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Summary. We present the clearance results of the HIRM+RIDE control configu-
ration for the linear stability and handling criteria mostly used in the current indus-
trial practice. The performed analysis is based on an optimisation-driven worst-case
search. Two classes of linear stability related criteria are considered: the Nichols
exclusion region based stability margin criterion and the unstable eigenvalues crite-
rion. The considered handling criteria are the average phase rate and the absolute
amplitude criteria. The analysis results clearly illustrate the high potential of the
optimisation-based approach in reliably solving clearance problems with many si-
multaneous uncertain parameters.

21.1 Optimisation-Based Clearance of Linear Criteria

Our analysis addresses the linear stability and handling criteria defined in
Chapter 10, namely

(a) the stability margin criterion,
(b) the unstable eigenvalues criterion,
(c) the average phase rate criterion,
(d) the absolute amplitude criterion.

Because of space limitations, we are forced to restrict our presentation to
selected results which best illustrate the different aspects of an optimisation-
based clearance approach. In this introductory section, we discuss some as-
pects which are common to all clearance tasks formulated above. Specific
aspects and detailed analysis results are presented in separate sections ded-
icated to particular classes of criteria. The complete results, including re-
sults for the classical gridding-based approach, are presented in a GARTEUR
AG11 Report [1].

The definition of suitable distance functions is a crucial step in an
optimisation-based clearance approach (see Chapter 7). The main require-
ment for a satisfactory distance function is to enforce at minimum, worst
cases where the clearance conditions are potentially most violated. Addition-
ally, a satisfactory distance function to be used for an optimisation-driven
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worst-case search must not introduce additional local minima, must be con-
tinuous and have continuous derivatives, and finally, must be easy to com-
pute. Two categories of clearance problems can be identified, which lead to
different types of distance functions. In the first category, for the clearance
problems represented by (b) and (d), the clearance criterion is a mathemat-
ically expressible function c(p, FC) depending smoothly on the parameters
grouped in a vector p and flight condition grouped in a vector FC. Such a
criterion usually serves for controller design, and therefore, let us assume that
the design results are better for lower values of c(p, FC). If co is the limiting
acceptable performance level, then as a ”distance” function, to be used by a
function minimiser, we can define d(p, FC) = −c(p, FC)+ c0. By minimising
d(p, FC) (i.e., maximising c(p, FC)), worst-case parameter/flight conditions
are determined. In the second category of clearance problems, represented by
(a) and (c), exclusion regions are defined which, for satisfactory performance,
must have empty intersection with certain sets of points used for graphical
evaluations (e.g., frequency response Nichols-plots or performance plots). The
boundary of the exclusion region can be associated with a fictitious limiting
performance level c0 for an appropriate criterion c(p, FC) (to be chosen). If
we define the signed ”distance” function as d(p, FC) = c(p, FC)−c0 then, by
minimising d(p, FC), we can determine worst-case parameter/flight condition
combinations. Note that the term ”worst-case” is always to be considered in
connection with the chosen distance function. For both categories of clearance
problems, if for a fixed FC, d(p, FC) is negative for some parameter values
of p, then the clearance requirement is not fulfilled in FC and the point FC
is not cleared. Otherwise, we define FC as cleared.

A fast and reliable criteria evaluation is another aspect of paramount
importance for the effectiveness of an optimisation-based worst case search.
Typically, when evaluating criteria on the basis of linearised augmented air-
craft models, all criteria evaluations can be done using a unique parameterised
nonlinear model which describes the HIRM+ dynamics (see Chapter 8) in
a feedback connection with the RIDE controller (see Chapter 9). A particu-
lar feature of HIRM+ is that for large values of AoA, a longitudinal/lateral
coupling in the aircraft dynamics takes place. Therefore, contrary to the ap-
proach used in current industrial practice, we did not use separate linearised
models for longitudinal and lateral axis dynamics. In our presentation, the
terms ”longitudinal axis analysis” and ”lateral axis analysis” merely indicate
that the analysis has been performed for the uncertain parameter set relevant
to either the longitudinal axis or the lateral axis, respectively. As a conse-
quence of using a unique nonlinear model to evaluate the defined clearance
criteria (a)-(d), each function evaluation involves trimming and linearisation
for a given flight condition and given parameter values. To speed up these
computations, the HIRM+ and RIDE are trimmed and linearised separately
and the final closed-loop linearised model is constructed by appropriate feed-
back coupling. The trimming of HIRM+ is done on the basis of special inverse
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models, which ensure very fast and accurate trim computations (for details
see Chapter 8). For criteria involving frequency-responses, model reduction
techniques [2] have been used for further speeding up of computations. This
technique is very effective, since the full HIRM+RIDE closed-loop model has
order 61, while the reduced order models used to evaluate particular cri-
teria have orders usually bellow 20. The numerically reliable evaluation of
criteria means avoiding discontinuities originating from numerical computa-
tions (e.g., 360◦ phase jumps when computing the phase for the frequency
response), improper tolerance settings (e.g., large truncation errors), or even
failures of function evaluations (e.g., for points outside of the flight envelope).

