
Hardware-in-the-Loop Testing of Stereo Vision-Based

Hazard-Detection Method for Planetary Landing

Svenja Woicke⇤

Delft University of Technology, Faculty of Aerospace Engineering, Delft, The Netherlands

Hans Krüger †
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Hazard-detection and avoidance systems will become an important asset for next-genera-
tion landing and exploration missions. To date, multiple studies into these systems were
conducted to develop the methods needed and to demonstrate their performance in mainly
software-based tests. Few studies were able to demonstrate the performance of the algo-
rithm in hardware-in-the-loop tests, as these are usually di�cult to set up and expensive
to execute. In this paper, the hardware-in-the-loop testing of a stereo-vision based hazard-
detection algorithm is presented. It was performed with the Testbed for Robotic Optical
Navigation (TRON) at the German Aerospace Center (DLR) in Bremen, Germany. Since
this testbed only allows for testing in a scaled environment, one of the challenging tasks was
to design a scaled-down test set-up to represent a real-life lunar descent. The hardware-
in-the-loop testing confirmed the results obtained during the earlier software-in-the-loop
testing, that stereo vision can successfully be used for hazard detection during planetary
descent.
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= baseline, [m]
= cost, -
= disparity, [pixel]
= focal length, [pixel]
= image intensity, -
= image coordinates in right-direction, [pixel]
= image coordinates in downwards-direction, [pixel]
= boresight distance from the camera to the surface, [m]
= mean
= standard deviation

I. Introduction

In the context of performing precise landings in poorly known or challenging planetary environments,
hazard-detection and avoidance (HDA) systems will become increasingly important. Examples for such
scenarios are landings on bodies with only limited surface knowledge, such as Jupiter’s moon Europa. Also
landing in more challenging regions on Mars may require HDA systems. Here, also landing close to, while not
crashing into, pre-existing surface assets, for example, sample containers, will be a future application of HDA.
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Within the HDA system, reconstruction of the surface in the landing region and analysing it for safety is
one of the main tasks, the so-called hazard detection (HD). The other main task is the aspect of reaching and
touching down at a safe landing site, called hazard avoidance (HA). This paper focuses on the task of hazard
detection.

Hazard detection can be approached in two ways: using passive sensors, i.e., cameras,1,2 or active sensors,
i.e., lidar.2–6 In this research, a camera-based method is used, more precisely a method using the principle
of stereo vision for reconstruction of the digital elevation model (DEM) of the landing region. It should
be noted that both camera and lidar-based approaches have their own advantages and disadvantages, with
cameras being superior from the point of view of financial, power and weight budgeting, and lidars being a
more direct method of measuring the surface elevation. To date, no consensus towards a clear preference for
either one of the two approaches have been reached.

This work is the extension of the work presented in Refs. 1 and 7, where detailed software-in-the-loop
testing (SILT) of the stereo vision-based hazard detection algorithm is presented. In this paper, the hardware-
in-the-loop testing (HILT) of this algorithm is presented, demonstrating that the algorithm is indeed a method
that can be used for hazard detection using real camera images as input.

This paper is organised as follows. In Sec. II, a short introduction to stereo vision as a hazard detection
method is given. Moreover, some exemplary hazard-detection results of this method obtained from software-
in-the-loop tests are presented. Next, the set-up of the hardware-in-the-loop test and an introduction of the
facility used are given in Sec. III. This is followed by a presentation and discussion of the results in Sec. IV.
A more detailed analysis of the results is performed in Sec. V. The paper closes with conclusions drawn from
the testing in Sec. VI

II. Stereo-Vision Hazard-detection Algorithm

The stereo vision algorithm presented in this section is discussed in more detail in Ref. 1. This section will
introduce the reader to the topic of stereo vision and briefly outline the algorithm and design choices made.
To perform stereo vision, two cameras need to be attached to the lander with a known baseline. Preferably,
this baseline is as rigid as possible, as any unknown relative movement of the cameras is equivalent to errors
to uncertainties in the extrinsic calibration of the set-up. An on-board recalibration of a stereo set-up may be
possible to some extent, but should be avoided, as it is time consuming and adds complexity to the system.

Camera 1 Camera 2

FOV FOV

Figure 1: Stereo-vision principle.
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The two cameras will generate two input images for the stereo vision algorithm. Figure 1 shows an
illustration of a stereo vision set-up. It is important to note that the cameras are oriented in such a way
that their optical axes are parallel. This results in two images, which are not fully overlapping; towards very
low altitudes the overlapping portion shrinks and finally vanishes. However, this is not considered to be a
problem, since hazard detection is performed at higher altitudes.

(a) Left image (b) Right Image (c) Combined

Figure 2: Matching of stereo-vision images.

