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Abstract. Safety critical systems such as aircraft require functional and hardware
redundancy to achieve prescribed safety levels. Discrete event control is applied to
ensure that a safe system con�guration is available at all times. Since, at present,
formal veri�cation techniques are restricted to models with few continuous states, in
this paper, simulation is used to verify that the overall system operates according to
the requirements when an actuator failure occurs. The feasibility study to modelling
and simulation of complex controlled systems presented here is characterised by
(i) a complex object-oriented model of aircraft dynamics, including gravity models,
aerodynamics, etc., (ii) the speci�cation of the discrete event redundancy control by
a domain speci�c formalism that includes statecharts, (iii) the usage of energy based
hybrid bond graphs to model the dynamics of the hydraulic actuators, (iv) model
integration on the model level as well as on the data level, (v) support of DAEs
with dynamically changing index and (vi) illustrative simulation results.

1 Introduction

Redundancy is one of the most important techniques to achieve the desired
level of safety in systems such as aircraft, nuclear plants, chemical plants, and
other safety critical applications. Its basic premise is to include redundant
functionality into a system that can be activated when failures of the normal
operating components occur and to validate and select normal behaviour
(e.g., voting procedures).

1.1 Aircraft Attitude Control

To illustrate the concept, consider the primary (attitude) control surfaces of
an aircraft as shown in Fig. 1. The ailerons are used to control roll, the eleva-
tors control pitch, and the rudder controls yaw motion. This paper concen-
trates on the pitch control, performed by the elevators. Each of the elevators
is positioned by one of two actuators, the other one operates as a passive load.
Discrete-event control embedded on two primary 
ight control units (PFCU)
selects the controlling actuator and ensures that the redundant actuator is
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loading. Each PFCU controls one actuator per elevator, so that both eleva-
tors can be controlled, even if one PFCU fails completely. The PFCUs also
generate the position control signals for the four actuators. Feedback con-
trol is used for normal operation whereas feedforward control is applied to
single actuators in the case of certain failures. To ensure minimal transient
disturbances caused by actuator switching, the loading actuator should be
shadowing the control signals ready to switch to a mode where it actively
controls the elevator. However, in some extreme cases the actuator may be
disengaged, i.e., it is loading but not shadowing. Thus, each PFCU has to
decide for two actuators whether an actuator is disengaged, shadowing, or
controlling and whether a feedback or a feedforward controller is used for
shadowing or controlling. These decisions depend on the mode of the other
actuator, the state of the other PFCU and the detected failures. The best
possible consistent state con�guration of both PFCUs for a given failure sit-
uation is achieved by a complex iterative interaction of both PFCUs.

elevators

aileron

aileron
rudder

Fig. 1. Primary control surface of an airplane

The hydraulic actuator design and the controller parameters may in
u-
ence the overall behaviour of the aircraft signi�cantly. Therefore, all con-
tributing parts and phenomena of the aircraft such as aerodynamics, gravity,
engines, etc. have to be considered in order to assess the design of the ele-
vator control system. Because of the immense complexity and the intricate
redundancy management model-based validation is a necessity.

Formal veri�cation techniques are widely used for pure discrete-event sys-
tems and much research has been carried out recently on the veri�cation of
hybrid systems. However, at present, the complexity of systems amenable to
hybrid systems veri�cation techniques is restricted to a low order continuous
dynamics (typically not more than three continuous state variables) [5,13,27].
Consequently, formal methods are applied to the discrete-event part only,
e.g., a so-called Failure Mode E�ect (FME) analysis is employed to verify
certain safety and reliability properties of the redundancy management sys-
tem. However, its interaction with the continuous parts as well as the design
of the position controllers and the hydraulic actuators can not be evaluated
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with formal veri�cation techniques. Therefore, the only practical model-based
approach for this task is to perform extensive simulation studies.

1.2 Model Design

In this contribution, we concentrate on the modelling and simulation of the
elevator control system and the aircraft. The model formulation is driven
by the assumption that the simulation studies have the purpose to assess
whether the design of the evaluator control system meets the requirements
with respect to the overall behaviour of the aircraft (e.g., lateral and longi-
tudinal aircraft velocity and 
ight path angle). In particular, di�erent sets of
parameters of the controllers and of the hydraulic actuators have to be tested
in combination with certain failure scenarios.

As a consequence, the simulation model has to incorporate a realistic
model of the aircraft dynamics, including all essential e�ects and compo-
nents such as aerodynamics, gravity, engines, and hydraulic oil supply. In
order to automatically generate the correct boolean input signals of the feed-
back controllers and the actuators depending on the sequence of failure events
it is convenient to include at least the input-output behaviour of the redun-
dancy management components. (In our case it would also be possible to
calculate the input signals aforehand, using an external discrete-event simu-
lator, because we do not consider feedback on the redundancy management
yet.) Since the sample times of the PFCUs are very fast in comparison to
the bandwidth of the actuators, the hardware aspects of the PFCUs can be
neglected, i.e., the redundancy management model reacts instantaneously on
failures and the controllers are modelled as ideal continuous controllers. An-
other idealisation can be introduced for the hydraulic actuators. There are
many small physical e�ects such as oil elasticity, viscosity and 
uid inertia
which do not in
uence the overall dynamics signi�cantly, but considerably
increase the modelling e�ort, so that these e�ects are not considered in the
corresponding models.

These basic model design decisions cause several diÆculties for the mod-
elling and the simulation. With respect to modelling, the complexity of the
systems and their heterogeneous nature mandates the use of dedicated for-
malisms. These formalisms di�er greatly in their visual representation and
require the interoperation of speci�c and powerful modelling environments.