A key aspect of the optimisation-based approach is the choice of ad-
equate optimisation software. Here adequate means to employ the best
suited software for each clearance task, taking into account the possible exis-
tence of multiple local minima, level of noise in function evaluation, possible
discontinuities of functions or derivatives etc. Because of their expected higher
performance, the gradient-based methods like the sequential quadratic pro-
gramming (SQP) or projected quasi-Newton (e.g., L-BFGS-B) always repre-
sent the first choice. Still, these techniques are not always able to produce the
best results, especially when discontinuities in function/derivatives and/or
noise in function values are present. Alternatively, the derivative-free linear
approximation based trust-region method COBYLA, or the slower but often
more robust pattern search (PS) method can be employed. If the presence
of multiple local minima is to be expected, global search methods like the
genetic algorithm (GA) or simulated annealing (SA) can be employed, either
to locate initialisation points for local search based methods or, although
expensive, to perform a global search for selected flight conditions.

The analysis results presented in this paper have been obtained for the
eight representative flight conditions FCi, i = 1, . . . , 8 specified in Chapter
10, for values of the angle of attack α, ranging from −15◦ to 35◦ with a step
size of ∆α = 1◦. To define the ”true” physical flight envelope, a preliminary
analysis of the open-loop HIRM+ has been performed for all flight conditions
for the nominal values of parameters to check if the conditions

−3 g ≤ nz ≤ 7 g (21.1)

are violated or not, and to check if the HIRM+ is trimmable within the
allowed limits of the deflections of taileron and rudder actuators given in
Chapter 8

−40◦ ≤ δTS + δTD ≤ 10◦

−40◦ ≤ δTS − δTD ≤ 10◦

−30◦ ≤ δR ≤ 30◦
(21.2)

The analysis revealed (see [1] and Fig. 21.27) that, because of violation
of conditions (21.1) and (21.2), FC1 is defined only for α ∈ [−9◦, 35◦], FC6

is defined only for α ∈ [−9◦, 29◦] and FC7 is defined only for α ∈ [−2◦, 12◦].
Violations of conditions (21.1) and (21.2) have been incidentally detected
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also for the computed worst-case parameter combinations. In both cases,
the corresponding points are automatically not cleared, because they do not
belong to the admissible flight envelope. To save computational times, the
analysis automatically detects points where the conditions (21.1) and (21.2)
are violated for the nominal values of parameters. For such points, no further
analysis is performed. Another saving in computational time is possible by
skipping further analysis in points where the clearance conditions for the
nominal values of parameters are not satisfied. However, this was not done,
just to show that even worse results can be computed by an optimisation-
based search. It is worth mentioning that, because of the presence of an
AoA-limiter at 29◦ in the RIDE controller, the ”true” flight envelope must
be probably further restricted to values of AoA α ≤ 29◦, otherwise some
analysis results for linear criteria are questionable for values of AoA α > 29◦.

The analysis of clearance criteria (a)-(d) has been performed for the both
the small and the full parameter sets defined in Chapter 10 for both longi-
tudinal and lateral axis analyses. For the longitudinal axis analysis there are
5 parameters in the small (most relevant) parameter set and 9 parameters
in the full parameter set, while for the lateral axis analysis there are respec-
tively 6 and 14 parameters in these sets. Complete results for the analysis of
all criteria are presented in [1], where results for both optimisation as well as
for gridding-based search are given. Due to space restrictions, we present in
this contribution only a selection of the most relevant results.

All computations have been performed on a Pentium II 400 MHz machine
running Matlab 5.3 and Simulink 3.0 under Windows NT 4.0. The basis
for the performed analysis was the analysis cycle described in Fig. 7.1. For
each analysed criterion a corresponding procedure has been implemented as
a Matlab script which performs the whole analysis for all flight conditions,
saves intermediary and final results, and evaluates and documents the results
through appropriate plots. All scripts allow easy switching between different
solvers available in a dedicated optimisation environment.

The employed optimisation software includes the updated SQP and PS
software from the RASP library [3], L-BFGS-B using the implementation of
[4], the COBYLA software implemented by Powell [5], and a binary coding
based GA software adapted from David Carroll’s code [6]. The open software
architecture in Fig. 21.1 underlies our optimisation-based clearance. It allows
us to easily add new solvers and to use the available solvers interchange-
ably for analysis. A unique Matlab interface mex -function nlpmex offers a
neutral interface to a generic solver for general nonlinear programming prob-
lems (NLPs). The solvers are launched as independent child processes (tasks)
which communicate with the parent process (i.e., nlpmex) via a problem de-
pendent process communication dialog. For example, each function and/or
gradient evaluation involves transferring the current values of optimisation
parameters from the solver (i.e., child process) to the mex -function (i.e., par-
ent process) which calls the m-function typically used to implement the clear-
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Fig. 21.1. An open software architecture for nonlinear programming

ance criteria. This function usually calls appropriate trimming and lineari-
sation routines (partly based on Simulink). The computed function and/or
gradient values are then sent back to the solver. This reverse-communication
based software architecture completely separates the function evaluations
from the optimisation software. This allows to easily integrate a heteroge-
neous collection of optimisation tools in a single flexible optimisation envi-
ronment. Thus, the underlying tools can be written in different programming
languages, can have different options and parameter lists, can use different
function and gradient evaluation schemes, etc. This open architecture allows
us to easily add new solvers as a need arises.

