provide valu-

able results for slum mapping. To investigate the capability of FCNs for extensive identification of

informal settlements in urban areas, the mega cities Mumbai and Delhi were chosen as study areas.

In order to train and validate the segmentation networks, an area wide reference dataset was cre-

ated. This ground truth dataset is used for the training of multiple fully convolutional networks.

In a broad experimental setup of mapping slums pre-trained FCNs are used for class segmentation

of each dataset in Mumbai an Delhi. Overall Pixel Accuracy for each dataset achieves up to 88%

for all land use / land cover classes and 77% for slums. Using fine-tuning techniques to study the

FCNs ability for transferring learned knowlegde to different cities could achieve up to 75% Pixel

Accuracy when a FCN is trained on one city and fine-tuned on another. With a mean Intersection

over Union of up to 62% the FCN-vgg19 is very capable of accurately extracting boundaries of

informal settlements from very high resolution optical data. Even though it is possible to classify

slums in a large area, the conducted experiments strongly rely on an extensive reference dataset.

This is especially present in the Delhi ground truth dataset, where only few informal settlements

are covered in the reference data, which can lead to detecting slums not present in the ground

truth dataset.

Analysing the extracted geographical data provided by the FCN’s segmentation a fluid system

with water pipes is determined. A mathematical optimization algorithm finds the shortest path

connecting informal settlements to the road network. Using adapted cost functions the investment

for a water supply network can be calculated. Modelling various networks a cost of 16 million e for
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Mumbai and 14 million e for Delhi is necessary to supply all slum dwellers with enough clean

water over a time span of ten years.

With the aim of mapping, analysing and monitoring slum areas in mega cities to provide

water for the poor, further research could focus on transferring the results obtained in this study

to even more test sites including other cities of other cultural regions towards a global dataset.

Moreover, since the current approach is very dependent on sufficient available data of informal

settlements, further optimization of an improved ground truth dataset could benefit segmentation

results profoundly.
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Verwertungsrechte werden dadurch nicht eingeräumt. Die Arbeit wurde bisher weder im In- noch
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