Present day simulation technology, on the one hand, can handle large
systems of di�erential and algebraic equations (DAE), possibly extended by
some discontinuous equations [2]. On the other hand, discrete-event simu-
lators apply an event driven approach to manage the huge number of state
changes in discrete-event models [10]. The combination of discrete and contin-
uous behaviour requires the integration of a numerical integrator with some
form of discrete-event simulation. Especially, the detection and location of
discrete events during continuous integration has to be supported. Further-
more, at event times discontinuities in continuous state variables may occur.
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For the aircraft model, this emerges because the abstractions in the hydraulic
actuator models result in a DAE with dynamically changing index. This re-
quires a special simulation engine that switches the active equations and
automatically reinitialises the state variables according to physical conserva-
tion laws automatically, when the index changes. This contribution presents
an approach that copes with all these problems.

1.3 The Modelling and Simulation Approach

For components of the physical system we use object-oriented modelling. In
this context, the term object-oriented modelling means that every physical
object is modelled independently without making assumptions about its en-
vironment and preserving the physical connection structure of the object.
The connections of a model component then have to correspond to physical
interactions the computational causality of which is not �xed a priori, i.e.,
the variables involved in an interaction are not a priori de�ned as inputs or
outputs. Furthermore, the behaviour of the component should be de�ned in
a declarative way where a set of (possibly implicit) equations is regarded as
a set of behavioural constraints rather than as a calculation formula. To il-
lustrate this, let us consider a hydraulic line. The component model of the
line would have two connections which each incorporate a pressure and a 
ow
variable. These variables represent neither inputs nor outputs, since depend-
ing on the structure of the environment the pressure drop causes the 
ow
or the 
ow causes the pressure drop. In some cases the causality can even
change dynamically so that a quantity that would be regarded as an input
in signal 
ow diagrams becomes an output and vice versa. This is why the
equation-based behavioural description is inherent to object-oriented mod-
elling. Using equations (which may be written in an implicit style) for the
description of the behaviour does not impose a speci�c calculation scheme.
From the modelling perspective the equations of all model components and
all connections of the overall aircraft model simply form a global set of dif-
ferential and algebraic equations (DAE) so that simulation is the task to
�nd a solution to these equations, i.e., functions over time that satisfy the
equations. To generate eÆcient simulation code, the model equations must
be processed by a symbolic engine and compiled into executable code.

The existing DAE based modelling languages such as gPROMS [4], VHDL-
AMS, Modelica [15], etc. di�er in many aspects. This work leverages a li-
brary for aircraft models [16,17] developed using Modelica since it allows
building domain-speci�c graphical component libraries and supports many
features known from object-oriented programming such as inheritance, pack-
ages, etc. For the modelling and the symbolic processing taskDymola [7] was
used. It provides a graphical user interface for model composition and sym-
bolic engine of Dymola generates C-code from a Modelica model. Then a
standard C-compiler generates the executable simulation code.
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This con�guration is already powerful enough to model most parts of
the aircraft and to simulate the resulting complex DAE system including
certain discontinuities (a so-called `hybrid DAE'). However, for simulating
DAEs with dynamically changing index, the symbolic engine of Dymola is
too limited. Therefore, a specially developed environment, HyBrSim [22],
based on hybrid bond graphs [21] was used to experiment model the aircraft
components with variable index, i.e., the hydraulic actuators. The C-code
generated by both environments, Dymola and HyBrSim is then merged
manually simulated using a general purpose hybrid dynamic system simulator
MAsim [20].

The pure discrete-event parts of the elevator control, i.e., the redundancy
management, is modelled by a domain-speci�c formalism including state-
charts. It will be shown that the syntax and the semantics of the object-
oriented modelling paradigm is not well suited to represent the objects of
such a formalism. Instead, a separate modelling environment has been imple-
mented which supports this formalism and generates a monolithicModelica

component that can be integrated into the Modelica aircraft model .The
behaviour of this component is de�ned by an algorithm that is taken by
Modelica as an additional model constraint, i.e., it is equivalent to one
equations with multiple input and output variables. The essential di�erence
is that the causality of the interface variables and the calculation scheme of
the resulting object are predetermined. In contrast to the actuator model
that is integrated on the data level, the redundancy management model is
integrated on the model level.

Section 2 presents a system level view of the elevator redundancy control.
Section 3 discusses the di�erent parts in detail and presents their models.
Simulation results are given in Section 4. Finally some conclusions are drawn
in Section 5.

2 Aircraft Elevator Control System

The aircraft elevator control system includes several forms of redundancy [26].
The system itself consists of two elevators, the control surfaces. Each of these
are controlled by one of two hydraulic actuators while the other one is op-
erating as a passive load. The four actuators take their power from three
hydraulic subsystems as depicted in Fig. 2. Two primary 
ight control units
are available to compute actuator control signals and modes.

The functionality of each actuator is speci�ed in textual form in terms of
a number of module actuator control modes (MACM) all with their speci�c
behaviour characteristics. These are de�ned in Table 1. Note that the MACM
de�nitions include behavioural information along with structural information
about the particular mode of operation of the actuator components.

