Grundlagen der Elektrotechnik
ausgewählte Kapitel
ergänzende Beiträge zur Vorlesung
zum Thema
Berechnungen im elektrischen Feld

Doz. Wolfgang Stuchlik
DLR Lampoldshausen, Abt. VEA
DHBW - MOS WiSe 2017

Abbildung 1: Werner von Siemens
Inhaltsverzeichnis

1 Das elektrische Feld 4
1.1 Begriffe, Größen und Arbeitsgebiete 4
1.2 Die wichtigsten Größen im elektrischen Feld 5
1.3 Das elektrische Feld im leitenden Medium 5
 1.3.1 Parallelkonfiguration von leitenden Materialien 6
 1.3.2 Übungsaufgaben 6
 1.3.3 Konfiguration mit diversen Materialien und Querschnitten 7
 1.3.4 Übungsaufgaben 8
 1.3.5 Das Strömungsfeld in der Praxis - die Elektrolyse 10
1.4 Elektrolytischer Leitungsmechanismus 11
1.5 Das elektrische Feld im nichtleitenden Medium 11
 1.5.1 Geschichtliches 11
 1.5.2 Das zeitlich veränderliche elektrische Feld 12
 1.5.3 Das zeitlich konstante elektrische Feld 15
1.6 Der Kondensator als Energiequelle 18
1.7 Die Größe PSI 19
1.8 Das Coulombische Gesetz 20

2 Aufgaben 21
 2.1 Feldstärke in einer Spule 21
 2.2 Feldstärke und Stromfluss im Draht 21
 2.3 Der Strömungswiderstand - Teil 1 21
 2.4 Der Strömungswiderstand - Teil 2 22
 2.5 Der Strömungswiderstand - Teil 3 23
 2.6 Durchschlagfestigkeit eines Kondensators 24
 2.7 Ladungsaufbau mit unterschiedlichen Dielektrika 24
 2.8 Die elektrisch freistehende Kugel 25
 2.9 Ladungsmenge eines Kondensators 26
 2.10 Bestimmung der Durchschlagsfestigkeit 26
 2.11 Bestimmung von Ersatzkapazitäten 26

3 Werner von Siemens 28
 3.1 Lebenslauf 28
 3.2 Die selbstbetriebene Dynamomaschine von Siemens 29

4 Abkürzungsverzeichnis 32

5 Literaturverzeichnis 33
Abbildungsverzeichnis

1 Werner von Siemens .. 1
2 Überblick über die Thematik des elektrischen Feldes 4
3 Rechenprogramm für das Strömungsfeld \(\frac{dQ}{dt} \neq 0 \) 5
4 Das Strömungsfeld mit unterschiedlichen Leitwerten 6
5 Das Strömungsfeld mit unterschiedlichen Leitwerten und Leitungsquerschnitten ... 7
6 Das Strömungsfeld mit unterschiedlichen Leitwerten und konstanten Leitungsquerschnitten . 8
7 Der Verlauf der einzelnen Größen 9
8 Der Verlauf der Spannung .. 9
9 Die Leidener Flasche .. 11
10 Rechenprogramm für \(\frac{dQ}{dt} = 0 \) 12
11 Schaltung zur Aufladung eines Kondensators 12
12 Spannungsverlauf am Kondensator für zwei Zeitkonstanten - Aufladung 14
13 Schaltung zur Entladung eines Kondensators 14
14 Spannungsverlauf am Kondensator für zwei Zeitkonstanten - Entladung 15
15 Das Dielektrikum verändert die Kapazität und die Spannung 16
16 Dielektrikum parallel geschichtet 16
17 Dielektrikum sequentiell angeordnet 18
18 Die Kraftwirkungen geladener Elemente 20
19 Strömungswiderstand in Form eines Bügels 21
20 Strömungswiderstand - Bezeichnung der aktiven Flächen 23
21 Kondensatorenschaltung ... 26
22 Siemens Denkmal an der TU Berlin 28
23 Aufbau und Querschnitt der Dynamomaschine von 1866 29
24 Ersatzschaltbild eines selbstregierten Gleichstromgenerators - Nebenschlussprinzip 30
1 Das elektrische Feld

1.1 Begriffe, Größen und Arbeitsgebiete

Die physikalische Grundlage des elektrischen Feldes (Lit.-Ref.1) ist die existierende Ladung Q. Ist keine Ladung vorhanden, dann kann sich auch kein elektrisches Feld bilden. Die Unterscheidung, ob ein elektrisches Feld in einem leitenden oder nichtleitenden Medium wirksam wird, liegt in den beiden Möglichkeiten:

- $i(t) = \frac{dQ}{dt} \neq 0$ oder
- $i(t) = \frac{dQ}{dt} = 0$

Die markanteste Kennzeichnung des Mediums, bezüglich der elektrischen Eigenschaften, liegt in den Größe κ und ε. Die Größe κ steht für die leitende Eigenschaft, die Größe ε für die isolierende Wirkung des Mediums zwischen den Ladungen.

Abbildung 2: Überblick über die Thematik des elektrischen Feldes
1.2 Die wichtigsten Größen im elektrischen Feld

Elektrische Feldstärke \vec{E}

$$\vec{E} = \frac{d\varphi}{ds} \Rightarrow \varphi = \int_0^L \vec{E} ds$$

$$\vec{E} = \frac{\vec{S}}{\kappa} \Rightarrow \text{elektrischer Leitwert des Mediums: } \kappa$$

Konvektionsstromdichte S: $\Rightarrow \vec{S} = \kappa \vec{E}$

Verschiebungsflussdichte \vec{D}: $\Rightarrow \vec{D} = \varepsilon \vec{E}$ \Rightarrow \text{Dielektrizitätskonstante: } \varepsilon$

Verschiebungsstromdichte S_v: $\Rightarrow \vec{S}_v = \frac{d\vec{D}}{dt}$

Die Kapazität: $\Rightarrow C = \frac{Q}{U}$

Der Kondensator C

Die Bemessungsgleichung des Kondensators

$$C = \varepsilon_0 \varepsilon \frac{A}{d}$$

Die Differentialgleichung des Kondensatorstroms

$$i(t) = C \frac{du_C}{dt} \Rightarrow u_C = \frac{1}{C} \int i(t) dt$$

1.3 Das elektrische Feld im leitenden Medium

Der Zusammenhang aller Größen (Lit.-Ref.2):

Abbildung 3: Rechenprogramm für das Strömungsfeld $\frac{dQ}{dt} \neq 0$

These: Die Ladungen werden im Leiter durch die Feldstärke (Feldkraft) bewegt.

1\text{ist das Produkt aus } \varepsilon = \varepsilon_0 \star \varepsilon_r. \text{ Die Größe } \varepsilon_0 \text{ ist die absolute Dielektrizitätskonstante: } \varepsilon_0 = 8,854 \times 10^{-12} \frac{\text{As}}{\text{Vm}}$
1.3.1 Parallelkonfiguration von leitenden Materialien

Zwischen zwei vertikal parallelen Platten (mit dem Abstand d) befinden sich zwei Werkstoffe mit den beiden Leitfähigkeiten κ_1 und κ_2; mit der Randbedingung: $\kappa_2 = 2\kappa_1$. Zwischen den Platten fällt die Spannung U ab.

Gesucht sind:

das Feldstärkefeld, das Potentialfeld und das Strömungsfeld in einem graphischen Vertikalschnitt

Lösung:

- U ist für beide Medien gleich, d.h. mit $E = U/d$ ist auch die Feldstärke für beide Medien gleich.
- Die Ströme sind durch die unterschiedlichen Leitwerte ungleich.
- Da die Flächen gleich sind, sind die Stromdichten proportional den Strömen gleich. Das Medium mit der doppelten Leitfähigkeit κ_2 hat einen größeren Strom ($2 * I_{\kappa_1}$) und somit ist die Stromdichte S_{κ_2} doppelt so groß, gegenüber S_{κ_1}.