21.2 Results for the Stability Margin Criterion

The goal of the analysis is to identify all flight conditions in terms of Mach
number M , altitude h, and AoA α, and all combinations of uncertain param-
eters where the Nichols plot stability margin boundaries are most violated.
In Chapter 10 requirements for both single-loop as well as multi-loop analysis
are defined. In our analysis, we consider only the single-loop analysis. The
analysis requirement is to check if the open-loop Nichols plot of the frequency
response obtained by breaking the loop at the input of the actuators for the
symmetric taileron, differential taileron or rudder, avoids the exclusion region
delimited by the polygonal boundary B0 in Fig. 21.2. The analysis for the
symmetric taileron loop has been performed only for the longitudinal param-
eter sets, while for the differential taileron and rudder loops only the lateral
parameter sets have been considered.
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Fig. 21.2. Exact and approximate Nichols plot exclusion regions for gain and phase

To define an appropriate distance function, we approximate the boundary
B0 of the exclusion region in Fig. 21.2 by an arc of an ellipse B1 defined by

( g

4.5

)2

+
(

ϕ + 180
35

)2

= 1

where g and ϕ are the gain and phase, respectively. Instead of using B0,
we can interpret B1 as the given boundary for the limiting acceptable per-
formance and we can use it to define a smooth distance function for an
optimisation-driven worst-case search. Note that defining the distance func-
tion with respect to B0 would lead to a non-differentiable distance function.

For a given frequency dependent gain-phase pair (g(ω), ϕ(ω)), a nor-
malised signed ”distance” to B1 can be computed by using the formula

d̃(ω) =
(

g(ω)
4.5

)2

+
(

ϕ(ω) + 180
35

)2

− 1.

Note that d̃(ω) > 0 if the point (g(ω), ϕ(ω)) lies outside of the ellipse and
d̃(ω) ≤ 0 otherwise. The minimum of d̃(ω) over a given frequency range
[ωmin, ωmax] defines the least distance d(p, FC) to B1 for a given uncertain
parameter vector p and flight condition FC. Note that p and FC are the
values used to determine the linearised model which serves for evaluating the
frequency response.



21 Optimisation-Based Clearance: the Linear Analysis 391

The minimum value d(FC) of the distance function with respect to the
parameters in p can be used to define the following stability margin for flight
condition FC

ρs(FC) =
√

1 + d(FC). (21.3)

With this stability margin, a flight condition FC could be categorised as
not cleared if ρs(FC) ≤ 1 and cleared otherwise. Since ρs is defined on the
basis of a distance function with respect to the approximate boundary B1,
it could happen that values of ρs marginally less than 1 can be still cleared,
because, in reality, no intersection with the Nichols exclusion region occur.
Conversely, values of ρs marginally greater than 1, can be categorised as not
cleared, because the Nichols plot intersects the exclusion region. This is why,
we used the stability margin defined in (21.3) only for the visualisation of our
computational results. Still, all reported clearance results rely on strict checks
of intersection/no intersection of worst-case Nichols plots with the exclusion
region defined by the boundary B0 in Fig. 21.2.

For the success of an optimisation-based search, the function evaluations
must be as fast as possible. There are two critical, time demanding computa-
tions to evaluate d(p, FC), for given p and FC. The first critical computation
is the trimming of the HIRM+. A fast trimming for HIRM+ is done using
the inverse model approach, as described in Chapter 8 and we will not further
discuss this aspect here. The second expensive computation in evaluating the
distance function is the computation of frequency responses for the 57-th
order (4 state components omitted) closed-loop SISO models formed from
the linearised HIRM+ and RIDE. Taking into account the need to compute
the minimum distance accurately, the number of frequency points to be used
must be sufficiently high. For the optimisation-driven search, we employed
100 frequency values ranging logarithmically in the interval [10−2, 10].