The discrete outputs of the redundancy management system are trans-
lated into physical behaviour by means of a spool valve and a servo valve
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Fig. 2. Elevator system

Table 1. Module actuator control modes

MACM Description Actuator

active The module controls the servo valve in
closed loop mode. The corresponding ac-
tuator is active and controls the elevator
movement.

servo valve con-
trolled and spool
valve open

hot and standby The module controls the servo valve in
closed loop mode. The corresponding actu-
ator is not active and operates as a load.

servo valve con-
trolled and spool
valve closed

passive The module is waiting and does not gener-
ate actuator control signals. It can change
its mode at any time to take on control of
the corresponding actuator.

o� The module is turned o� temporarily be-
cause of an intermittent failure and does
not generate actuator control signals. As
long as the failure has not been �xed, it can-
not change to a mode where it controls the
corresponding actuator.

servo valve not
controlled and
spool valve closed

isolated The module is turned o� inde�nitely. A per-
sistent fault in the control loop of the corre-
sponding system isolates the module and it
cannot change to a mode where it controls
the corresponding actuator.
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in the hydraulic actuator. Power is supplied by one of the hydraulic systems
and delivered to the actuator cylinder that positions the elevator. This 
ow
of energy is modulated by the servo valve, the modulation is computed by a
PID feedback control law. The control signals for the actuators are generated
by two primary 
ight control units (PFCU) that can operate as input-output
modules (IOM) or as direct-link modules (DLM) controlled by a switch in
control law. The IOMs calculate setpoint values for the actuators based on a
PID control algorithm and monitor a number of critical system variables and
change between the modes in response. The DLMs allow limited but direct
control of the actuators in case the IOMs are not available. The control mod-
ules can be in di�erent modes for each of the actuators separately. Moreover,
they may control other aircraft actuators as well. In addition, the servo valve
may not be controlled and its piston then is in a default position. Also, the
spool valve can be turned on and o� to switch between active control and
passive loading. Continuous feedback control drives the elevator to its de-
sired setpoint, while higher level redundancy management selects the active
actuator and the control law to be used.

Interaction between the actuator and the aircraft model consist of forces
and moments acting on the elevator that is sti�y connected to the actua-
tor positioning cylinder as well as the pressure generated by the hydraulic
systems. Three hydraulic systems supply the oil for the actuators shown in
Fig. 1. When a failure occurs, redundancy management switches between
actuators and oil supply systems to achieve maximum control.

The behavioural redundancy requirements may be formalised by a set of
rules for the redundancy management to switch between module actuator
control modes as follows [26]:

1. Mode changes only occur when

� a system failure is detected,

� control of an uncontrolled elevator is requested, or

� one module requests control of both elevators which are controlled by
separate modules.

2. One module should be simultaneously in either active, hot, or standby for
both elevators as long as possible.

3. If not overruled by the previous speci�cation, the module priority is such
that the switching sequence is IOM2/1 ! IOM1/1 ! DLM2 ! DLM1.

4. There is always one and only one module that controls one elevator, i.e.,
that is active.

5. In case of failure of the controlling module, control is assumed by a module
that is hot or standby. If no module is in this mode, the one with highest
priority that is passive assumes control.

6. A module switches to hot when the other module that controls the same
elevator, and, therefore, is active, belongs to another PFCU and both
elevators are controlled by IOMs.
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7. A module switches to standby when the other module that controls the
same elevator, and, therefore, is active, belongs to another PFCU and
one of the elevators is controlled by a DLM.

8. In case of pressure failure, the `low pressure' signal only serves for fault
classi�cation. It does not cause a direct mode change.

9. In case of `low pressure' and if a sensor detects elevator positioning system
failure, the module switches o�. The module switches back to passive only
when no system failure is reported and the `low pressure' condition does
not hold anymore.

10. If `low pressure' is not reported and the elevator positioning system is
reported to fail then the module switches to isolated.

To prevent nondeterministic switching, priorities are assigned to the pos-
sible transitions. Because of the critical nature of switching to the isolated

mode to prevent damage to the system, this transition has the highest prior-
ity. In addition this causes another module to immediately assume control.
This is also desired when, e.g., a pressure loss is detected and the module
switches o�. Therefore, the corresponding transition has second highest pri-
ority. Another decision criterion is to allow modules to take over control as
quickly as possible. As a result, modes that implement as much control as
possible should have highest priority. So, when a module can be switched
active this should be immediately executed rather than �rst switching to
standby if this transition is also enabled. This yields the following priorities:

1. transition to isolated

2. transition to o�

3. transition to active

4. transition to hot, standby, and passive.

Sensors in the elevator control system provide the PFCUs with informa-
tion about the functioning of the system. In case of abnormal readings, the
entire set of measurements is used to infer a particular failure mode. Details
of this inference mechanism are beyond the scope of this project. To test the
redundancy management, failure mode e�ect (FME) analysis investigates the
availability of the system for several test cases that embody a set of sensor
readings:

� Pressure decrease in the hydraulic system (H1, H2, H3)
� Prede�ned set of failures (F)

{ IO module failure (1, 2)
{ DL module failure (1, 2)
{ Actuator failure (left inner/outer, right inner/outer)

These failures represent abstractions of actual physical phenomena underly-
ing the failure detection. FME is still the most important step in verifying
system safety and reliability of discrete-event control [14,24].
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The combined discrete redundancy management for two of the four actu-
ators on each of the four modules results in eight redundancy modules. This
adds up to a considerable discrete behavioural complexity. Each module con-
sists of six possible local modes and there are eight such modules. Thus, the
total number of modes of the redundancy management control is 48. There
is always one and only one active state in each of the discrete-event models.
But, because of the redundancy speci�cation, each of the models needs to
have information about the mode of each of the other ones. This interac-
tion is based on the MACMs and causes logic connections between each of
the actuator control modules. Finally, an additional discrete-event model is
used to model possible fault scenarios by activating states that correspond
to particular failure modes. This model has eleven states.