Abbildung 4: Das Strömungsfeld mit unterschiedlichen Leitwerten

1.3.2 Übungsaufgaben

Aufgabe 1:

Welche Feldstärke besteht in einer Kupferleitung (der Querschnitt hat die ideale Form eines Kreises) von $d = 1,5\,\text{mm}$ Durchmesser, durch die ein Strom von $I = 6\,\text{A}$ fließt?

\[
E = \frac{U}{I}
\]

\[
R = \rho \frac{L}{A}
\]

\[
U = R \times I
\]

\[
E = \rho \frac{L}{A} \times I
\]

\[
E = 0,0178 \, \Omega \, \frac{mm^2}{m} \times \frac{1}{\pi \cdot d^2} \times 6\,\text{A}
\]

\[
E = 0,0178 \, \Omega \, \frac{mm^2}{m} \times \frac{1}{\pi \cdot (1,5 \times 10^{-3} \, m)^2} \times 6\,\text{A}
\]

\[
E = 0,604 \, \frac{mV}{m}
\]
Aufgabe 2:

Welche Dicke muss ein Aluminiumdraht haben, wenn im Innern, bei einem Strom von $I = 1\, \text{A}$, eine Feldstärke von $10\, \text{mV} / \text{m}$ herrschen soll?

\[
\rho_{\text{Al}} = 0,029 \frac{\Omega \, \text{mm}^2}{\text{m}}
\]

\[
R = \rho \frac{4l}{\pi d^2} \Rightarrow U = R \times I
\]

\[
E = 4 \times \rho \frac{l}{\pi d^2} \times I \frac{l}{l}
\]

\[
d = \sqrt{\frac{4\rho l}{\pi E}} = \sqrt{\frac{40,029}{\pi \times 10^3 \, \text{mm}}} = 1,92 \, \text{mm}
\]

1.3.3 Konfiguration mit diversen Materialien und Querschnitten

Es liegt eine Reihenschaltung von zwei Leiterwerkstoffen vor, wobei der Leiter mit dem κ_1 Wert unterschiedliche Querschnitte aufweist.

Abbildung 5: Das Strömungsfeld mit unterschiedlichen Leitwerten und Leitungsquerschnitten
Interpretation der Abbildung 5

- Der Strom I ist in einer Reihenschaltung immer gleich. Der Betrag des Gesamtstroms wird durch den Gesamtwiderstand der Reihenschaltung bestimmt.
- Bei konstantem Strom und vergrößerter Fläche wird die Stromdichte nach der Definition \(S = \frac{dI}{dA} \) kleiner.
- Die elektrische Feldstärke \(E = \frac{S}{\kappa} \) ist direkt proportional der Stromdichte bei konstantem \(\kappa \).
- Orthogonal zu den Feldlinien der elektrischen Feldstärke werden im ersten Segment, in gleichen Schritten, Äquipotentiallinien \(\varphi \) eingezeichnet. Die resultierende Skizze zeigt Quadrate.
- Diese grafische Methode wird in den Segmenten 2 und 3 wiederholt, wobei erst die Linien für die elektrische Feldstärke eingezeichnet werden. Da \(E = \frac{S}{\kappa} \) entspricht, muss für das veränderliche \(\kappa \) im Segment 3 die Anzahl der Feldstärkelellinien angepasst werden.
- Die Festlegung der Anzahl von Feldlinien bezieht sich auf das Segment 1. Im Segment 3 ist die Größe der Quadrate gleich der im Segment 1.
- Die Anzahl der orthogonalen, grünen Linien entspricht den Äquipotenziallinien.
- Die Anzahl dieser Linien pro Segment entspricht, vom Betrag aus gesehen, einem virtuellen Potenzialabfall. Die Richtung des Potenzialabfalls ergibt sich auch der Stromrichtung.
- Da im zweiten Segment die Anzahl der Linien nur der Hälfte des Segmentes 1 entspricht, ist der Potenzialabfall nur halb so hoch.
- Im Segment 3 ist die Anzahl der Äquipotenziallinien gleich dem im Segment 1, woraus sich der gleiche Potenzialabfall wie im Segment 1 ergibt.

1.3.4 Übungsaufgaben

Aufgabe 1:

Gegeben ist ein aus drei verschiedenen elektrisch leitenden Materialien zusammengesetzter Leiter. Der Querschnitt des Leiters ist quadratisch und der Werkstoff homogen. Das Verhältnis von den einzelnen Leitfähigkeiten sei: \(\kappa_1 : \kappa_2 : \kappa_3 = 1 : 2 : 3 \).

Abbildung 6: Das Strömungsfeld mit unterschiedlichen Leitwerten und konstanten Leitungsquerschnitten.
Skizzieren Sie das Feldstärke- und Strömungsfeld. Wie verläuft die Spannung als Funktion der Wegstrecke? Geben Sie den Verlauf rein quantitativ an.

Lösungsansatz

- Der Strom durch alle drei Werkstoffe ist gleich, da eine reine Reihenschaltung vorliegt.
- Da die drei Materialien homogen sind und die gleiche Flächengröße besitzen, muss die Stromdichte konstant sein.
- Wenn in allen drei Abschnitten die Stromdichte gleich ist, dann gilt: \(S_1 = \kappa_1 \cdot E_1 = S_2 = \kappa_2 \cdot E_2 = S_3 = \kappa_3 \cdot E_3 \)
- \(\frac{E_1}{E_2} = \frac{\kappa_2}{\kappa_1} \) bzw. \(\frac{E_1}{E_3} = \frac{\kappa_3}{\kappa_1} \) und \(\frac{E_2}{E_3} = \frac{\kappa_3}{\kappa_2} \)
- Die Beträge der Feldstärke ändern sich an den Trennflächen sprunghaft.
- Die Äquipotenziallinien werden orthogonal zu den Feldlinien gezeichnet und bilden Quadrate.

Damit gilt:

\[
\begin{align*}
\frac{E_1}{E_2} & = \frac{2}{1} = 2 \\
\frac{E_1}{E_3} & = \frac{3}{1} = 3 \\
\frac{E_2}{E_3} & = \frac{3}{2} = 1,5
\end{align*}
\]

Die Anzahl der Feldlinien (man achte darauf, dass es keine halben Feldlinien gibt) ist proportional der quantitativen Aussage unserer Feldstärkeverhältnisse. Daraus ergeben sich folgende grafische Relationen:

Abbildung 7: Der Verlauf der einzelnen Grössen.
Abbildung 8: Der Verlauf der Spannung.

Der Verlauf der Spannung hat an den Trennflächen jeweils einen Knick, denn es ändert sich die Steilheit: \(\frac{d\varphi}{dx} = -E_x \). Die Größe \(x \) repräsentiert die Weglänge \(0 \leq x \leq l \).

Aufgabe 2:

Zwischen zwei elektrisch geladenen Platten, mit der Fläche \(A = 4 \cdot 10^3 \text{cm}^2 \), befindet sich ein Elektrolyt mit der Leitfähigkeit \(\kappa = 5 \cdot 10^{-2} \frac{S}{\text{cm}} \). Der Plattenabstand beträgt \(d = 20 \text{cm} \).

Berechnen Sie den Strom, die Stromdichte, die elektrische Feldstärke und den Spannungsabfall des Elektrolyten. Die Leistungsaufnahme von \(P = 700 \text{W} \) muss beachtet werden.

\[
P = I^2 \cdot R
\]

\[
I = \sqrt{\frac{P}{\kappa \cdot A}} = \sqrt{\frac{750 \text{VA} \cdot 5 \cdot 10^{-2} \frac{A}{\text{V} \cdot \text{cm}} \cdot 4 \cdot 10^3 \text{cm}^2}{20 \text{cm}}} = 86,6 \text{A}
\]
\[S = \frac{I}{A} = \frac{86.64 A}{4 \cdot 10^3 \text{ cm}^2} = 21.65 \cdot 10^{-3} \frac{A}{\text{ cm}^2} \]
\[E = \frac{S}{\kappa} = \frac{21.65 \cdot 10^{-3} \frac{A}{\text{ cm}^2}}{5 \cdot 10^{-2} \frac{V}{\text{ cm}}} = 0, 433 \frac{V}{\text{ cm}} \]
\[U = E \cdot d = 0, 433 \frac{V}{\text{ cm}} \cdot 20 \text{ cm} = 8, 66 V \]

Aufgabe 3:

