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Abstract—In this paper a new method for relative train local-
ization in global navigation satellite system (GNSS) denied areas
is proposed. The proposed localization system is long-term stable
and based solely on magnetometer and odometer measurements.
The system utilizes that the magnetic field shows strong and time
persistent variations along a railway track. Two trains driving on
the same track will observe the same magnetic field variations but
with a certain shift. This shift depends on the relative position of
the trains and their speed. By measuring the train speed with an
odometer it becomes possible to estimate the relative position by
comparing the magnetometer and odometer measurements of two
trains. In this paper we use cross-correlation to obtain the relative
position estimate from a batch of measurements. A subsequent
Kalman filter is used to smooth the estimate and to incorporate
prior knowledge of the train dynamics. We further derive
the Cramer-Rao lower bound (CRLB) for the relative position
estimate to investigate the theoretically achievable localization
accuracy and to approximate the variance of the relative position
estimate in the update step of the Kalman filter. In an evaluation
the feasibility and accuracy of the approach is shown based on
measurement data collected with a train driving in a rural area.
The results indicate that with the proposed method the relative
position can be estimated with sub-meter accuracy.

I. INTRODUCTION

The capacity and flexibility in current railway systems is
limited by the large safety distances between consecutive
trains. To lower the safety distances while guaranteeing a safe
operation, a higher degree of automation must be introduced
into rail traffic. A new technique that can enable higher
flexibility and increase the capacity of current track networks
is virtual coupling. Virtual coupling uses a distance control
loop to automatically keep a predefined distance between
trains. This lowers the safety distances to a few meters and
replaces the mechanical coupler between different trains. The
replacement of the mechanical coupler with a control loop
allows trains to drive in a platoon that can split and merge
while driving. For virtual coupling, the estimation of the
relative position or respectively the distance between trains is
crucial. This estimate must be available in all environments
including tunnels, underground and urban areas. In these
scenarios GNSS signals are completely blocked or at least
strongly distorted. In this paper, we therefore propose a new
method for relative train localization that uses solely magnetic
field and train speed measurements. The method is based on
the observation that ferromagnetic infrastructure elements in
the railway environment introduce strong distortions into the
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Fig. 1. Relative train localization with magnetic signatures.

earth magnetic field. Typically these infrastructure elements
like rails, railroad ties and poles, have fixed positions that
result in position dependent magnetic distortions. Therefore
the distortions can be seen as a magnetic signature char-
acteristic for a specific part of the track network. In our
prior work, we investigated this magnetic signatures in a
typical railway environment [1], [2]. We also showed a long-
term stable absolute localization approach based solely on
magnetometer and inertial measurement unit (IMU) measure-
ments [3]. The idea of absolute localization with the magnetic
field is also investigated for indoor environments and roads.
In [4] and [5] the authors propose to use a particle filter
to track the position of a pedestrian with measurements of
the prior mapped magnetic field and measurements of an
IMU. A similar approach for a wheeled indoor robot is
introduced in [6]. Instead of an IMU, wheel speed sensors are
incorporated to measure the displacement between consecutive
measurements. In [7] the authors utilize a particle filter to
localize a car on the road solely with the magnetic field.
Like the other approaches mentioned before this requires a
prior recorded map of the magnetic field. In this paper the
focus is on estimating the relative position or distance between
trains rather than the absolute position. More precisely, the
so called on-track distance is estimated that accounts for the
track geometry. The on-track distance is defined by the length
of the track between two consecutive trains and therefore
can be used directly as an input to the control loop of
virtually coupled trains. In contrast to estimating the absolute
position, the proposed relative localization approach does not
require a prior recorded map of the magnetic field. Instead
each train of a virtually coupled platoon creates a magnetic
signature by measuring the magnetic field and relative position



information from an odometer for a couple of hundred meters
of track. To enable relative localization the trains share their
signatures via a communication link with other trains in the
platoon. The platoon drives on the same track and therefore the
trains measure the same magnetic field and generate similar
signatures. The only difference between the signatures is that
they are shifted relative to each other. Therefore, to estimate
the on-track distance between two trains the shift between their
magnetic signatures must be found. This can be achieved by
calculating the cross-correlation of two signatures. The most
likely on-track distance is where the correlation function has
its maximum value. A sketch of the basic idea is shown also
in Fig. 1 with an exemplary magnetic field observed in the
railway environment.