Some timing results obtained by evaluating the distance function for the
differential taileron loop on a 400 MHz Pentium II machine are interesting
to keep in mind. The time necessary to trim, linearise and build the closed-
loop SISO evaluation model is about 1.11 seconds, from which 0.06 seconds
account for trimming HIRM+ using the inverse model, 0.13 seconds for the
linearisation of HIRM+, and 0.9 seconds for the linearisation of the RIDE
controller. Note that although the order of the controller is 9, about 90%
of the time is necessary to linearise it using a SIMULINK model. The total
times to evaluate d(p, FC) for 100 and 1000 frequency values are 1.45 sec-
onds and 3.9 seconds, respectively, of which, the times necessary to compute
only the frequency responses are 0.36 seconds and 2.85 seconds, respectively.
The times for frequency response computations can be significantly reduced,
by observing that the resulting SISO closed-loop systems used were always
nonminimal. To speed up the computations, a preliminary order reduction is
performed by using the recently developed high quality model reduction tools
[2]. The resulting minimal order models for the symmetric taileron, differen-
tial taileron and rudder loops have dimensions 14, 24, and 22, respectively. For
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the differential taileron loop, the model reduction requires only 0.07 seconds,
but has the effect of reducing the time to evaluate the frequency responses for
100 and 1000 points to 0.06 seconds and 0.61 seconds, respectively. Thus, the
total times to evaluate d(p, FC) for 100 and 1000 frequency points become
1.15 seconds and 1.7 seconds, respectively, with performance gains of 20%
and 50% in these two cases. Note that the time saving is more substantial
for a larger number of frequency values.

One main goal of our analysis was to compare the necessary computa-
tional efforts for the gridding-based approach and for optimisation-driven
worst-case search methods. The number of maximum function evaluations re-
quired by the gridding-based approach for the 8× 51 flight conditions can be
easily computed for the small parameter sets for longitudinal and lateral axis
analyses. The longitudinal axis analysis requires at most 25× 8× 51 = 13056
function evaluations while the lateral axis analysis requires twice as many
26 × 8 × 51 = 26112. About 10%–20% of function evaluations can be saved,
by restricting the search only to those points which belong to the ”true” flight
envelope. In Table 21.1 we present some timing results for the performed anal-
ysis of the three loops on the small parameter sets: the symmetric taileron
loop (STL) for the longitudinal axis parameters, and the differential taileron
loop (DTL) and rudder loop (RL) for the lateral axis parameters. The solvers
implementing the local search methods SQP, PS, COBYLA and L-BFGS-B
(see Section 21.1) have been used for analysis, with the accuracy tolerance
set to 10−5. Table 21.1 also includes results for the classical gridding-based
approach.

Table 21.1. Timing results for gridding and optimisation-based analysis

Method Gridding SQP PS COBYLA L-BFGS-B

Times for STL (sec) 12943 19796 38188 20840 19426

Times for DTL (sec) 25074 23064 45333 38973 24024

Times for RL (sec) 27087 22374 41808 61657 20977

The time for the gridding-based solution for 5 parameters is always less
than the times required by the optimisation-based search. However, this is
not the case for 6 parameters, where gradient based methods like SQP or
L-BFGS-B are more efficient than the gridding-based approach. The com-
putational effort increases exponentially with the number of parameters and
therefore a gridding-based solution is not affordable for the full sets of 9 lon-
gitudinal and 15 lateral axis parameters due to very high computational costs
(24 = 16 and 29 ≈ 500 larger times, respectively). By using the optimisation-
based approach it was possible to obtain complete clearance results for the
full parameter sets. Table 21.2 summarises the number of function evaluations
(NFE) and the computational times required by using the SQP method.
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Table 21.2. Performance results for stability margin analysis

Gridding SQP (Small sets) SQP (Full sets)

NFE Time (sec) NFE Time (sec) NFE Time (sec)

STL 11382 12943 17519 19796 38649 42662

DTL 22710 25074 19220 23064 49596 55081

RL 23088 27087 18645 22374 43693 50903

Detailed analysis results for both gridding and optimisation-based search,
for all three loops, are presented in [1]. The results for the differential taileron
loop are summarised in Fig. 21.3, where we give, in each flight condition, the
domains of α-values which are considered as ”cleared” for three cases: (1)
gridding-based analysis; (2) optimisation-based analysis for the small param-
eter set; and (3) optimisation-based analysis for the full parameter set. While
for the small parameter set both gridding and optimisation-based search
produce almost the same results in term of not cleared flight conditions,
the optimisation-based search performed on the full parameter set revealed
many additional not-cleared points. This clearly illustrates the power of the
optimisation-based approach to simultaneously address many uncertain pa-
rameters.
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Fig. 21.3. Clearance results for the differential taileron loop

Fig. 21.4 shows the values of the stability degree ρs versus α for the
small parameter set. These values are visibly greater than the corresponding
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values of ρs for the full parameter set in Fig. 21.5. Thus, as expected, the
HIRM+RIDE configuration has less stability margin in most of the points
when more uncertain parameters are allowed to simultaneously vary.
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In each performed analysis we determined an ”overall” worst-case param-
eter combination over all flight conditions. In Figs. 21.6 and 21.7, we present
the worst-case parameter combination for the differential taileron loop and
the corresponding frequency response, respectively. Note that in this case, the
optimisation-based search was able to determine a global minimum which led
to crossing of the exclusion region through its centre (0,−180◦).
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In Figs. 21.8 and 21.9 we present the clearance results for the symmetric
taileron and rudder loops.
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Fig. 21.8. Clearance results for the symmetric taileron loop
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Fig. 21.9. Clearance results for the rudder loop

From the clearance results presented in Figs. 21.3, 21.8 and 21.9 we
can see that in some cases, points which are not cleared by the classical
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gridding-based search approach, appear to be cleared by the more powerful
optimisation-based search approach for the small or even for the full param-
eter sets. The explanation of this apparent paradox is that the worst-case
parameter combinations computed by different methods occasionally lead to
violations of the condition −3 ≤ nz ≤ 7 or of the trimming constraints
(21.2). Note that such points, found only incidentally, automatically restrict
the effective flight envelope of HIRM+ (see Fig. 21.27) and can be skipped
in further analysis.