Gegeben sind zwei gleich große, quadratische Metallplatten, die sich gegenüberstehen. Zwischen den Platten befindet sich ein Elektrolyt mit homogener Leitfähigkeit von \(\kappa = 5 \cdot 10^{-2} \frac{S}{\text{ cm}} \). In dieser Anordnung soll eine elektrische Leistung von \(P = 1 \text{ kW} \) umgesetzt werden.

a) Wie groß müssen die Flächen der Elektroden sein, wenn der Plattenabstand mit \(d = 30 \text{ cm} \) vorgeschrieben wird. Die Feldstärke ist mit \(E = 0, 6 \frac{V}{\text{ cm}} \) festgelegt.

\[P = \frac{E^2 \cdot d^2}{\kappa \cdot A} \]
\[A = \frac{P \cdot \kappa}{E^2 \cdot d} = \frac{10^3 VA}{5 \cdot 10^{-2} \frac{A}{\text{ cm}}} \cdot \frac{30 \text{ cm}}{\text{ cm}^2} \Rightarrow \text{Kantenlänge der Platten} \approx 43 \text{ cm} \]

b) Berechnen Sie den Strom und die Spannung!

\[U = E \cdot d = 0, 6 \frac{V}{\text{ cm}} \cdot 30 \text{ cm} = 18 V \]
\[I = S \cdot A = \kappa \cdot E \cdot A = 5 \cdot 10^{-2} \frac{A}{\text{ cm}} \cdot 6 \cdot 10^{-1} \frac{V}{\text{ cm}} \cdot 1, 852 \cdot 10^3 \cdot \text{ cm}^2 = 55, 6 A \]

c) Geben Sie die allgemeine Beziehung zwischen Leistungsdichte (Leistung pro Volumenelement), Feldstärke und Stromdichte an.

\[P = \kappa \cdot E^2 \cdot d \cdot A \]
\[V = d \cdot A \]
\[\frac{P}{V} = \kappa \cdot E^2 = \frac{S^2}{\kappa} \]

1.3.5 Das Strömungsfeld in der Praxis - die Elektrolyse

Mit der Bewegung von Ionen werden nicht nur Ladungen transportiert, sondern auch Massen. Die transportierte Ladung ist von der Wertigkeit \(w \) des Ions und somit von der relativen Atom- bzw. Molekülmasse \(A \) abhängig. Bei \(N \) an der Elektrode ankomenden Ionen ist somit die Ladung: \(Q = N \cdot w \cdot e^- \).

Bei \(N \) ankomenden Ionen ist die Masse \(m = N \cdot A \cdot m_0 \).

\[m = \frac{m_0}{e^-} \cdot \frac{A}{w} \cdot Q \]

Die mit dem Strom transportierte Masse kann nach Abgabe der Ladung:

- an der Elektrode haften bleiben, wobei die Metalle an der Katode und z.B. der Sauerstoff an der Anode abgeschieden werden.
- als Gas an den Elektroden hochsteigen oder sich in fester Form in der Lösung absetzen
- chemisch mit der Elektrode oder den Elektrolyten reagieren.

Anwendungen der Elektrolyse:

- Galvanotechnik [Vernickeln, Verchromen, Vergolden, Herstellung von Schallplattenmatrizen]
- Elektrolytische Metallgewinnung [Elektrolytkupfer], Schmelzflußelektrolyse [Aluminium]
1.4 Elektrolytischer Leitungsmechanismus

Die Aufspaltung kann in Wasser erfolgen. Legt man mittels metallischer Elektroden eine Spannung über eine derart wässrige elektrolytische Strecke, so ist ein elektrischer Stromfluss möglich. In Elektrolyten fließt der Strom von der Elektrode mit der positiven Polarität (Anode) zur Elektrode mit der negativen Polarität (Kathode). Da die Ionen den Ladungstransport übernehmen, spricht man von Ionenleitfähigkeit.

Der Strom wird durch die Bewegung positiver und negativer Ladungen hervorgerufen. Wir haben eine bipolare/bidirektionale Stromleitung. Die positiven Ionen bewegen sich mit dem Strom zur Kathode, die negativen Ionen entgegen der positiven Stromrichtung zur Anode. Aus diesem Grund nennt man die positiven Ionen Kationen und die negativen Anionen.

Für die Leitfähigkeit ist charakteristisch:

- Die Leitfähigkeit eines Elektrolyten ist innerhalb eines bestimmten Spannungsbereichs konstant. Es gilt das Ohmsche Gesetz.
- Der Temperaturkoeffizient des spezifischen Widerstandes ist negativ; der Widerstand wird mit zunehmender Temperatur kleiner.
- Aufgrund des Widerstandes entsteht ein Spannungsabfall als Folge der für die Ladungsbeugung erforderliche Energie, die als Wärme in Erscheinung tritt.

1.5 Das elektrische Feld im nichtleitenden Medium

1.5.1 Geschichtliches

Das zentrale Baulement dieser speziellen Thematik ist der Kondensator. Die Geburtsstunde dieser Technik (Lit.-Ref.5) haben wir einem Zufall zu verdanken. Die „Leidener Flasche“ ist die älteste Bauform eines Kondensators. Die Kapazität betrug ≈ 5 nF.

Abbildung 9: Die Leidener Flasche

Der Zusammenhang aller Größen:

\[\frac{dQ}{dt} = 0 \]

1.5.2 Das zeitlich veränderliche elektrische Feld

Betrachtet man die Aufladung eines Kondensators, dann sind die Strom-Spannungsbeziehungen im zeitlich veränderlichen Feld gut erklärbar. Folgende drei Thesen werden mathematisch bewiesen:

- Die Spannung kann sich über einem Kondensator nie sprunghaft ändern, wenn die angelegte Spannung einer Sprungfunktion \(t = -0 \rightarrow E = 0; t = +0 \rightarrow E = 100\% \) entspricht.
- Der Strom, der durch einen Kondensator fließt, ändert seinen Wert nach einer fallenden e-Funktion und konvergiert gegen Null, wenn der Kondensator aufgeladen ist.
- Der Kondensator \(C \) und ein in Reihe geschalteter Widerstand \(R \) bilden die Zeitkonstante \(\tau \).

Aufstellen der Maschengleichung: \(E = U_R(t) + U_C(t) \)

Die Gleichung muss nach \(U_C(t) \) aufgelöst werden, wobei \(U_R \) unbekannt und nicht von Interesse ist.

\[E = i(t)R + U_C(t) \]
\[i(t) = C \frac{d}{dt} U_C \]

\[E = RC \frac{d}{dt} U_C + U_C \Rightarrow RC = \tau \]

\[E = \tau \frac{d}{dt} U_C + U_C \]

\[E - U_C = \tau \frac{d}{dt} U_C \]

\[\int \frac{1}{\tau} dt = \int \frac{1}{(E-U_C)} dU_C \]

Lösung des unbestimmten Integrals (Lit.-Ref.4): \[\frac{1}{\tau} + C_1 = -ln(E - U_C) + C_2 \]

\[C = C_2 - C_1 \]

\[\frac{1}{\tau} = -ln(E - U_C) + C \]

Wie groß ist die Integrationskonstante \(C \) zum Zeitpunkt \(t=0 \)?

Anfangsbedingung muss definiert werden: Zum Zeitpunkt \(t=0 \) fällt keine Spannung über dem Kondensator ab!

Die Anfangsenergie des Systems ist zum Zeitpunkt \(t=0 \) Null.

\[C = \frac{1}{\tau} + ln(E - U_C) \Rightarrow t(0) = 0 \] und \(U_C = 0 \) bei \(t=0 \)

\[C = ln(E) \]

\[\frac{1}{\tau} = -ln(E - U_C) + ln(E) \]

\[-\frac{1}{\tau} = ln(E - U_C) - ln(E) \]

\[-\frac{1}{\tau} = ln \left(\frac{(E-U_C)}{E} \right) \]

\[-\frac{1}{\tau} = ln \left(1 - \frac{U_C}{E} \right) \]

\[e^{-\frac{1}{\tau}} = 1 - \frac{U_C}{E} \]

\[-U_C = E(e^{-\frac{1}{\tau}} - 1) \]

\[U_C = E(1 - e^{-\frac{1}{\tau}}) \]
Abbildung 12: Spannungsverlauf am Kondensator für zwei Zeitkonstanten - Aufladung

Betrachten wir die gleiche Anordnung der Bauelemente. Der Kondensator ist zum Zeitpunkt \(t=0 \) auf den Wert \(E \) geladen und wird, über dem Widerstand \(R \) ab dem Zeitpunkt \(t=0 \), entladen.