To suppress outliers and to filter the on-track distance
estimate from the correlator, the correlator estimate is used
as a measurement in a Kalman filter. The Kalman filter
includes a model for the dynamics of the on-track distance
and the relative train speed. Further the CRLB for the distance
estimation is derived to investigate the theoretical localization
accuracy that can be achieved with the magnetic signatures.
The CRLB is then used as a quality measure for the correlator
distance estimate. This is particularly important in the update
step of the Kalman filter to set the measurement covariance
to an appropriate value.

II. METHODS

A. Magnetic field signatures for localization

For the creation of the signatures the magnetic field is
measured with a magnetometer and the train speed is recorded
with a suitable sensor. By integrating the speed, it is possible
to obtain the magnetic field with respect to the driven dis-
tance. Depending on the train speed the distance between two
magnetic field samples is changing. To get an equally spaced
signature the magnetic field is interpolated on an equidistant
grid with a fixed spacing ∆s. We call this process also spatial
transformation since the magnetic field samples in the time
domain are transformed into a magnetic signature that contains
the measured magnetic field along the track which can be
seen to be in the spatial domain. An example of a 200 m long
signature is shown in Fig. 2. Due to the interpolation on a
constant grid, the signature of train i can be represented by a
simple finite sequence

(mi
n)n=0,...,N−1. (1)

In this sequence each value mi
n is the measured magnetic

field at position n∆s. The position is relative to the current
position of the train, for n = 100 and ∆s = 0.1 m this means
that m100 is the magnetic field 10 m behind the current train
position and m0 is the newest magnetometer measurement.
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Fig. 2. Example of a 200m long magnetic signature. BN is the measured
magnetic field normalized with respect to the undistorted earth magnetic field.

B. Relative position estimation

The estimation of the on-track distance d between train i
and train j is based on the cross-correlation of their magnetic
signatures

d̂corr = ∆s arg max
m∈[0,N−1]

(
N−m−1∑
n=0

mi
n+m ·mj

n

)
. (2)

When the distance between the trains is zero both signatures
would contain the same magnetic field and the correlation
function maximum should be located at shift m = 0.
Assuming that one of the signatures is perfectly recorded
without noise, the cross-correlation is a matched filter and
the maximum likelihood estimator of d. If the distance d is
greater than zero, the signatures contain parts that are common
for both trains and parts that are exclusive to each signature.
For a distance of 10 m and a signature length of 100 m the
signature contain 90 m common magnetic field and 10 m that
is exclusive to one signature. Even though this is not perfect
for finding the shift between the two signatures and therefore
the on-track distance, it still should be possible as long as
the signatures contain a sufficiently large part of common
magnetic field. For large distances this implies that also large
signature lengths are required.

C. Filtering of the cross-correlation estimate

Errors in the measurements of the train speed and the
magnetic field introduce errors in the estimate of the on-track
distance (2). To filter this estimate, a Kalman filter with a
time discrete kinematic model capturing the relative dynamics
of two trains is used. The relative movement of the trains is
modeled by a piecewise constant white acceleration model as
proposed e.g. in [8]

xk =

[
dk
ḋk

]
=

[
1 T
0 1

] [
dk−1

ḋk−1

]
+

[
1
2T

2

T

]
nAcc. (3)

In (3) T is the sampling period, k the discrete time index
and x =

[
d ḋ

]T
is the state vector containing the on-track



distance d and the relative speed ḋ. The dynamics of the
constant acceleration model is driven by the Gaussian process
noise nAcc ∼ N (0, σ2

Acc). The choice of σ2
Acc is important and

should fit to the application. According to [8], the value should
be in the range 0.5 amax ≤ σAcc ≤ amax, where amax is
the maximal acceleration. For a train amax is approximately
±1 m/s2, for the change of the relative speed this means
that in the extreme case were the leading train is doing an
emergency brake and the following train is fully accelerating
amax is ≈ 2 m/s2.

The Kalman filter is updated with the on-track distance es-
timate d̂corr from the cross-correlation, hence the measurement
model is

d̂corr = Hx + wd =
[
1 0

]
x + wd (4)

with the measurement matrix H and the Gaussian measure-
ment noise wd ∼ N (0, σ2

d). The proper choice of the mea-
surement noise variance σ2

d is discussed in the next section.