3 Modelling the Parts of the System

The elevator control system described in Section 2 contains a number of parts
that are best captured by di�erent modelling approaches: (i) the aircraft
dynamics, (ii) the redundancy control, including control law switching, and
(iii) the actuator switching behaviour.

3.1 Aircraft Dynamics

To investigate the e�ect of actuator switching on the overall 
ight charac-
teristics such as nick rate (q) and angle of attack (�), an aircraft model is
required. The more realistic this model, the better the analysis results hold
for the actual implementation of the aircraft design.

Object-Oriented Modelling The design of a realistic aircraft model is a
tremendous task that combines several domains within aircraft design such
as (i) aerodynamics, (ii) gravity, atmospheric, and wind models, (iii) en-
gine/thrust models, (iv) rigid body models including the e�ects of fuel con-
sumption, and (v) systems models for primary (attitude) control.

Traditionally, such complex aircraft models are designed in a computer
processable format such as, e.g., Fortran, and they would be completely
integrated with facilities for behaviour generation, e.g., the numerical solver.
This, however, renders the models unwieldy, error-prone, and rather costly
to design.

Recently, a more structured approach to aircraft modelling has been de-
veloped based on object-oriented modelling techniques and the use of libraries
of the domain speci�c components mentioned before [16,17]. Object-oriented
modelling techniques rely on the notion of encapsulation to hide the details
of physical component models and to increase maintainability. Furthermore,
the models are organised hierarchically which allows successive re�nement of
behaviours at increasing levels of detail.
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Graphical Syntax Figure 3 shows a top-level view of the aircraft model
with the engine objects (left), the systems component (top) and the aerody-
namics model (right), the rigid body model and the gravity/atmosphere/wind
models (bottom-right). These components can be hierarchically decomposed
in similar object diagrams.

ATD
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1 dim

atm os gust

body

CO G

ATD

aeroRef

engRef 1

ATD

engRef 2

ATD

ATD
interac t

REF CO G

ATD

sy st ems

Fig. 3. Top level object diagram of the aircraft model

Communication between objects is through ports that also constitute the
interface at the next level in the hierarchical decomposition. For a set of
connected variables, vi, these ports use two di�erent connection semantics,
(i) 8i(i 6= 0jvi = v0), i.e., all connected variables are set equal, and (ii)
�ivi = 0, i.e., the connected variables are summed to 0. This allows for a
convenient implementation of energy 
ows across ports where the di�erent
semantics correspond to the across and through variables, respectively, the
product of which constitutes power.

Execution Model The behaviour of each of the primitive model objects is
described in terms of algebraic and di�erential equations. These are treated
as noncausal, i.e., no computational direction of the variables is assigned (it
is not determined which variable is to be computed from an equation), which
is a convenient way of modelling physical systems in terms of declarative
constraint speci�cation. Furthermore, it enhances reuse.

To illustrate, consider the elevator control surface library component in
Fig. 4. This surface consists of one or more movable parts to adjust the
aerodynamic force acting on the aircraft. The library component connects
to the remainder of the aircraft model by three ports: (i) a mechanical port

angeAct, that contains the elevator de
ection, Æ, (ii) an aerodynamic port,
de
ection, that carries the forces because of air
ow around the elevator, and
(iii) a mechanical port, MOTI, that contains the force acting on the aircraft.
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The elevator computes the force Fact from

Fact = f(V 2
a ; Æ; �; Scs; : : : ; mcs; g; : : : ); (1)

the de
ection Æ from

Æ = kkinxact; (2)

and, �nally, its rate of change _Æ from

_Æ = kkinvact : (3)

Note that kkin is a parameter internal to the object that represents the kine-
matics of the mechanism.

Table 2. ControlSurface class interface variables

Interface Variables

across xact displacement of actuator 
ange
vact displacement velocity of actuator 
ange
Va airspeed velocity
� air density
g gravitational acceleration

through F force acting on actuator 
ange

MOTI

deflectionflangeAct

Fig. 4. Elevator control surface library component

To enable execution, the primitive object equations and the connection
constraints for across and through variables are accumulated by a global
model interpretation scheme. It sorts and solves the overall system of dif-
ferential and algebraic (DAE) equations by assigning causality so that the
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unknowns can be computed from the number of equations and input and
state variables. Algebraic manipulations are performed to reduce the system
of equations (e.g., [3]).

To represent switching, equations may be conditionally active. When the
conditions change their truth value, this causes events. When events occur,
variables may undergo discontinuous changes. In addition to the di�erential
and algebraic equations, a `pre' operator is de�ned to allow access to the
value of a variable immediately before a discontinuous change. Because this
introduces discrete state behaviour, an iteration is required to converge to
a consistent state before the continuous simulation is resumed. Though this
mechanism can be used for implementing discrete-event behaviour, it is diÆ-
cult to mimic state transition diagrams using object diagrams and even more
so to describe the state transition behaviour by local equations of the primi-
tive states and transitions. The graphical syntax of object diagrams does not
allow annotation of component connections, thus it is not possible to write
conditions, events, and actions alongside a transition. Furthermore, transi-
tions are not objects in object diagrams. Therefore, the transition behaviour
requires a speci�c transition object to be inserted. Execution has to be de-
scribed in terms of local algebraic constraints that communicate between
states and transitions to evaluate whether a state is active and a transition
is enabled [23].

The result of collecting the local equations, adding the connection con-
straints, and sorting and solving these leads to a global system of equations
of the form

_x = f�(x; u; t)
0 = g�(x; u; t)
�+ = ��(x; u; t)

(4)

where f� speci�es the dynamics in mode �, g� the event generation functions
(`zero crossings'), and �� the next mode function. Before continuous simula-
tion can start or be resumed after an event occurred, a consistent mode �,
i.e., �+ = �, has to be found. Typically, this is performed by a �xed point
iteration scheme.