Abbildung 13: Schaltung zur Entladung eines Kondensators

Aufstellen der Maschengleichung: \(0 = U_R(t) + U_C(t) \)

Auflösung nach \(U_C(t) \):

\[
0 = i(t)R + U_C
\]
\[
i(t) = C \frac{d}{dt} U_C
\]
\[
0 = RC \frac{d}{dt} U_C + U_C
\]
\[
0 = \tau \frac{d}{dt} U_C + U_C
\]
\[-\tau \frac{d}{dt} U_C = U_C
\]
\[
\frac{1}{U_C} dU_C = - \frac{1}{\tau} dt
\]
\[
\int \frac{1}{U_C} dU_C = - \int \frac{1}{\tau} dt
\]

Lösung des unbestimmten Integrals (Lit.-Ref.4): \(ln(U_C) + C_1 = - \frac{t}{\tau} + C_2 \)

Intergrationskonstante \(C = C_2 - C_1 \)

\[
ln(U_C) = - \frac{t}{\tau} + C
\]
Für den Zeitpunkt \(t=0 \) ist \(C \):

\[
C = \ln(U_C) + \frac{100}{\tau} = \ln(E)
\]

\[
ln(U_C) = -\frac{t}{\tau} + ln(E)
\]

\[
ln(U_C) - ln(E) = -\frac{t}{\tau}
\]

\[
ln \left(\frac{U_C}{E} \right) = -\frac{t}{\tau}
\]

\[
\left(\frac{U_C}{E} \right) = e^{-\frac{t}{\tau}}
\]

\[
U_C(t) = Ee^{-\frac{t}{\tau}}
\]

Abbildung 14: Spannungsverlauf am Kondensator für zwei Zeitkonstanten - Entladung

1.5.3 Das zeitlich konstante elektrische Feld

Dieses Kapitel beschäftigt sich mit der ruhenden elektrischen Ladung.

- Die elektrische Ladung ist die Quelle eines elektrostatischen Feldes. Auf die elektrische Ladungen wirken Kräfte. Gleichnamig geladene Körper stoßen einander ab, ungleichnamig geladene Körper ziehen sich an. Es gilt für zwei Punktladungen folgende Beziehung (Lit.-Ref.3):

\[
F = Q_1E_2 = Q_2E_1
\]

- Die Feldstärke \(E \), im Punkt eines elektrostatischen Feldes, ist proportional der felderzeugenden Ladung \(Q \).

Dielektrikum absolut: \(\varepsilon_0 = 8,854 \times 10^{-12} \frac{As}{Vm} \)

Dielektrikum relativ für das Vakuum \(\varepsilon_r = 1 \)

Dielektrikum relativ für Luft \(\varepsilon_r = 1,000006 \)

Dielektrikum relativ für Keramik \(\varepsilon_r > 100 \)

Bemessungsgleichung des Kondensators: \(C = \varepsilon_0\varepsilon_r \times \frac{A}{d} \)

Wird in ein homogenes Dielektrikum ein weiteres eingeführt, so verändert sich bei konstanter Ladung die Spannung \(U \) zwischen den geladenen Flächen.

\[
C \ast U = Q
\]

\[
U = \frac{Q}{C}
\]
Abbildung 15: Das Dielektrikum verändert die Kapazität und die Spannung

Bei konstanter Ladung wird die Spannung zwischen den geladenen Flächen kleiner, wenn die Dielektrizität vergrößert wird. Der Wert der Dielektrizität ist direkt proportional zur Kapazität des Kondensators.

Parallelschaltung zwei unterschiedlicher Dielektrika

Die Gesamthöhe h ist die Summe der beiden Dielektrikaschichten \(h = h_1 + h_2 \). Wobei \(h_1 \) die Schichthöhe des Dielektrikums mit der Konstanten \(\varepsilon_1 \) darstellt. Analog gilt für die Höhe \(h_2 \Rightarrow \varepsilon_2 \).

Abbildung 16: Dielektrikum parallel geschichtet

Lösungsansatz: Die Einzelkapazitäten einer Parallelschaltung von Kondensatoren addieren sich zur Gesamtkapazität.

Hypothese: Wir nehmen die Größe \(h_1 \) als Variable (Messgröße) an.

\[
C = C_1 + C_2
\]

\[
C = \varepsilon_0 \varepsilon_1 \frac{A_1}{d} + \varepsilon_0 \varepsilon_2 \frac{A_2}{d}
\]

\[
C = \varepsilon_0 \varepsilon_1 \frac{b \cdot h_1}{d} + \varepsilon_0 \varepsilon_2 \frac{b \cdot h_2}{d}
\]

\[
h_2 = h - h_1
\]

\[
C = \varepsilon_0 \varepsilon_1 \frac{b \cdot h_1}{d} + \varepsilon_0 \varepsilon_2 \frac{b \cdot (h-h_1)}{d}
\]
\[C = \varepsilon_0 \frac{b}{d} [\varepsilon_1 \cdot h_1 + \varepsilon_2 \cdot (h - h_1)] \]

Für den Sonderfall \(A = A_1 + A_2 \) bei \(A_1 = A_2 \) gilt:
\[C = \varepsilon_0 \varepsilon_1 \cdot \frac{A}{2d} + \varepsilon_0 \varepsilon_2 \cdot \frac{A}{2d} \]
\[C = \varepsilon_0 [\varepsilon_1 + \varepsilon_2] \frac{A}{2d} \]

Anwendungsgebiete in der Praxis:

- Füllstandsmessung von elektrisch nichtleitendem Granulat - die Höhe \(h_1 \) ist das Maß für die Füllhöhe. Die Dielektrizitätskonstante \(\varepsilon_1 \) ist der Wert für das Granulat (allgemein auch Schüttgut genannt). Die Dielektrizitätskonstante \(\varepsilon_2 \) ist der Wert von Luft, dem Volumenan teil, der nicht vom Granulat belegt wird.

- AbstandsMessung, wobei für \(\varepsilon_2 \) die Dielektrizitätskonstante von Luft angenommen werden kann und das ist in der industriellen Messtechnik die entscheidende Variable (Messgröße). Der Wert für die Dielektrizitätskonstante \(\varepsilon_1 \) ist der Wert einer elektrisch schützenden Folie.

- Qualitätskontrolle und Materialprüfung von Isoliermaterial in der Hochspannungstechnik; Risse und Luft einschlüsse sind über das kapazitive Messverfahren erkennbar.

Reihenschaltung von zwei unterschiedlichen Dielektrika

Lösungsansatz: Die „Leitwerte“ der Einzelkapazitäten einer Reihenschaltung von Kondensatoren addieren sich zum resultierenden „Leitwert“ der Gesamtkapazität.

\[\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \]
\[C = \frac{C_1 C_2}{C_1 + C_2} \]
\[C = \frac{\varepsilon_0 \varepsilon_1 \cdot \frac{A}{d_1} + \varepsilon_0 \varepsilon_2 \cdot \frac{A}{d_2}}{\varepsilon_0 \varepsilon_1 \cdot \frac{A}{d_1} + \varepsilon_0 \varepsilon_2 \cdot \frac{A}{d_2}} \]
\[d = d_1 + d_2 \]

praktische Nebenbedingung: Die Breite des Dielektrikums ist, mit \(\varepsilon_2 \), die einzige Variable im endgültigen Ausdruck für die resul tierende Kapazität \(C \) sein. Oft entspricht dieses Dielektrikum dem Wert von Luft (Luftpolster). In der industriellen Messtechnik können mit diesem Verfahren Abstände (speziell Unwuchten von Wellen und Achsen) im \(\mu m \)-Bereich gemessen werden.