D. Theoretical accuracy of the on-track distance estimate

The quality of the on-track distance estimate depends on
the shape of the magnetic field. For the Kalman filter update
step it is desirable to adapt the variance of the measurement
according to the actually measured magnetic field. To obtain
a measure for this variance we propose to use the CRLB.
In particular we propose to use the CRLB for time delay
estimation. In time delay estimation it is assumed that a known
signal is transmitted to a receiver, were it is received with
a certain time delay and noise. The estimation of this delay
is identical to the problem of finding the shift between two
magnetic signatures.

1) CRLB for time delay estimation: The CRLB for time
delay estimation of a signal with additive white Gaussian noise
is well known and can be found in the literature e.g. [9]

Var(τ) ≥ σ2

N−1∑
k=0

[
∂
∂τ s(kT − τ)

]2 . (5)

Here σ2 is the variance of the white Gaussian noise at
the receiver that is superimposed on the transmitted signal
s(·), τ is the time delay and T is the sampling period at
the receiver. For the purpose in this paper this formulation
cannot be applied directly because the signal s(·), here the
magnetic signature, is not known analytically. Instead only
a measurement sequence is known. A transformation of the
CRLB (5) into the frequency domain according to [9] solves
this issue

Var(τ) ≥ 1
ES

N0/2
β

=
σ2T

ESβ
(6)

where β is the mean square bandwidth

β =

+∞∫
−∞

(2πf)2|S(f)|2df
+∞∫
−∞
|S(f)|2df

(7)

10−6

10−4

10−2

C
R

L
B

[m
2 ]

σ2 = 10−3 σ2 = 10−4 σ2 = 10−5

0 500 1000 1500 2000 2500

−0.6

−0.4

−0.2

0

0.2

Position on Track [m]

B
N

Fig. 3. Magnetic field along a 2.6 km long track and the corresponding
CRLB of the on-track distance for different values of the magnetometer noise
variance.

and Es is the signal energy

ES =

Tobs∫
0

s(t)2dt. (8)

For discrete sequences the integrals in (7) and (8) have to be
approximated. For β we can write

β ≈
4π2

N/2∑
n=0

f2
n|Sn|2

N/2∑
n=0
|Sn|2

(9)

where Sn are the coefficients of the fast Fourier transform
(FFT) of the signal s(·) and fn = 1

N∆T n are the corresponding
discrete frequencies. The signal energy is obtained from the
Riemann sum approximation of (8)

ES = T

N−1∑
k=0

|s(kT )|2. (10)

2) CRLB for on-track distance estimation: For on-track
distance estimation the CRLB is equal to (6) when the time
delay τ becomes the on-track distance d and the sampling
period T is replaced with the distance ∆s between two
samples in the magnetic signature. The mean square bandwidth
(9) and the signal energy (10) are now calculated based on the
sequence (m)k and σ becomes the standard deviation of the
magnetometer sensor noise.

Fig. 3 shows the CRLB for a 2.6 km long track for different
values of σ2. The CRLB is calculated with the latest 200 m of
magnetic field. For the CRLB at track position 500 m therefore
the magnetic field recorded from 300 to 500 m is considered.
To reduce the effect of measurement noise on the CRLB
the magnetic field was filtered in the spatial domain with a
Butterworth filter with a cut-off frequency of 0.5 m−1 before



the CRLB was calculated. The magnetometer we used during
our measurements was low-cost and had a noise variance of
σ2 ≈ 3 · 10−5. This means that from a theoretical point of
view the achievable variance of the on-track distance estimate
is in the range of 1 · 10−6 m2. This low value is caused by
the high signal energy in the magnetic field that can be seen
also from the example in Fig. 2. In combination with the small
variance of the sensor noise a large signal to noise ratio (SNR)
can be observed.

3) Variance for the Kalman filter update step: It is
clear that in a realistic scenario the CRLB will be never
attained by an estimator because of different error sources
that are not considered in the CRLB. The first error source
is the spatial transformation due to erroneous train speed
measurements. A second error source is that the two signatures
are measured with different sensors at different positions.
Temporary disturbances in the magnetic field caused e.g. by
changing electromagnetic fields or by passing trains might
affect only one of the sensors. Further, when the on-track
distance is not zero a part of the compared magnetic signatures
will contain measurements from different parts of the track.
The variance and the error of the on-track distance estimate
are therefore expected to be significantly higher than proposed
by the CRLB. To account for this errors and to get an estimate
for the variance of the correlator estimate d̂corr the CRLB in
(6) is scaled and σ2 is replaced with a constant c that has to
be chosen empirically

Var(d̂corr) ≈
c∆s

ESβ
. (11)

Intuitively (11) is plausible since one can expect that the
variance of d̂corr decreases for signatures with a high signal
energy and mean square bandwidth.