3.2 Redundancy and Position Control

The main purpose of the two primary 
ight control units is the generation of
appropriate continuous and discrete control signals for the four elevator actu-
ators. Each PFCU contains a failure monitoring function, a speci�c discrete-
event part for the redundancy management as well as a switched position
controller. When a failure is detected, the redundancy management parts
of both PFCUs interact tightly in order to achieve a consistent decision on
the appropriate reaction, before switching the operating control laws. This
is because each PFCU is responsible for di�erent actuators and has to take
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the discrete state of the other PFCU into account in order to guarantee that
each elevator is controlled by one actuator only. Therefore a simple failure
may trigger a sequence of transitions in both PFCUs, where a discrete mode
transition in one PFCU may lead to a state which forces another transition
in the other PFCU and so on.

Graphics Since hardware aspects are beyond the scope of this paper, the re-
dundancy management parts of both PFCUs are uni�ed in one discrete-event
model component neglecting the distributed architecture of the system. As a
consequence, the aircraft model contains only one elevator control component.
This is divided into three parts: (i) a failure injection module that replaces
the failure monitoring functions allowing to directly study speci�c failure sce-
narios, (ii) the combined redundancy management parts of both PFCUs that
react on changes of the failure con�guration and (iii) the switched position
controllers of both PFCUs whose transfer functions depend on the actual
modes of the redundancy management component (Fig. 5).

Fig. 5. The structure of the elevator controller model

The requirements for the redundancy management which were formulated
informally in Section 2 state that each redundancy module contains 6 possible
local modes. Since a redundancy module switches from one mode to another
under certain conditions, the modules should be modelled by a kind of state
transition diagram, where the modes are represented by discrete states and
the transition arrows represent the possible mode switchings. In order to take
the transition priorities into consideration, hierarchical states as known from
the statechart formalism [11] are used. Additional states are introduced that
do not correspond to a mode, but represent the priorities of the transitions:
The higher a state in the hierarchy the higher is the priority of its outgoing
transitions, e.g., the transition ToO� in Fig. 6 has a higher priority than
ToAct and a lower priority than ToIso. The statechart model in Fig. 6 re
ects
the state transition aspects of a redundancy module declared in the informal
description of the requirements.

The transition conditions can be derived from the switching rules of the
requirements and di�er for each statechart. In order to keep the statechart
model generic and take architectural aspects into consideration a speci�c
hierarchical block diagram formalism is used (Fig. 7). Two blocks on the top
level represent the two primary 
ight control units. The input port contains
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the failure values that come from the failure injection module whereas the
output ports transmit the actual module modes to the switched controllers.
Each PFCU block contains four control modules (LIO, RIO, LDL and RDL)
as subblocks the behaviour of which is de�ned by the statechart in Fig. 6.
The transition conditions are calculated outside of the statecharts in a special
block (PFCU1 Logic and PFCU2 Logic) with no state behaviour.
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Execution The intended behaviour of the elevator control model is as fol-
lows: The failure injection module generates Boolean signals that indicate
the presence of speci�c failures. When a failure signal changes, the transition
conditions of both PFCUs are evaluated and their values are transmitted
to the statechart blocks that perform their transitions independently. After
all statecharts have converged to a persistent discrete state, i.e. no further
transitions happen, the transition conditions are calculated again taking the
new states into account and a new set of transitions may be performed in the
modules again. When the overall discrete-event system reaches a persistent
state, this local event iteration is stopped and the output values are set, and
the position controllers may change their mode.

In order to analyse the behaviour of the elevator control and the over-
all aircraft for di�erent failure scenarios, the failure injection module gener-
ates predetermined sequences of failures. These scenarios can be modelled by
equations containing logical expressions and inequalities over the indepen-
dent variable time and parameters as shown in the following example where
IO2failure is present from time t1 to t2:

IO2failure = (t > t1) ^ (t < t2): (5)

The output of the redundancy management part switches the position
controllers that are easily described using equations. The following example
shows the controller equations of PFCU1 for the left elevator:

eact;l1 = wact � xact;l (6)

uact =

8>>><
>>>:

0 PFCU1states.LIO.O�

_ PFCU1states.LIO.Isolated;

wact PFCU1states.LDL.Active;

kpeact;l1 + kdvact;l else

(7)

uspool;l1 = PFCU1states.LIO.Active (8)

Remarks to the modelling of discrete-event systems In the former
section the redundancy management part was modelled by a domain speci�c
formalism including statecharts, and the resulting input/output behaviour
can be described by an algorithm. There are two alternatives for realising
the graphical editor and the integration into the object-oriented aircraft
model. The �rst one (presented above) requires the implementation of a
domain-speci�c graphical editor and a translation procedure that generates
code from the models that contains the resulting switching algorithm in an
equation-compatible style and that can be inserted as an object into the air-
craft model. The second alternative does not require any tool development.
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Here the object-oriented approach is applied directly to the modelling of the
discrete-event system. This means that basic model objects, such as states
and transitions, are de�ned by equations in a way that the composition of
these objects results in a system of equations that behaves corresponding to
the desired semantics. The latter approach was successfully applied to sim-
ple automata and Petri-net models [23]. However, there are several serious
de�ciencies so that this approach is not suitable for complex systems.