\[d_1 = d - d_2 \]
\[C = \frac{\varepsilon_0 \varepsilon_1 \cdot \frac{A}{d - d_2} + \varepsilon_0 \varepsilon_2 \cdot \frac{A}{d_2}}{\varepsilon_0 \varepsilon_1 \cdot \frac{A}{d - d_2} + \varepsilon_0 \varepsilon_2 \cdot \frac{A}{d_2}} \]
\[C = \frac{\varepsilon_0^2 A^2 \varepsilon_1 + \varepsilon_2}{[d_2(d - d_2)] \varepsilon_0 A [\varepsilon_1 d_2 + \varepsilon_2 (d - d_2)]} \]
\[C = \frac{\varepsilon_0^2 A^2 \varepsilon_1 + \varepsilon_2}{[\varepsilon_1 d_2 + \varepsilon_2 (d - d_2)]} \]

Ergänzungsmaterial zur Vorlesung: W. Stuchlik
\[C = \frac{\varepsilon_0 \varepsilon_1 \varepsilon_2}{\varepsilon_1 d_2 + \varepsilon_2(d-d_2)} \times b \times h \]

Abbildung 17: Dielektrikum sequentiell angeordnet

Sonderfall: Gesucht ist die Lösung, wenn wir für \(d_1 = d_2 \) annehmen können.

\[C = \varepsilon_0 \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 d_2 + \varepsilon_2(d-d_2)} \times b \times h \]

\[C = \varepsilon_0 \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \times 2 \frac{A}{d} \]

1.6 Der Kondensator als Energiequelle

\[W = \int_0^\infty i^2 R dt \]

Welche elektrische Arbeit wird am Verbraucher R umgesetzt?

\[W = \int_0^\infty i^2 R dt \]

\[i(t) = C \frac{dU}{dt} \]

\[\frac{dU}{dt} = \frac{E}{\tau} e^{-\frac{t}{\tau}} \text{ ergo } i(t) = -\frac{E}{R} e^{-\frac{t}{\tau}} \Rightarrow E = U_c(0) \]

\[W = \int_0^\infty \frac{U^2}{R^2} e^{-\frac{2t}{\tau}} R dt \]

\[W = -\frac{\tau U^2}{2R} e^{-\frac{2t}{\tau}} \bigg|_0^\infty \]

\[W = \frac{\tau U^2}{2R} = \frac{CU^2}{2} \]

\[W = \frac{CU^2}{2} \]

\[W = \frac{QU}{2} \]

\[W = \frac{Q^2}{2C} \]

Aufgabe: Welche elektrische Energie kann maximal in einem Kondensator mit einer Kapazität von 1F gespeichert werden? Der Kondensator wurde auf eine Spannung von \(U = 100V \) aufgeladen.

Lösungsansatz: Die Übertragung der gespeicherten Energie auf den Verbraucher R erfolgt durch die Entladung.
Lösung:

\[W = \frac{U^2}{2} C \]

\[W = \frac{(100V)^2}{2} \frac{1As}{V} = 5kWs \]

Welche elektrische Leistung wird in einer Stunde umgesetzt?

\[P = \frac{W}{t} = \frac{5000Ws}{3600s} \approx 1,88W \]

Aufgabe: Konstruieren Sie einen Kondensator mit einer Kapazität von 1F. Der Abstand der quadratischen Platten soll d=1cm betragen. Das Dielektrikum soll Luft sein.

\[C = \varepsilon \frac{A}{d} \]

\[\varepsilon_0 \varepsilon_1 = 8,854 \times 10^{-12} \frac{A}{Vm} \]

\[a = \sqrt{A} \]

\[a = \sqrt{\frac{dC}{\varepsilon_0 \varepsilon_1}} \]

\[a = \sqrt{\frac{10^{-2}m \times 1 \frac{A}{V}}{8,854 \times 10^{-12} \frac{A}{Vm}}} = \sqrt{\frac{10^{10}m^2}{8,854}} \]

\[a \approx 33607m = 33,607km \]

Fazit: Ein Kondensator mit \(\varepsilon_1 = 1 \) und mit der Kapazität von \(C = 1F \) ist mechanisch gesehen sehr ungewöhnlich. Über 33km den Plattenabstand auf exakt 1cm zu garantieren, ist eine sehr hohe Herausforderung.

Es wird das Dielektrikum verändert und der Abstand der geladenen Flächen zueinander.

Als Dielektrikum wird Kunststoffolie verwendet mit einer Schichtdicke von \(d = 1\mu m \) und einem \(\varepsilon_r = 1000 \)

Es soll die Kantenlänge der quadratischen Kondensatorflächen berechnet werden:

\[a = \sqrt{\frac{10^{-6}m \times 1 \frac{A}{V}}{8,854 \times 10^{-12} \times 1000 \frac{A}{Vm}}} = \sqrt{\frac{10m^2}{8,854}} \]

\[a \approx 1m \]

1.7 Die Größe PSI

Verschiebungsmoment \(\Psi \) PSI

\[\frac{dQ}{dt} = 0 \]

- Die Größe Q: Wie viel Ladungsträger sind im Energiespeicher enthalten?
- Die Größe \(\Psi \): Wie viel Ladungsträger werden, bedingt durch die Kraftwirkung der Feldstärke, zum
„anderen“ Pol verschoben?

Verschiebungsflussdichte \vec{D}

$$\vec{D} = \frac{d\Psi}{dA}$$

Wie viel positive Ladungsträger durchströmen senkrecht die Fläche des Nichtleiters?

1.8 Das Coulombsche Gesetz

$$F = \frac{Q_1 Q_2}{4\pi \varepsilon a^2}$$

a ist der Abstand zweier Punktladungen auf einer Ebene

Abbildung 18: Die Kraftwirkungen geladener Elemente

praktische Anwendungen der Elektrostatisitk

- Elektrofilter; auch: EGR (Elektrische Gasreinigung), Elektrostaubfilter, Elektrostat (engl.: ESP electrostatic precipitator) sind Anlagen zur Abscheidung von Partikeln aus Gasen. Da es sich streng genommen um keinen Filter im klassischen Sinne handelt, ist die wissenschaftlich korrekte Bezeichnung Elektroabscheider oder Elektrostaubscheider.

- elektrostatisch unterstütztes Farbspritzen; Hierbei wird der Sprühnebel elektrostatisch aufgeladen (auf ca. 40 kV) und auf das geerdete Werkstück gespritzt. Dieses Verfahren hat den Vorteil, dass der Lackverlust, gegenüber dem konventionellen Verfahren, gering bleibt und der Lack gleichmäßig verteilt wird.

- Fixierung von Papierblättern auf Flachbettplottern bzw. X-Y-Schreibern
2 Aufgaben

2.1 Feldstärke in einer Spule

Welche Feldstärke besteht in einem Draht einer Spule mit 10.000 Windungen und einem mittleren Windungs durchschnitt von 6,5cm, an denen eine Spannung von U=7,9V anliegt?

Lösungsansatz:

\[E = \frac{d\varphi}{ds} \Rightarrow E = \frac{\varphi_2 - \varphi_1}{l} = \frac{\Delta \varphi}{l} = \frac{U}{l} \]

Bestimmung der wahren Drahtlänge:

\[l = u \cdot n \Rightarrow u \text{ entspricht dem mittleren Umfang der Windungen, } n \text{ entspricht der Anzahl der Windungen} \]

\[l = 2\pi rn = 2\pi \frac{d_m}{2} n = \pi d_m n \]

\[E = \frac{7,9V}{\pi \cdot 65 \cdot 10^{-3}m10^3} = 3,86 \frac{mV}{m} \]

2.2 Feldstärke und Stromfluss im Draht

In einem Kupferdraht mit einem Durchmesser von d=3mm, herrscht in Längsrichtung eine Feldstärke von \(E = 45 \frac{mV}{m} \). Welcher Strom fließt durch den Draht?

\[E = \frac{U}{I} = \frac{R \cdot I}{I} = \rho \cdot \frac{I}{I_A} \]

\[I = \frac{A \cdot E}{\rho} \]

\[I = \frac{\pi \cdot d^2 \cdot 45 \cdot 10^{-3}VAm}{4 \cdot 0,0178mm^2V/m} \]

\[I = \frac{\pi \cdot 9mm^2 \cdot 45 \cdot 10^{-3}VAm}{4 \cdot 0,0178mm^2V/m} \]

\[I = 17,87A \]

2.3 Der Strömungswiderstand - Teil 1

Gegeben ist ein Strömungswiderstand in Form eines „Bügels“.