E. Outlier rejection

Besides normal errors that should be accounted for by
Var(d̂corr), we also observed outliers in the correlator distance
estimate. A simple outlier rejection scheme based on the
Mahalanobis distance prevents updating the Kalman filter with
outliers. A measurement is rejected when the Mahalanobis
distance of the Kalman filter innovation

dMaha =
√

(dcorr −Hx)TS−1(dcorr −Hx) (12)

is above an empirically defined constant threshold. In (12) S
is the innovation covariance matrix from the Kalman filter that
depends on the state and the measurement covariance.

III. EVALUATION

The measurements for the evaluation were recorded in
spring 2014 on a rural railway track network in northern
Germany. In the evaluation two hours of data collected on
≈ 60 km of tracks is used. The tracks are mainly located
in suburban, rural and forest environments. The train was
powered by a diesel engine and the maximum speed during
the measurements was 50 km/h. Throughout the evaluation
the signature length was set to 200 m and the sample distance
was ∆s = 0.1 m.
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Fig. 4. (a) Measurement setup: The two magnetometers were fixed to the floor
inside the train cabin and the speed was measured with a GNSS receiver. (b)
Picture of the diesel train from the Harzer Schmalspurbahnen that was used
during the measurements.
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Fig. 5. Block diagram of relative train localization system.

A. Measurement setup

The setup for the measurements is depicted in Fig. 4(a). To
emulate two trains driving with an constant distance two mag-
netometer were mounted on the floor of the diesel train, shown
in Fig. 4(b), with a distance of 9.59 m. The magnetometers are
low-cost sensors that are integrated in an Xsens MTi-G-700
IMU. For the speed measurements the train was equipped with
a single frequency LEA-M8T GNSS receiver from u-blox that
was also used to synchronize the measurements of the mag-
netometers. The speed and navigation solution is calculated
from the receiver raw data with an extended Kalman filter.
The measurement rates were 100 Hz for the magnetometers
and 1 Hz for the GNSS receiver. For the magnetic signatures
the measurements of the downwards facing magnetometer axis
is used. The Kalman filter is updated with a distance estimate
from the cross-correlation with 10 Hz. In the evaluation the



spatial transformation relies on the speed of the GNSS receiver
but in principle also other speed sensors can be used. Typical
speed sensors for trains are e.g. wheel turn sensors, ground
facing Doppler radar and optical sensors. Here GNSS is used
because typically it is not possible to connect to the train
sensors or it is not allowed due to safety concerns.

B. Odometer error simulation

In the evaluation first the same GNSS speed is used to
perform the spatial transformation of booth magnetometer
measurement sequences. Due to the constant sensor distance
a slowly varying bias on the GNSS speed introduces the same
errors in the spatial transformation of both signatures. This is
done to minimize the effect of unknown speed errors on the
results. In a second step then the impact of speed errors on
the accuracy of the on-track distance estimate is evaluated by
artificially adding two different types of errors on the GNSS
speed measurements.

1) Zero mean noise: The first simulated error is white
Gaussian noise. To find an appropriate value for the noise
standard deviation, the value of the Doppler radar DRS 051S1
from DEUTA is used. The radar was especially developed for
railway applications and has according to the datasheet [10] a
standard deviation of 0.11 m/s. The distribution of the errors
is not stated but for simplicity a Gaussian distribution is used
in the simulation.

2) Constant bias: A speed bias error can be caused e.g. by
wheel slip when a wheel turn sensor is used. Typically slip can
be observed while the train is accelerating and decelerating.
The bias error is simulated by adding a constant value to the
speed measurements.

C. Magnetic signature preconditioning

After the spatial transformation, the signatures contain er-
rors due to the magnetometer measurement noise and speed er-
rors. To remove high frequency errors, we apply a Butterworth
low-pass filter with a cut-off frequency of 0.5 m−1 since
the localization relevant information in the magnetic field is
allocated at low frequencies. One of this filtered signatures
is used to calculate the variance of d̂corr required in the
Kalman filter update step. For the correlation the filtered
signatures are additionally up-sampled by a factor of ten to
get a distance between two signature values of 1 cm. This
increases the resolution of the correlator output and reduces
the discretization effects. Fig. 5 shows the block diagram of
the overall system architecture.