21.3 Results for the Unstable Eigenvalues Criterion

The goal of the analysis is to identify all flight conditions in terms of Mach
number M , altitude h, and angle of attack α, and all combinations of un-
certain parameters where unstable eigenvalues are found. The clearance task
formulated in Chapter 10 is to check if the closed-loop eigenvalues lie to the
left of the boundary defined in Fig. 21.10.
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Fig. 21.10. Boundary for eigenvalues.

Mathematically, if λ = λr + i λi is an eigenvalue of the state matrix Acl

of the linearised closed-loop model, then the real part λr must satisfy the
following conditions

λr ≤




0, |λi| ≥ 0.15
ln 2/20, 0 < |λi| < 0.15
ln 2/7, λi = 0
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For a given flight condition FC and a parameter vector p, a straightfor-
ward ”distance” function can be defined as

d(p, FC) = −max{Re λ|λ ∈ Λ(Acl)} (21.4)

By minimising d(p, FC), we determine the worst-case parameter combina-
tion leading to a maximal real part of the closed-loop eigenvalues. This real
part corresponds either to a purely real eigenvalue or to a pair of complex
conjugate eigenvalues. Each evaluation of d(p, FC) involves the construction
of the closed-loop state matrix Acl using the linearised models of the HIRM+
and RIDE controller and the computation of eigenvalues of a matrix of order
61. To evaluate d(p, FC) there is no need to separate the longitudinal and
lateral dynamics to perform the analysis for the two categories of uncertain
parameters. For both cases, the unique nonlinear parameter uncertain model
of the HIRM+RIDE closed-loop system can be used to evaluate the distance
function.

In general, the distance function (21.4) does not cover all possible cases
of the analysis because, by minimising the maximum real part, the real axis
segment in Fig. 21.10 is primarily favoured due to the presence of at least
one unstable real pole in the linearised model. To address more specifically
the regions delimited in Fig. 21.10, distance functions can be defined for each
region according to the values of the imaginary parts. For example, to restrict
the analysis strictly to purely real eigenvalues, the ”distance” function

d1(p, FC) = ln 2/7−max{λr|λr + i λi ∈ Λ(Acl), λi = 0} (21.5)

can be used. To restrict the analysis to the strips defined by imaginary values
satisfying 0 < |ω| ≤ 0.15 the ”distance” function

d2(p, FC) = ln 2/20−max{λr|λr + i λi ∈ Λ(Acl), 0 < λi ≤ 0.15} (21.6)

can be used. Finally, to restrict the analysis to the regions for 0.15 < |ω|, the
”distance” function

d3(p, FC) = −max{λr|λr + i λi ∈ Λ(Acl), 0.15 < λi} (21.7)

is appropriate. It is possible to perform a simultaneous analysis for all three
regions by considering as distance function

d(p, FC) = min{d1(p, FC), d2(p, FC), d3(p, FC)} (21.8)

This function is not continuous. Due to the shape of the eigenvalue bound-
ary in Fig. 21.10, the migration of eigenvalues from one region to another
leads to abrupt changes in the values of d(p, FC). Still, our experiments have
shown that for the HIRM+RIDE configuration, the distance function d2 was
practically never active for the given flight conditions, thus the discontinuity
in function values manifests practically never. Complete analysis results ob-
tained with both distance functions (21.4) and (21.8) have shown that there
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are no qualitative differences for the clearance when using the simpler, but
continuous distance function (21.4) instead of the discontinuous one (21.8).
This strongly supports our approach in [1] to use (21.4) as a distance function.

In what follows, we present complete clearance results obtained using the
SQP approach for the small and full parameter sets for both longitudinal and
lateral axis analyses using the distance function (21.8). Table 21.3 shows the
number of function evaluations (NFE) and the times for the gridding and the
optimisation-based search methods.