Abbildung 19: Strömungswiderstand in Form eines Bügels
Berechnen Sie die allgemeine Lösung für den Widerstandswert \(R \), wenn die elektrische Feldstärke an den Vorder- und Seitenflächen wirkt.

Gegebene Größen: Die Geometrie und der Werkstoff des Strömungswiderstandes sind bekannt.

Lösungsansatz: Die Feldlinien verlaufen zwischen den geladenen Flächen parallel.

\[
E = \frac{U}{l} \quad \Rightarrow \text{Die Größe } l \text{ entspricht der Breite des Bügels und somit der Feldlänge.}
\]

\[
U = E \cdot l
\]

\[
S = \frac{l}{A(r)} = \kappa \cdot E
\]

\[
I(r) = \kappa \cdot E \cdot A(r)
\]

\[
R = \frac{U}{T} = \frac{E \cdot l}{\kappa \cdot E \cdot \frac{\pi}{2} (r_a^2 - r_i^2)}
\]

Lösung:

\[
R = \frac{2 \cdot l}{\kappa \pi (r_a^2 - r_i^2)}
\]

Die Alternative:

Die Größe \(b \) entspricht der Breite des Bügels und somit der Feldlänge \(l \).

\[
R = \frac{1}{\kappa \frac{d}{A}}
\]

\[
R = \frac{1}{\kappa \frac{b}{2\pi (r_a^2 - r_i^2)}} = \frac{2 \cdot b}{\kappa \pi (r_a^2 - r_i^2)}
\]

2.4 Der Strömungswiderstand - Teil 2

Gegeben ist ein Strömungswiderstand in Form eines „Bügels“.

Berechnen Sie die allgemeine Lösung für den Widerstandswert \(R \), wenn die elektrische Feldstärke an den Stellflächen wirkt.

Gegebene Größen: Die Geometrie und der Werkstoff des Strömungswiderstandes sind bekannt.

Lösungsansatz: Die Feldlinienlängen sind vom Radius abhängig.

\[
dA = dr \cdot b
\]

\[
E = \frac{U}{l}
\]

\[
S(r) = \frac{dl}{dA} = \kappa \cdot r \cdot E(r) = \kappa \frac{U}{\pi \cdot r} \quad \Rightarrow \text{Halbkreislänge} = \pi \cdot r
\]
\[dI = \kappa \frac{U}{\pi \cdot r} \cdot dA \]

\[dI = \kappa \frac{U}{\pi \cdot r} \cdot b \cdot dr \]

\[I = \int \kappa \frac{U}{\pi \cdot r} \cdot b \cdot dr \]

\[I = \kappa \frac{U}{\pi} \cdot b \int_{r_i}^{r_a} \frac{1}{r} \, dr \]

\[I = \kappa \frac{U}{\pi} \cdot b \cdot \ln(r_a) \bigg|_{r_i}^{r_a} = \kappa \frac{U}{\pi} \cdot b \left[\ln(r_a) - \ln(r_i) \right] \]

\[I = \kappa \frac{U}{\pi} \cdot b \cdot \ln \left(\frac{r_a}{r_i} \right) \]

\[R = \frac{U}{I} \]

\[R = \frac{U \cdot \pi}{\kappa U \cdot b \cdot \ln \left(\frac{r_a}{r_i} \right)} \]

\[R = \frac{\pi}{\kappa \cdot b \cdot \ln \left(\frac{r_a}{r_i} \right)} \]

Abbildung 20: Strömungswiderstand - Bezeichnung der aktiven Flächen

2.5 Der Strömungswiderstand - Teil 3

Gegeben ist ein Strömungswiderstand in Form eines „Bügels“.

Berechnen Sie die allgemeine Lösung für den Widerstandswert R, wenn die elektrische Feldstärke an der Unter- und Oberseite des Bügels wirkt.

Gegebene Größen: Die Geometrie und der Werkstoff des Strömungswiderstandes sind bekannt.

Lösungsansatz: Die Feldlinien verlaufen zwischen den geladenen Flächen nicht parallel - eher strahlenförmig.
Die durchströmte Fläche ist $dA = dr \cdot$ Breite des Bügels.

- Idee: betrachten wir es als Parallelschaltung von Widerständen mit der Fläche $dA = b \cdot dr$
- Die Länge der Widerstandsscheibe mit der Fläche dA ist gleich: $l = \frac{n}{2} = \pi \cdot r$
- Die Einzelwerte werden aufsummiert (integrieren) und letztendlich wird der Kehrwert des Gesamtleitwerts gebildet.

\[
dG = \kappa \frac{dA}{l} = \kappa \frac{b \cdot dr}{\pi \cdot r}
\]

\[
G = \int_{r_i}^{r_a} \kappa \frac{b \cdot dr}{\pi \cdot r} = \kappa \frac{b}{\pi} \int_{r_i}^{r_a} \frac{1}{r} dr
\]

\[
G = \kappa \frac{b}{\pi} \ln \left(\frac{r_a}{r_i} \right)
\]

\[
R = \frac{1}{G} = \frac{\pi}{\kappa b \ln \left(\frac{r_a}{r_i} \right)}
\]

2.6 Durchschlagfestigkeit eines Kondensators

Ein Plattenkondensator ist mit einer Spannungsquelle von $U = 450\,\text{V}$ verbunden. Bei welchem Plattenabstand wird die Luftstrecke durchschlagen, wenn die Durchschlagfestigkeit der Luft $E = \frac{20\,\text{kV}}{\text{cm}}$ beträgt?

Welche Beziehung führt zur Lösung?

\[
C = \varepsilon_0 \varepsilon_r \frac{A}{d}
\]

\[
C \cdot U = Q
\]

\[
E = \frac{U}{l}
\]

Lösung:

\[
l = \frac{U}{E}
\]

\[
l = \frac{450\,\text{V}}{\frac{20\,\text{kV}}{\text{cm}}}
\]

\[
l = \frac{450\,\text{V}}{2 \cdot 10^4 \,\text{V}\,\text{cm}}
\]

\[
l = 225 \times 10^{-4} \,\text{cm}
\]

\[
l = 0,0225 \,\text{cm}
\]

\[
l = 0,225 \,\text{mm}
\]

2.7 Ladungsaufbau mit unterschiedlichen Dielektrika

An einem Plattenkondensator wird das Dielektrikum verändert. Bestimmen Sie die Ladung, die gespeichert werden kann, wenn die Spannung über den Platten auf konstant $U = 900\,\text{V}$ gehalten wird.
Gegeben sind folgende Werte:

- wirksame Fläche des Kondensators $A = 250 \, \text{cm}^2$
- Abstand der Kondensatorplatten $d = 2 \, \text{mm}$
- absolute Dielektrizitätskonstante $\varepsilon_0 = 8,85 \times 10^{-12} \, \frac{\text{As}}{\text{Vm}}$
- Dielektrikum vor der Modifikation $\varepsilon_{1a} = 2,5$
- Dielektrikum nach der Modifikation $\varepsilon_{1b} = 800$

Lösung:

$$Q = C \times U$$
$$Q_a = \varepsilon_0 \varepsilon_{1a} \frac{A}{d} \times U$$
$$= 8,85 \times 10^{-12} \frac{\text{As}}{\text{Vm}} \times 2,5 \times \frac{250 \times 10^{-4} \text{m}^2}{2 \times 10^{-3} \text{m}} \times 900\text{V}$$
$$= 0,249 \times 10^{-6} \text{As}$$
$$Q_a = 0,249 \mu\text{C}$$
$$Q_b = \varepsilon_{1b} \varepsilon_{1a} Q_a = 7,968 \times 10^{-5} \mu\text{C} = 79,68 \mu\text{C}$$

2.8 Die elektrisch freistehende Kugel

Eine von Luft umgebende, elektrisch freistehende Kugel speichert eine Ladung von $Q = 5 \times 10^{-9} \mu\text{C}$. Der Durchmesser der Kugel beträgt 80mm.