As far as the graphical representation is concerned, connecting state and
transition objects through their ports is somewhat clumsy, since the original
formalisms such as automata, Petri-nets and statecharts do neither have ports
nor do transitions correspond to graphical nodes. In contrast to automata
and Petri-nets, the statechart formalism supports a hierarchy concept that
can not be represented in an acceptable way by object diagrams: Due to
the concept of encapsulation all objects have to hide their internal objects
and interaction across the object hierarchy is not allowed. Therefore it is not
possible to view all states of a statechart at the same time. Furthermore,
inter-level transitions that cross state levels, i.e. PasHot, HotPas, StaPas and
PasSta, cannot be supported.

With respect to the execution semantics there is at least one critical prob-
lem: The blocks of the redundancy management model have to interact locally
and must reach a consistent state before propagating new values to the rest
of the system. Using an object-oriented approach, it is not possible to re-
alise this local event iteration. The reason is that the behavioural description
of the eight statechart blocks and the transition condition blocks (PFCU1-
Logic, PFCU2-Logic) would be mixed into the global set of equations of the
overall system, since each equation has to be treated similarly. Thus, for each
calculation of the transition conditions the global set of equations has to
be evaluated simultaneously. But this means that an intermediate state of
the redundancy management, i.e. an inconsistent mode, would be inevitably
linked to the physical system which is not the intended behaviour. The same
holds for state transition diagrams or Petri-nets modelled as object diagrams:
Each �ring of a transition corresponds to a global evaluation of the system
of equations of the overall model so that local event iterations can not be
implemented.

Because of these problems, we created a tool which supports the �rst al-
ternative [18]. A graphical modelling environment that supports the block
diagram and the statechart formalism was realised. In order to reduce the
e�ort for introducing additional domain speci�c formalisms, e.g., sequential
functions charts, the meta-modelling tool DoME [1,8] is used that allows
the formal speci�cation of the syntax and the appearance of graphical for-
malisms as well as the programming of automatic translation procedures.
Figure 6 and Fig. 7 were created by DoME. The translation procedure gen-
erates one monolithicModelica object that contains an algorithm that con-
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sists of sequential assignments and simple control 
ow statements and that
corresponds exactly to the desired switching sequence.

3.3 Actuator Dynamics

The hydraulic actuators are the interface between the discrete-event domain
of the redundancy control and the continuous domain of the aircraft dynam-
ics. The actuator here is not modelled with all details as this would lead to
steep gradients in the behaviour that are diÆcult to handle and slow down
simulation of the aircraft behaviour, even if eÆcient numerical solvers such
as DASSL [25] are used.

Higher Index DAE The necessity to remove small physical e�ects such
as 
uid storage in lines and oil elasticity and viscosity leads to DAEs with
a higher complexity because state variables are directly coupled instead of
interacting through additional states with small time constants. Though these
DAEs can be solved by di�erentiation before simulation starts, the switching
e�ects of the actuators may cause such algebraic constraints to emerge during
simulation, requiring two phenomena to be handled: (i) the state variables
that become algebraically coupled are constrained to a subspace of reduced
dimension and the values before the constraint becomes active have to be
projected into this subspace, and (ii) future dynamic behaviour of these state
variables must be in this reduced subspace.

To illustrate these notions, consider the actuator model in Fig. 8. When
initially the actuator is active, the supply path is open, i.e., control signals
generated by the servo valve are supplied to the positioning cylinder, caus-
ing the piston to accelerate. When, at a given point in time, the actuator
is switched to be o�, the loading path becomes active. Because of the iner-
tial e�ects in the loading pathway, there is dependency between the piston
and this 
uid inertia and an algebraic constraint between these two variables
(vpiston = �Apfload) restricts the state space in which the system evolves.
This is illustrated in Fig. 9(a), where the double arrow heads on the dashed
�eld lines indicate the direction of the discontinuous change. This algebraic
dependency can be eliminated by introducing small parasitic storage e�ects
for the piping and some oil elasticity and viscosity, but this adds very steep
gradients to overall system behaviour as illustrated in Fig. 9(b) that compli-
cate simulation and are not relevant for the overall behaviour of the aircraft.

The implicit jumps in the state variable values have to be computed dur-
ing simulation. This requires the system of equations to be in general DAE
format, 0 = f�( _x; x; u; t), where the index of f� may change during simula-
tion and a simulator that facilitates these reinitialisation computations such
as MAsim.

At present, commercially available simulation tools cannot handle such
abrupt changes in DAE models. Therefore the experimental modelling and
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simulation environment HyBrSim [22] has been realised for the purpose
of testing algorithms for the reinitialisation of switched systems with index
changes. HyBrSim is based on bond graph modelling of the physical system.

Bond Graph Model of the Actuators Figure 10 shows the hybrid bond
graph model of the two left hydraulic actuators. The two Se elements1 are
sources (inputs) of a bond graph model which are connected to the hydraulic
circuits in the aircraft model that provide the input pressure. The servo valve
modulation is applied by the TF elements, where the setL1 and setL2 ele-
ments are connected to the setpoint generated by the aircraft control model.

1 The element type is listed on the left of each element rectangle.
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The I elements represent connections (equal 
ow points) and the attached R

element captures dissipative e�ects. Note that these are modelled as linear
phenomena. The loadL1 (loadL1) connection also has some inertia associated
with it, embodied by the IloadL1 (IloadL2) element. The cylinder chamber
is modelled by a 0 element, an equal pressure point. Both cylinders connect
through a piston with area modelled by a TF element to one equal velocity
point for the elevator control surface movement. This velocity, as well as the
displacement and force are inputs to the aircraft model.