Table 21.3. Performance results for maximum real part analysis

Gridding SQP (Small sets) SQP (Full sets)

NFE Time (sec) NFE Time (sec) NFE Time (sec)

Longitudinal 11382 12053 15060 15975 34496 35421

Lateral 22710 22482 9628 10300 25159 25832

In Fig. 21.11, we present the clearance results for the longitudinal axis
analysis. As it can be observed, the analysis for the full parameter set revealed
many not cleared points, which were previously cleared on the basis of the
analysis performed using the gridding-based approach or optimisation-based
search on the small parameter set.
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4  Clearance results for maximum real part − longitudinal axis
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Fig. 21.11. Clearance results for the maximum real part - longitudinal axis
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This can also be easily observed by comparing Figs. 21.12 and 21.13,
which present the worst-case maximum real parts and corresponding imag-
inary parts versus AoA for the small parameter set, with the similar Figs.
21.14 and 21.15 for the full parameter sets. These results clearly illustrate the
capability of optimisation-based worst-case search to solve clearance problems
for many simultaneous parameters.
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Fig. 21.12. Worst-case maximum real parts (longitudinal, small parameter set)
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Fig. 21.13. Worst-case imaginary parts (longitudinal, small parameter set)
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Fig. 21.14. Worst-case maximum real parts (longitudinal, full parameter set)
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Fig. 21.15. Worst-case imaginary parts (longitudinal, full parameter set)

From Figs. 21.13 and 21.15 it is apparent that in most flight conditions
d1 was active, in very few cases d3 was active and d2 was never active. This
confirms that the analysis for HIRM+RIDE configuration can be carried out
reliably by using (21.4) as an alternative distance function.
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In Fig. 21.16 we present the clearance results for the lateral axis anal-
ysis. As it can be observed, the results of gridding-based search and of the
optimisation-based search are almost identical.
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4  Clearance results for maximum real part − lateral axis
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Fig. 21.16. Clearance results for the maximum real part - lateral axis

21.4 Results for the Average Phase Rate and
Absolute Amplitude Criteria

The average phase rate (APR) and absolute amplitude (AA) criteria are in-
tended to identify pilot induced oscillation (PIO) tendencies in the pitch and
roll axis control loops. The precise mathematical definition of these criteria
can be done on the basis of the Nichols plot in Fig. 21.17 for the transfer-
function g(s) of the transmission between the longitudinal or lateral stick
force and the corresponding pitch or bank angle, respectively. For a given
frequency f , let g(j2πf) be the corresponding gain-phase representation of
the frequency response

g(j2πf) = AfejΦf

where Af and Φf are the gain (in dB) and the phase angle (in degrees) at
frequency f , respectively. The APR is defined as

APR =
Φfc − Φ2fc

fc
=
−180◦ − Φ2fc

fc
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where fc is the (crossover) frequency (in Hertz) where the phase angle Φfc =
−180◦. The absolute amplitude is defined as the gain (in dB) corresponding
to fc

AA = Afc
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Fig. 21.17. Definition of average phase rate and absolute amplitude criteria

The goal of our analysis is to identify all flight conditions in terms of
Mach number M , altitude h, and angle of attack α, and all combinations
of uncertain parameters where the Level 1 boundary defined in Fig. 21.18 is
violated or where the absolute amplitude exceeds -29dB (i.e., crosses the bold
line in Fig. 21.17). Note that for the HIRM+RIDE control configuration the
Level 2 specifications can be easily fulfilled, and therefore our analysis goal
is more stringent than that formulated in Chapter 10.

For a given flight condition FC and a parameter vector p, a straightfor-
ward ”distance” function for the analysis of the APR criterion is

d(p, FC) = 1/APR =
fc

−180− Φ2fc

(21.9)

Minimising this function is equivalent to maximising the APR (by minimising
fc) and thus the worst-case criterion values tend to exceed the boundary of
the Level 1 region. For the analysis of the absolute amplitude criterion, the
natural candidate for a ”distance” function is

d(p, FC) = −Afc (21.10)
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Fig. 21.18. Average phase rate criterion level boundaries

The evaluation of d(p, FC) involves in each case, the construction of the
closed-loop linearised model for the transfer function from the longitudinal or
lateral stick force to the corresponding pitch or bank angle, respectively, the
evaluation of the corresponding frequency response, and the determination
of the crossover frequency fc using, for instance, linear interpolation between
two consecutive points to the left and to the right of the −180◦ axis. To
speed up the computation of frequency responses, model reduction techniques
can be employed to get minimal order state-space representations for the
respective transfer functions.

An important aspect for an optimisation-based search is the reliable nu-
merical evaluation of criteria. For the APR criterion we encountered several
difficulties which led to the need to experiment with several gradient-free
methods. For example, because of random phase jumps of ±360◦ in the ini-
tial phase values, we occasionally obtained completely erroneous values of the
estimated crossover frequency fc. To prevent such jumps, the phase matching
approach usually employed when drawing Nichols plots has been extended to
include an initial phase of about −100◦ at the frequency ωmin = .1. Another
difficulty which we encountered was the occurrence of multiple crossover fre-
quencies. In some cases, for values of α > 29◦, we encountered points where
multiple frequency values satisfy the condition Φfc = −180◦. To handle such
cases, we defined fc as the largest value of the frequency where a crossing
occurs. This allowed us, in most cases, to compute an APR which was within
the expected range of values. The cause of this difficulty probably lies in the
presence of the α-limiter in the RIDE controller at α = 29◦. This is why the
cleared points for values of α > 29◦ can only be cautiously accepted. Finally,
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discontinuities in the gradient can be expected due to inaccurate localisation
of the crossover frequency fc. This could lead to noisy function evaluations
and therefore, to difficulties when using gradient-based methods.