1. Frage: Wie groß ist die Ladungsdiichte der Kugel?

Lösungsansatz: Welche geladene Oberfläche wirkt auf die Umgebung? Verschiebungsflussdichte $\Psi \Rightarrow$ bezogen auf die Oberfläche der geladenen Kugel!

$$D = \frac{Q}{A} \Rightarrow \frac{\Psi}{A}$$

Oberfläche der Kugel: $A = 4 \times \pi \times r^2$

$$D = \frac{5 \times 10^{-9} \mu\text{C}}{4 \times \pi \times r^2}$$

$$D = 0,248 \mu\text{C} / \text{m}^2$$

2. Frage: Wie groß ist die wirksame elektrische Feldstärke, die durch diese geladene Kugel hervorgerufen wird?

$$E = \frac{D}{\varepsilon_0}$$

$$E = \frac{0,248 \mu\text{C} / \text{m}^2}{8,85 \times 10^{-12} \frac{\text{As}}{\text{Vm}}}$$

$$E = 28022 \frac{\text{As}}{\text{m}^2 \text{As}} \frac{\text{Vm}}{\text{m}} = 28,022 \, \text{kV} / \text{m}$$
2.9 Ladungsmenge eines Kondensators

Frage: Welche Ladungsmenge enthält ein Kondensator, der einen Plattendurchmesser von \(d = 15\text{cm} \) besitzt? Der Abstand der Platten beträgt 1mm. Am Kondensator ist eine Spannung von \(U = 120\text{V} \) messbar. Der Wert für die relative Dielektrizitätskonstante beträgt \(\varepsilon_r = 21,3 \) (Aceton als Dielektrikum).

Lösungshinweis: Plattendurchmesser? \(\Rightarrow \) Kreisform \(\Rightarrow A = \frac{\pi}{4}d^2 \)

\[
d = 150\text{mm}
\]

\[
A = \frac{\pi}{4}(150 \times 10^{-3} \text{m})^2 = 0,0177 \text{ m}^2
\]

\[
Q = C \times U = \varepsilon_0 \times \varepsilon_1 \frac{A}{d} \times U
\]

\[
Q = 8,85 \times 10^{-12} \frac{\text{As}}{\text{V m}} \times 21,3 \frac{0,0177 \text{ m}^2}{10^{-3} \text{m}} \times 120\text{V}
\]

\[
Q = 0,4 \times 10^{-3} \text{As} = 400\text{nC}
\]

2.10 Bestimmung der Durchschlagsfestigkeit

Zwei Metallplatten von je \(60 \text{ cm}^2 \) sind durch eine Schicht aus Phenolharz (\(\varepsilon_r = 7,5 \)) getrennt, die bei einer Ladung von \(Q = 1,99 \times 10^{-6} \text{C} \) durchschlagen wird.

Frage: Wie groß ist die Durchschlagfestigkeit dieser Anordnung?

\[
C \times U = Q
\]

\[
\frac{U}{d} = \frac{Q}{\varepsilon_0 \times \varepsilon_1 \times A}
\]

\[
\frac{U}{d} = \frac{1,99 \times 10^{-6} \text{ AsVm}}{8,85 \times 10^{-12} \text{ As} \times 7,5 \times 60 \times 10^{-4} \text{ m}^2}
\]

\[
\frac{U}{d} \approx 5000 \frac{\text{kV}}{\text{m}}
\]

2.11 Bestimmung von Ersatzkapazitäten

Frage: Wie groß sind die Ersatzkapazitäten zwischen den Punkten A bis D?

Abbildung 21: Kondensatorenschaltung
Mögliche Kombinationen:

- **AB Lösungsansatz:** \(C_{AB} = 200\text{pF} + \text{Reihenschaltung} \)
- **AC Lösungsansatz:** \(C_{AC} = \text{Reihenschaltung} + \text{Reihenschaltung} \)
- **AD Lösungsansatz:** \(C_{AD} = 100\text{pF} + \text{Reihenschaltung} \)
- **BC Lösungsansatz:** \(C_{BC} = 300\text{pF} + \text{Reihenschaltung} \)
- **BD Lösungsansatz:** \(C_{BD} = \text{Reihenschaltung} + \text{Reihenschaltung} \)
- **CD Lösungsansatz:** \(C_{CD} = 400\text{pF} + \text{Reihenschaltung} \)

Die Ergebnisse gerundet und ohne Nachkommastelle angeben!

Fall AB: \(200\text{pF} + \text{Reihenschaltung} \)\(\Rightarrow \ C_{AB} = 200\text{pF} + \left[\frac{(100+300+400)\text{pF}^3}{(100+400+100+300+300+400)\text{pF}^2} \right] \approx 263\text{pF} \)

Fall AC: \(C_{AC} = \left[\frac{(200+300)\text{pF}^2}{(200+300)\text{pF}} \right] + \left[\frac{(100+400)\text{pF}^2}{(100+400)\text{pF}} \right] = 200\text{pF} \)

Fall AD: \(100\text{pF} + \text{Reihenschaltung} \)\(\Rightarrow \ C_{AD} = 100\text{pF} + \left[\frac{(200+300+400)\text{pF}^3}{(200+300+200+400+300+400)\text{pF}^2} \right] \approx 192\text{pF} \)

Fall BC: \(300\text{pF} + \text{Reihenschaltung} \)\(\Rightarrow \ C_{BC} = 300\text{pF} + \left[\frac{(100+200+400)\text{pF}^3}{(100+200+100+400+200+400)\text{pF}^2} \right] \approx 357\text{pF} \)

Fall BD: \(C_{BD} = \left[\frac{(100+200)\text{pF}^2}{(100+200)\text{pF}} \right] + \left[\frac{(300+400)\text{pF}^2}{(300+400)\text{pF}} \right] \approx 238\text{pF} \)

Fall CD: \(400\text{pF} + \text{Reihenschaltung} \)\(\Rightarrow \ C_{CD} = 400\text{pF} + \left[\frac{(100+200+300)\text{pF}^3}{(100+200+100+300+200+300)\text{pF}^2} \right] \approx 454\text{pF} \)
3 Werner von Siemens

geboren am 13. Dezember 1816 in Lenthe;
gestorben am 6. Dezember 1892 in Berlin

3.1 Lebenslauf

Ernst Werner Siemens, 1888 geadelt, wurde am 13. Dezem-
ber 1816 in Lenthe geboren. Er war einer der Begründer der Elektrotec-
hnik und ein erfolgreicher Industrieller. Er grün-
dete zusammen mit Johann Georg Halske am 12. Oktober
1847 die „Telegraphen Bau-Anstalt von Siemens & Halske“ -
die heutige Siemens AG. Das Unternehmen entwickelte sich
innerhalb weniger Jahrzehnte von einer kleinen Werkstatt
to einem der weltweit größten Elektrounternehmen. Siemens
entstammte einem alten Goslarer Stadtgeschlecht. Nach dem
Umzug der Familie im Jahre 1823 nach Mecklenburg, blieb
seinen Eltern der wirtschaftliche Erfolg versagt. Siemens wur-
dete anfangs privat unterrichtet, besuchte ein Jahr die Bü-
gerschule in Mecklenburgischen Schönberg, bekam drei Jah-
re Unterricht von einem Hauslehrer und besuchte schließlich
für drei Jahre das Katharineum zu Lübeck. Er verließ das
Gymnasium 1834 vorzeitig ohne Abschluss. Er wollte gerne
einen praktisch-wissenschaftlichen Beruf ergreifen, doch er-
laubte die wirtschaftliche Situation der Eltern kein Studium.

Auf den Rat seines Lehrers Ferdinand von Bültzingslöw bewarb er sich beim Ingenieurkorps der preußischen
Armee in Berlin, wurde jedoch abgewiesen; daraufhin bewarb er sich bei der Artillerie in Magdeburg und
wurde angenommen. Im Herbst 1835 wurde Siemens als Offiziersanwärter für drei Jahre an die Berliner
Artillerie- und Ingenieurschule kommandiert. Hier bekam er eine umfassende Ausbildung auf
naturwissenschaftlichen Gebieten – wie Mathematik, Physik, Chemie, Geometrie und Ballistik und hörte

Leutnant Werner Siemens tat Dienst in Magdeburg und anschließend in der Garnison Wittenberg, wo er
wegen der Teilnahme als Sekundant bei einem Duell zu fünf Jahren Festungshaft verurteilt wurde. Seine Zelle
in der Zitadelle Magdeburg gestaltete er zum Labor um und entwickelte dabei ein Verfahren zur elektrischen
Galvanisierung. Er wurde begnadigt und 1842 zur Artilleriewerkstatt in Berlin versetzt. Im gleichen Jahr
gelang es Werner Siemens einen Tedöffel aus Neusilber, mit Hilfe des aus Batterien stammenden
Gleichstromes, mit einem Überzug wahlweise aus Silber oder Gold zu versehen. Für dieses Verfahren bekam er
ein Patent, das er an einen Juwelier verkaufte.