Fig. 10. Hybrid bond graph of the two left hydraulic actuators

The switching behaviour is modelled by two controlled junctions [21] in
each actuator, in the left actuator these are supplyL1 and loadL1. The local
�nite state machines that control their states are given in Fig. 11. The control
event actL1 is generated by the redundancy control in the enclosing part
of the model. When the supplyL1 junction is ON and loadL1 is OFF, the
actuator is active. When supplyL1 is OFF and loadL1 is ON, it is loading
(either hot, standby, passive, or isolated). Note that the mutual switching
constraints allow no other con�gurations.

(a) Supply path (b) Load path

Fig. 11. Finite state machines of actuator 1 in the hybrid bond graph
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Equations The equations generated from the hybrid bond graph by Hy-

BrSim incorporate the switching e�ect as guarded equations. This prevents
the need for pre-enumeration which would cause an exponential growth of
the number of modes.2 For example, for the loading pathway, loadL1, the
equation generated is

0 = (�chamberL1:p+IloadL1:p+RloadL1:p)�i+(loadL1:f)�(1��i) (9)

where �i is the i
th entry in the mode vector �. This ensures that in a mode

where this connection is active, �i = 1, the pressure drops of the connected
elements are balanced. When the connector is not active, �i = 0, the 
uid 
ow
through loadL1 becomes 0. This models ideal switching but may lead to higher
index DAEs (e.g., because IloadL1 and mpL become algebraically related). A
numerical solver such as DASSL can handle systems up to index 1 directly
and up to index 2 with some provisions, e.g., the step-size control of index 2
variables needs to be switched o� [6]. Another prerequisite is that DASSL
should be given a set of consistent initial conditions, i.e., those that are in the
subspace of continuous behaviour. This is achieved by applying a projection
mechanism which is consistent with physical conservation laws [9,28,29].

The discontinuous changes are computed by �rst linearising the system
with a �nite di�erence method. Then a pseudo Weierstrass normal form is
derived (up till index 2)

0 =

2
4
�E11 0 0
0 0 �E22;12

0 0 0

3
5
2
4

_�x1
_�x2;1
_�x2;2

3
5+

2
4
�A11

�A12;1
�A12;2

0 �A22;11
�A22;12

0 0 �A22;22

3
5
2
4

�x1
�x2;1
�x2;2

3
5+

2
4

�B1
�B2;1
�B2;2

3
5 �u �

(10)

where �E11;11, �A22;11, and �A22;22 are of full rank. This allows computation of
the initial conditions as [19]

�x1 = �x01 + �E�111
�A12;1

�A�122;11
�E22;12(�x2;2 � �x02;2)

�x2;1 = � �A�122;11(
�B2;1u+ �E22;12 _�x2;2 + �A22;12�x2;2)

�x2;2 = � �A�122;22
�B2;2u

(11)

where �x0 are the user-provided initial values after the coordinate transfor-
mation to achieve the desired normal form, �x0 = Zx0. The values for �x can
then be transformed back to obtain initial values for x that are consistent
with the subspace of the dynamic behaviour, and thus the implicit jump is
determined.

4 Simulation of the overall system

The aircraft model, the redundancy control system, and the actuator feedback
and discrete event control were modelled using di�erent modelling formalisms

2 For the hybrid bond graph in Fig. 10 there are already 24 = 16 modes, although
only two occur during normal operation.
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and tools (Dymola, HyBrSim,DoME). Each of these is best suited for the
respective task.

4.1 Integrating the Components

To enable a comprehensive analysis, however, the parts have to be integrated
into a coherent model. This can be achieved at two integration levels: (i) at the
model level, and (ii) at the data level. In the �rst case, a model of a component
is embedded into the overall model using a common formalism. In the second
case two (or more) distinct simulators are generated and connected together
such that an appropriate data exchange is organized during simulation.

Since the descriptions of the failure injection module and the redundancy
management system laws are based on equations, they can be incorporated
easily into the object-oriented and equation-based aircraft model. This also
holds for the hydraulic actuators, in principle, because the bond graph models
correspond to a set of hybrid di�erential and algebraic equations. But due
to present restrictions of the simulation software available for object-oriented
modelling languages, speci�c simulation code is generated from the bond
graphs of the actuators and merged with the simulation code that results
from the aircraft model. Thus, the failure injection module and the switched
control laws are integrated with the aircraft model at the model level, whereas
the actuators are integrated at the data level.

For the redundancy management component a mixed integration ap-
proach is used. On the one hand the modelling environment for the discrete-
event parts generates a simulation algorithm that de�nes the input-output
behaviour of the discrete-event component which is a data level speci�cation.
On the other hand, this automatically generated algorithm is designed in a
way that is compatible to the Modelica language so that it can be em-
bedded directly into the aircraft model. In Modelica such an algorithm is
regarded simply as an additional model constraint that corresponds to a set
of equations with a �xed set of input and output variables.

To simulate the resulting hybrid model,Modelica's hybrid DAE seman-
tics is exploited. The temporal inequality expressions in the failure injection
module are transformed into time events for the numerical integrator so that
the continuous integration stops exactly when a switching time has elapsed.
Then the whole set of equations is re-evaluated with the new values of the in-
equality expressions. Thereby, the algorithm of the redundancy management
is also re-evaluated resulting possibly in a new state which may switch the
feedback control laws.

4.2 Simulation Results

The phugoid in Fig. 12 is the result of two interacting phenomena: When
the aircraft pitch angle increases, it gains altitude and at the same time
loses airspeed. Because of this loss of airspeed, there is less upward thrust,
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which causes the aircraft to lose altitude in return. However, as it starts
losing altitude, it picks up speed again and the airspeed rises. This results
in a slightly damped oscillatory behaviour which is required to be stable in
commercial aircrafts.