The above aspects can partly explain the somewhat poorer results ob-
tained with gradient-based methods like SQP for the APR criterion, than
those resulted from a gridding-based approach. To overcome the difficulties
caused by noisy function evaluations, we ran the gradient based search with
SQP in conjunction with the GA, where the GA has been used to compute
initial points for the gradient-based search. Furthermore, we used the more
accurate central difference approximation for the gradient instead of forward
difference approximation, with the immediate consequence of higher compu-
tational costs. The best results for the APR criterion for the longitudinal axis
parameters have been obtained by using the PS method, but the computa-
tional times were about 2.6 times larger than for the SQP method and 3.5
times larger than for COBYLA.

Complete clearance results have been obtained using the SQP approach
for the small and full parameter sets for the APR criterion (both longitu-
dinal and lateral axes) and the AA criterion (only longitudinal axis). Table
21.4 shows the number of function evaluations (NFE) and the times for the
gridding and the optimisation-based search. Note the larger times resulted
partly because of more expensive gradient computations.

Table 21.4. Performance results for APR and AA criteria analysis

Gridding SQP (Small sets) SQP (Full sets)

NFE Time (sec) NFE Time (sec) NFE Time (sec)

APR (long) 11382 13716 24539 32095 48711 61694

APR (lat) 22710 29935 24354 32256 68810 87008

AA (long) 10421 16202 11377 17696 29592 38022

In Fig. 21.19 we present the clearance results for the longitudinal axis
analysis of APR criterion. As can be observed, there are practically no differ-
ences in the results for the gridding-based and optimisation-based approaches.
Practically, all points in the flyable flight envelope exhibit Level 1 handling
characteristics, as can be seen from the computed worst-case APR values
shown in Fig. 21.20.

In Fig. 21.21 we present the clearance results for the lateral axis analysis of
the APR criterion. This time, the analysis for the full parameter set revealed
many points which do not fulfill Level 1 performance specifications, but which
where considered as satisfying Level 1 handling characteristics on the basis of
the analysis performed using a gridding or optimisation-based search on the
small parameter set. These findings are also clearly visible from Figs. 21.22
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4  Level 1 clearance results for the APR − longitudinal axis
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Fig. 21.19. Clearance results for the APR criterion - longitudinal axis
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Fig. 21.20. Worst-case APR criterion analysis (longitudinal, full parameter set)

and 21.23, which present the worst-case APRs versus AoA for the small
and full parameter sets, respectively. Once again, our results illustrate the
power of optimisation-based worst-case search to solve clearance problems
with many simultaneous parameters.
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4  Level 1 clearance results for the APR criterion − lateral axis
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Fig. 21.21. Clearance results for the APR criterion - lateral axis
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Fig. 21.22. Worst-case APR (lateral, small parameter set)

The analysis for the full parameter set revealed that most of the points
in the flyable flight envelope manifest for the worst-case parameter combi-
nations, only Level 2 handling characteristics. This can be clearly seen from
the computed worst-case APR values shown in Fig. 21.24.
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Fig. 21.23. Worst-case APR (lateral, full parameter set)
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Fig. 21.24. Worst-case APR criterion analysis (lateral, full parameter set)

In Fig. 21.25 we present the clearance results for the longitudinal axis
analysis of the AA criterion. Here, there are no notable differences in the
results of the gridding and optimisation-based approaches. The only differ-
ences arise because of incidental detection of points which do not belong to
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the flyable envelope for the computed worst-case parameter combinations.
As can be seen in Fig. 21.26, practically, all points in the flyable flight en-
velope exhibit satisfactory handling characteristics in terms of the computed
worst-case AA values.
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4  Clearance results for the absolute amplitude criterion
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Fig. 21.25. Clearance results for the AA criterion - longitudinal axis
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The analysis of the APR and AA criteria revealed several points which
are not cleared because the controller gain resulting from the linearisation is
zero. This is the case for values α > 29◦ in FC2 and FC3, α > 30◦ for FC5

and FC8, and α > 31◦ for FC4. The probable explanation of these cases is
the presence of the AoA-limiter at α = 29◦ in the RIDE controller.

21.5 Evaluation of Results and Conclusions

In this section we summarise the main results achieved by our analysis, dis-
cuss the main advantages of the optimisation-based approach to clearance,
and some requirements to be fulfilled to use this approach. We also briefly
indicate some directions for further investigations.

A first result which emerged from our analysis is an updated flight enve-
lope of HIRM+ which covers the allowed parametric variations of the model.
Both the gridding-based search as well as the optimisation-based search inci-
dentally revealed points for which the worst-case parameter combinations led
to violation of conditions (21.1) and (21.2). In both cases, the corresponding
points are automatically not cleared. Figure 21.27 collects all results reported
in [1] and shows comparatively the flight envelopes which can be flown by
HIRM+ for nominal and worst-case values of parameters.
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Fig. 21.27. Updated flight envelope for HIRM+.