Ende 1846 entwickelte er den elektrischen Zeigertelegraf en. Im Jahr darauf erford er ein Verfahren, um Drähte
mit einer nahtlosen Umhüllung aus Guttapercha zu versehen. Dieses Verfahren bildet bis heute die Grundlage
zur Herstellung isolierter Leitungen und elektrischer Kabel.

Im Schleswig-Holsteinischen Krieg unterstützte er 1848 die Kieler Bürgerwehr bei der Verteidigung des Kieler
Hafens gegen dänische Seestreitkräfte, durch die Belagerung der Festung Friedrichsort. Außerdem entwickelte
er funktionsfähige ferngezündete Seeminen, die vor dem Kieler Hafen ausgelegt wurden und die dänische
Marine darin hinderten, die Stadt aus der Nähe zu beschließen. Er blieb beim Militär bis Juni 1849 und
versuchte immer wieder mit Erfindungen zusätzlich Geld zu verdienen.

1857 entwickelte Siemens die Ozonröhre, die elektrisch erzeugtes Ozon zur Reinigung von Trinkwasser
verwendet. Im gleichen Jahr formulierte er das Gegenstromprinzip.

Die oder auch das Guttapercha oder Gu tta (malaiisch: getah „Gummi“; percha „Baum“) ist der eingetrocknete Milchsaft des im
malaiischen Raum heimischen Guttaperchabaumes (Pal aquium gutta). Guttapercha steht chemisch dem Kautschuk nahe.

3.2 Die selbsterregte Dynamomaschine von Siemens

Es handelt sich um diejenige Dynamomaschine (Lit.-Ref.6), einen umgebauten Kurbelinduktor mit Doppel-T-Anker aus dem Jahr 1856, an der Werner Siemens 1866 das von ihm vorgeschlagene dynamoelektrische Prinzip demonstrierte; er hatte die Permanent-Magnete vollständig durch Elektromagnete und ein Weichseisenjoch ersetzt. Die Maschine leitete ein neues Zeitalter der Elektrotechnik ein. Sie war auf der Weltausstellung in Paris 1867 ausgestellt, auf der Werner Siemens mit dem Orden der Französischen Ehrenlegion ausgezeichnet wurde.

Um das notwendige Magnetfeld zu erzeugen, kann zwischen vier Möglichkeiten gewählt werden:

- Einsatz eines Dauermagneten oder auch Permanent-Magnet genannt
- Erzeugung des Magnetfelds über einen Stromfluss I_{Feld} – ein Teilstrom des Ankerstroms wird für die Magnetfelderzeugung abgezweigt. Diese Betriebsart nennt man „Nebenschlussmaschine“.
- Wird der komplette Ankerstrom für die Erzeugung des Magnetfelds verwendet, so nennt man die Betriebsart - „Reihenschlussmaschine“. Die Anker- und die Feldwicklung liegen in Reihe. Die Aussage, dass der ganze Ankerstrom verwendet wird ist nicht ganz korrekt, denn zur Feldwicklung wird ein Parallelwiderstand geschaltet, der die Stromstärke reguliert. Nur ein Teil des gesamten Ankerstroms fließt somit durch die Feldwicklung.
- Die vierte Betriebsart ist die fremderregte Maschine. Ankerstrom und Feldstrom kommen aus getrennten Quellen und sind voneinander unabhängig.

Der selbsterregte Gleichstromgenerator ist eine Sonderform der Nebenschlussmaschine. Die Feldwicklung des Generators wird durch die vom Generator selbst erzeugte Spannung gespeist. Dies ist nur deshalb möglich, weil durch die Remanenz des Eisens, auch bei $I_{\text{Feld}} = 0$, ein magnetisches Feld vorhanden ist.

Betrachten wir das Grundprinzip im Detail und stellen wir ein mathematisches Modell auf.
elektrische Größen:

- I_F ... der konstante Feldstrom, dient zum Aufbau des magnetischen Feldes in dem der Anker rotiert und dadurch ein Strom induziert wird
- U_Q ... ist die Spannung, die vom Generator durch Induktion (Bewegungsinduktion) erzeugt wird
- R_F ... der ohmsche Widerstand der realen Feldspule, die das Magnetfeld aufbaut, indem der Anker rotiert
- R_A ... der ohmsche Widerstand der Ankerwicklung
- L_A ... die Induktivität der Ankerwicklung: $L = \mu \cdot n^2 \frac{A}{l}$
- L_F ... die Induktivität der Feldspule
- I_F ... $\frac{U_A}{R_F}$
- i_F ... der zeitveränderliche Feldstrom
- $U_A = I_F \cdot R_F$ für $R_A << R_F$ und $L_A << L_F$

Abbildung 24: Ersatzschaltbild eines selbsterregten Gleichstromgenerators - Nebenschlussprinzip

Annahmen: bei konstanter Drehzahl und $R_A \approx 0$

Somit gilt für den Erregerkreis:

$U_Q = L_F \frac{di_F}{dt} + i_F R_F$

$\frac{di_F}{dt} = \frac{1}{L_F}(U_Q - i_F R_F)$

$di_F = \frac{1}{L_F}(U_Q - i_F R_F) dt$

$i_F = \int \frac{1}{L_F}(U_Q - i_F R_F) dt$

$i_F = \frac{1}{L_F} \int (U_Q - i_F R_F) dt$

$U_Q > i_F R_F \Rightarrow \frac{di_F}{dt} > 0$
Der Feldstrom \(i_F(t) \) nimmt solange zu, bis die Quellspannung \(U_Q = i_F(t) \cdot R_F = I_F \cdot R_F \) ist. Dieser Zustand entspricht dem stationären Betriebspunkt. In der Praxis darf der Ankerwiderstand \(R_A \) nicht vernachlässigt werden. Bei Belastung des Generators wird durch \(I_A \cdot R_A \) das Feld geschwächt und daraus folgt letztendlich, dass die Quellenspannung \(U_Q \) kleiner wird.

Der Vorteil von solchen Nebenschlussmaschinen besteht darin, dass sie vom Aufbau einfacher sind, als fremderregte Maschinen. Jedoch muss beachtet werden, dass eine Nebenschlussmaschine von der Last abhängig ist. Das Erregerfeld kann nicht konstant sein, wenn die Last variiert.
4 Abkürzungsverzeichnis

A elektrisch wirksame Fläche eines Kondensators
C Die Kapazität eines Kondensators
d Abstand der geladenen Kondensatorflächen - Länge der Feldstärkelinien.
e Abstand zwischen den elektrischen Anschlüssen im Strömungsfeld, Länge der Feldstärkelinien: \(E = \frac{U}{l} \)

EMK - Elektromotorische Kraft; Energiequelle
E elektrische Feldstärke
i(t) Zeitfunktion des elektrischen Stroms
l Abstand zwischen den elektrischen Anschlüssen im Strömungsfeld: \(E = \frac{U}{l} \)
Q elektrische Ladung
U Spannung am Verbraucher
5 Literaturverzeichnis

Lit.-Ref.1 Küpfmüller, K.; „Einführung in die theoretische Elektrotechnik“; 5. Auflage; Springer Verlag
Lit.-Ref.2 Lunze, K.; Wagner, E.; „Einführung in die Elektrotechnik“; 2. Auflage; Verlag Technik Berlin
Lit.-Ref.3 Lunze, K.; „Einführung in die Elektrotechnik“; 11. Auflage; Verlag Technik Berlin
Lit.-Ref.4 Bronstein, I.N.; Semendjaew, K.A.; „Taschenbuch der Mathematik“; Verlag Harri Deutsch
Lit.-Ref.5 Wikipedia - 2012; Stichwort „Leidener Flasche“
Lit.-Ref.6 Deutsches Museum München - Text und Bild der historischen Dynamomaschine