IV. RESULTS

The performance of the proposed system is evaluated in
terms of the root mean square error (RMSE) of the on-track
distance estimate d̂

RMSE =

√√√√ 1

N

N∑
n=1

(d̂n − d)2 =

√√√√ 1

N

N∑
n=1

εn2 (13)

with the distance error ε. In Table I the RMSE obtained from
a 2 h long data set recorded on over 60 km of tracks is shown.

TABLE I
RMSE, 99% QUANTILE q99 AND MAXIMUM MAGNITUDE εMAX OF THE

DISTANCE ERROR.

GNSS speed Noisy speed
Algorithm RMSE [m] q99 [m] εmax [m] RMSE [m] q99 [m] εmax [m]

KF+σc 0.27 0.52 7.19 0.29 0.55 7.49
KF+CRLB 0.20 0.52 3.96 0.22 0.56 4.26
Cross-correlation 3.76 0.57 168.08 3.75 0.58 168.03
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Fig. 6. Standard deviation σCRLB derived from the CRLB in comparison to
the unfiltered correlator estimation error.

Additionally the table includes the 99 % quantile q99 and the
maximum amplitude εmax of the on-track distance estimation
error. The first three columns are the results where we used
for both signatures the same GNSS speed in the spatial
transformation. In contrast to this, the last three columns are
the results for the case where the signatures are generated
with additive noise on the speed measurements. The noise is
different for each signature and was simulated as described
before. In Table I the distance estimate from the correlation
is compared to two Kalman filter implementations. The two
implementations differ only in respect to the measurement
variance in the update step. The first implementation uses
a constant variance of σ2

c = 0.09 m2 that was chosen to
ensure that the estimation errors are within the estimated
state covariance. The second implementation uses (11) with
a scaling constant of c = 0.3 to calculate the variance σ2

CRLB
based on the current signature. In Fig. 6 an example of σ2

CRLB
calculated for a 500 s long measurement sequence is shown in
comparison to the correlator estimation error. It can be seen
that σCRLB actually follows the shape of the correlator errors.
It is not a perfect match but here it must be considered that
only one realization of the correlator output is compared to a
variance. For a better comparison multiple runs on the same
track would be required. Then the variance of the correlator
error could be compared to σ2

CRLB. A comparison of the
RMSE values in Table I shows that small noise on the speed
has almost no effect on the distance estimation. Further it
can be seen that using a Kalman filter reduces the RMSE
significantly as one would expect. The gain is caused by the
outlier rejection in combination with the kinematic model in
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between 151 to 211 s (indicated by the grey area).

(3). The improvement of the Kalman filter is also clearly
visible in the cumulative distribution function (CDF) of |ε| in
Fig. 7. The results for the two Kalman filter implementations
show that using σCRLB instead of a constant variance improves
the estimation accuracy in terms of the RMSE and seems
to improves the outlier suppression. In respect to the 99 %
quantile a difference between the two Kalman filter imple-
mentations is not noticeable. For the cross-correlation the q99

value is also close to the Kalman filer values, showing that
the RMSE of the cross-correlation is mainly increased due to
the outliers.

In Fig. 8 we see the result of a bias error on the speed
measurements. Between 151 to 211 s a bias of 0.5 m/s was
added to the noisy speed measurements used to generate one
of the signatures. This introduces an linearly growing error in

the spatial transformation up to 30 m. Fig. 8 shows the severe
influence of a speed bias on the distance estimation. It is
therefore important that the speed measurements are unbiased
or the bias is estimated.

V. CONCLUSION

The results show the feasibility of the proposed method
for relative train localization. Overall an RMSE below 0.3 m
was achieved. Noise on the speed measurements only has a
small impact on the attainable accuracy. In contrast to this, a
bias error on the speed measurements introduces large errors
into the spatial transformation and the distance estimate. For
accurate relative localization it is therefore crucial to have
speed sensors with a small bias. The evaluation further showed
that even though the variance derived from the CRLB was
not matching the correlator error perfectly incorporating it
into a Kalman filter still was beneficial in comparison to the
naive approach with a constant variance. By comparing the
evaluation results with the theoretical results from the CRLB,
it can be concluded that the quality of the magnetometers is
not a limiting factor. The accuracy of the relative localization
mainly depends on the quality of the speed measurements used
in the spatial transformation and the shape of the magnetic
field along the track.
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