The stability related clearance results for full parameter sets revealed
many points where the HIRM+RIDE configuration is not cleared, but which
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were cleared by using gridding or optimisation-based search on the small pa-
rameter sets. Note that this is a qualitatively new aspect of the optimisation-
based clearance when compared with the classical gridding-based approach.
Because of its exponential computational complexity, the gridding-based ap-
proach is strictly limited to handle only a small number of simultaneous pa-
rameters, and is not able to produce results comparable with those obtained
by an optimisation-based search, with reasonable costs.

The clearance results for handling criteria revealed that the HIRM+RIDE
configuration practically does not fulfill Level 1 performance specifications.
Because the handling qualities provides merely indications of possible poor
behaviour of the augmented aircraft1, these criteria are not strict from the
point of view of aircraft clearance. Note that for all additional not cleared
points detected in handling criteria analysis, the achieved performance is
still Level 2 (see Fig. 21.24) which can be acceptable in certain conditions.
The analysis of the APR and AA criteria revealed several points where the
controller gain resulting from the linearisation, for values of angle of attack
above 29◦ is zero. Since such a behaviour can be explained only by the pres-
ence of the α-limiter, all results relying on linearisation of the non-linear
HIRM+RIDE configuration for values of angle of attack exceeding 29◦ must
be cautiously treated.

The optimisation-based approach to clearance has two main advantages
over the classical gridding-based approach, both clearly illustrated by our
analysis. While the classical approach is limited to analysis with at most
8− 9 simultaneous parameters, the optimisation based approach has no such
limitations. Interestingly, in many cases the analysis with the full parame-
ter sets determined parameter combinations where the control configuration
is not cleared, although for the small sets, the system is cleared. Note that
such cases can not be found by the classical approach. The second impor-
tant advantage of the optimisation-based clearance is the increased reliability
in locating worst-case parameter combinations. While the classical approach
evaluates the criteria only in the min/max vertex points of the parameter
space, the optimisation-based continuous search found many worst-case pa-
rameter combinations lying in the interior of the uncertainty region.

The main technical challenge for the applicability of the optimisation-
based approach is an efficient and reliable identification of worst-case pa-
rameter perturbation combinations/flight condition for the given clearance
criteria. Several requirements must be fulfilled for successful usage of this ap-
proach. First, adequate parametric aircraft models must be available which
allow fast trimming, reliable linearisation and accurate simulation of the
closed-loop system. Note that many of the existing models used for non-
linear simulations by the industry, already satisfy these requirements or can
be easily adapted for this purpose. Fast trimming and reliable linearisation
are of paramount importance for the success of this approach, because these
1 U. Korte, private communication
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computations are necessary at each evaluation of the clearance criteria. A
major requirement is the availability of adequate, numerically robust and
computationally efficient optimisation software. Since the optimisation prob-
lems often involve noisy functions having multiple local minima, alternative
methods to the usual gradient search techniques, as for example, derivative-
free or global search method must be available.

The optimisation-based approach can be seen as a straightforward en-
hancement of the current industrial practice by replacing the traditional
gridding-based search with an optimisation-driven search to locate worst-case
parameter combinations. Since the application of this new clearance approach
does not require special additional skills from the users, its acceptance by the
industry must be a serious option to be considered to improve the clearance
process for the next generation of aircraft.

There are many aspects of the optimisation-based clearance which need
further investigations. One such aspect is the use of more powerful optimisa-
tion algorithms which are best suited to the class of NLPs which typically
appear in clearance problems. A promising direction is the use of gradient-
free methods with fast convergence rates, able to address the minimisation
of noisy and expensive functions. For example, trust-region methods working
mostly with surrogate function models to perform optimisation, are very effi-
cient in terms of the required number of function evaluations. Therefore, using
the recently developed trust-region methods as underlying optimisation tools
can drastically improve the costs and reliability of the optimisation-based
clearance.

Another direction is the use of optimisation algorithms for mixed integer-
continuous problems, where some of the variables have discrete variation
and others have continuous variation. By using mixed integer/continuous op-
timisation, it is possible to combine the discrete grid-based search (e.g., for
those parameters with known monotonic effects) with a continuous explo-
ration for the rest of parameters, thus increasing the overall efficiency of the
optimisation-based search.

Using global optimisation techniques to solve clearance problems is
worth investigating in depth. For example, for problems with possible multi-
ple local minima, global search can be used in conjunction with local search
algorithms to locate good initialisation points. New and very promising de-
velopments occur in parallel methods for global optimisation, where a large
number of function evaluations can be done in parallel (e.g., in a genetic
algorithm to evaluate a new population). With the advent of cheap parallel
architecture machines, the high computational costs associated with global
search methods can be significantly reduced, thus making their standard us-
age as clearance tools affordable.
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