0 20 40 60 80 100
88

89

90

91

92

93

time [s]

v
[m/s]

TAS

Fig. 12. Simulation shows a phugoid typical for aircraft

To investigate the e�ect of the redundancy control on the aircraft's be-
haviour, an actuator failure is introduced during a setpoint change. The set-
point change occurs at t = 0:05 [s] and the actuator failure at t = 0:08 [s].
Figure 13 shows that the failure leads to an immediate change of the active
actuators and the switching transients in the hydraulics cause a sharp drop
in elevator velocity. Because small e�ects such as oil elasticity and viscosity
are neglected in the simulation, this results in a discontinuous change that
occurs because of the algebraic dependency between elevator inertia and 
uid
inertia of the new loading path.

During a short period of time, the PID control causes the elevator velocity
to ramp up to the value which it would have assumed without the failure.
Note the short delay that is possible because the actuator that switches to
active was hot and shadowing the PID control.

The aircraft redundancy control is designed such that an actuator failure
should not have a noticeable e�ect on the behaviour of the aircraft. Using
the comprehensive model with switching logic and transients, and an ex-
tensive model of the aircraft dynamics, this e�ect can be studied as well.
Figure 14(b) shows the e�ect of the actuator switch on the aircraft pitch an-
gle, and Fig. 15(b) shows the e�ect on the pitch angle velocity. This veri�es
that the actuator switch has almost no e�ect on the overall aircraft behaviour
which, because of the realistic aircraft model, provides much con�dence for
the real implementation. Note that the (small) e�ect of the actuator switching
on global behavior manifests itself after a signi�cant delay.
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Fig. 13. Elevator velocity when a failure occurs at t = 0.08 shortly after a setpoint
change at t = 0.05
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Fig. 14. Pitch angle for normal behaviour and for an actuator switch at 0:08 [s]

Table 3 illustrates how the redundancy management reacts, when the IO
module failure occurs in PFCU2. In the �rst local transition the statecharts of
LIO and RIO (Left / Right IO) of PFCU2 switch fromActive to Isolated, since
this modules should not be activated again (see rules 1 and 10 in Section 2).
Then PFCU1 takes over the actuators by activating its LIO and RIO modules
(rules 1, 3, 5). In the last local transition, the LDL and RDL (Left / Right
DL) statecharts of PFCU2 switch into the Hot mode preparing the system for
a possible second failure (rule 6). Since state 2 would violate rule 4 and the
transition from state 3 to state 4 would violate rule 1, the internal iterations
have to be hidden from the outer system in order to prevent inconsistent



24 Pieter J. Mosterman et al.

0 1 2 3 4 5
-10

-8

-6

-4

-2

0

2
x 10

-3

time [s]

q
[rad/s]

no actuator switch

(a) Detailed view

0 10 20 30 40 50
-10

-5

0

5
x 10

-3

time [s]

q
[rad/s]

(b) Overall behaviour

Fig. 15. Pitch angle velocity for normal behaviour and for an actuator switch at
0:08 [s]

outputs. This is why only the global transition from state 1 to state 4 is
made observable to the outside.

Table 3. State transitions of the redundancy management system

local steps 1 2 3 4

PFCU2 IO Active/Active Isolated/Isolated Isolated/Isolated Isolated/Isolated
DL Passive/Passive Passive/Passive Passive/Passive Hot/Hot

PFCU1 IO Hot/Hot Hot/Hot Active/Active Active/Active
DL Passive/Passive Passive/Passive Passive/Passive Passive/Passive

actuator outer control/control -/- -/- shadow/shadow
inner shadow/shadow -/- -/- control/control

global visibility yes no no yes

5 Conclusions

The comprehensive model of the aircraft developed here incorporates the
redundancy management system, the switched positioning controllers, the
actuator models as well as a complex model of the general dynamics of the
aircraft. Hence, it is possible to assess the design of the elevator control
system with respect to the overall behaviour of the aircraft in the case of
failures. Since the less important physical e�ects of the hydraulic actuators
were neglected, the simulation is fast enough to be used also in the context of a
multi-objective parameter optimisation (MOPS) [12]. Such an optimisation
may, e.g., reduce the elevator surface or the actuator power such that the
switching transients still do not a�ect the level of aircraft handling.
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The abstractions used in the actuator models, i.e. neglecting small physi-
cal e�ects such as oil elasticity and viscosity, result in a DAE that may change
its index during simulation. A standard DAE solver, such as DASSL, can be
applied for this model, if the re-initialisation at event times results in a con-
sistent state. For a correct behavioural simulation, this re-initialisation has
to satisfy the physical conservation laws. For the purpose of this feasibility
study the actuators were modelled in HyBrSim, a modelling environment
based on hybrid bond graphs that supports the necessary re-initialisation
procedure. The C-code generated by this environment was manually com-
bined with the C-code generated by Dymola which includes the rest of the
aircraft model. The hybrid system simulator MAsim was used to generate
behaviors. MAsim has facilities to compute discontinuous changes of gener-
alized state variables as algebraic constraints between them become active.
The discrete-event parts of the aircraft are modelled using a visual speci�-
cation language and are translated into a Modelica algorithm that can be
integrated into the aircraft model on the model level [18].

The presented modelling and simulation approach that combines an object-
oriented modelling language such as Modelica, domain-speci�c model li-
braries, discrete-event modelling formalisms and powerful simulation meth-
ods including correct state re-initialisation, was successfully applied to the
aircraft elevator control system and seems to be promising for general com-
plex technological systems.
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