Stereo vision makes use of the fact that when taking two pictures of the same scene from di↵erent
viewpoints, the projections of the same ground points will appear at di↵erent image positions within the
two images. Figure 2c shows this principle, as well as the two input images (Figs. 2a and b) used during
the software-in-the-loop testing. The change in image position for a given ground point, can be used to
compute the distance towards this point from triangulation. Finding a pixel in the left image corresponding
to the pixel representing the same ground point in the right image is called image matching. Comparing the
two di↵erent locations results in a value for the shift of that pixel. This shift is the so-called disparity, d.
Corresponding pixels will be located along the same epipolar line. The epipolar line is the intersection of
the epipolar plane and the image plane, where the epipolar plane is formed by the two optical centres and
an image point. For the SILT testing presented here, perfect cameras and perfect parallel alignment of the
cameras is assumed. In such a case the epipolar lines of are inherently aligned and no further actions have to
be taken.

The maximum depth resolution (or: the minimum detectable di↵erence in z), �Z, the paramount factor
for creating useful HD surface maps, is given by

�Z =
Z2

bf
�d (1)

where Z is the boresight-distance from the camera to the surface, b is the baseline, f is the camera’s focal
length and �d is the minimum detectable disparity. From this equation it can be concluded that the depth
resolution scales linearly with increasing baseline and that the baseline should be maximised. However, the
maximum achievable baseline is limited by the lander dimension and structural rigidity and is assumed to be
limited to 2m to 3m, based on current lander designs. To work with the limiting case rather than the more
relaxed constraint, a maximum baseline of 2m will be assumed in this research.

For image matching, a cost function is used to determine which two pixels in their respective images
represent the same ground points. The algorithm used employs the sum of squared di↵erence (SSD) as cost
function, since this was found to deliver the best results after an extensive trade-o↵.1

SSD =
X

u,v

(I1(u, v)� I2(u+ d, v))2 (2)

Since Eq. (1) shows that the depth resolution also scales with the minimum detectable disparity, it is
important to achieve non-integer, so-called sub-pixel, disparities. This is done using a parabolic fit through
the point of minimum disparity:

d̂min = dmin � C(dmin � 1)� C(dmin + 1)

4C(dmin)� 2C(dmin � 1)� 2C(dmin + 1)
(3)
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Lastly, knowing the disparity, the distance from the cameras to the surface can be computed using

z(d) =
fb

d
, (4)

where both the focal length and the baseline are fixed by the design, and the disparity is found from image
matching. Finding the match for each pixel in the left image and computing the distances from the camera
to the surface for each of them will lead to a dense DEM.

From Eq. (1) it is apparent that the distance to the surface is the driving factor for the depth resolution,
as the depth resolution scales inversely with the square of this distance. From this observation it is obvious
that stereo vision is not a suitable method to detect surface hazards at very high altitudes without considering
unrealistic baseline values. However, boulders, the major landing surface hazard, can only be detected if the
image resolution is high enough to resolve these features. Therefore, boulders can only be successfully detected
at low altitudes, which are also the altitudes at which stereo vision performs well. Using this algorithm it
was established that for a 2m stereo baseline, stereo vision can be applied for altitudes of 200m and below,
which is a very suitable altitude for detection of boulders. For a field of view (FOV) of 30� and a image size
of 512 x 512 pixel, this leads to a minimum resolution of ⇡3m at 200m altitude and 1m at 150m altitude.

Using these dense DEMs, it is possible to compute a hazard map of the landing region by computing
surface characteristics which can cause a landing hazard. In the algorithm used these hazards are:

• Slope

• Roughness

• Insu�cient illumination/shadow

Slope and roughness can both be computed from the DEMs and are quantitative assessments of the surface.
Illumination is determined from the input images. In addition to the roughness computed from the DEM, it
is also possible to perform a qualitative assessment of surface roughness based on image texture.

Slope is computed as the mean plane over a patch with the size of the lander footprint, while roughness
is calculated as the local deviation from this mean plane, in the direction of the mean-plan’s normal. The
texture-based roughness is computed from a histogram-based variance. A detailed discussion of the analysis
of di↵erent methods that lead to these choices can be found in Ref. 1.

Figure 3 shows the result of a software-in-the-loop test, for a landing site imaged from 200m altitude.
Figure 3a presents the resulting DEM, Fig. 3b the slope map and Fig. 3c the roughness map, as computed
from the DEM. The roughness map computed from the image texture is shown in Figure 3d. The final hazard
map obtained by merging all the inputs presented in Figs. 3a-d is presented in Fig. 4a. These maps are
rescaled on a scale from 0 to 1, where all values above the of the selected hazard thresholds (slope �15� and
roughness �0.5m) are assigned the value 1. The merging is performed by adding all individual, rescaled,
maps with equal weights.

To evaluate the performance of the hazard detection function, it is necessary to compare the outcome of
the function to the ground truth hazard map, computed from the ground truth DEM; the resulting map is
given in Fig. 4b. From these maps it is apparent that the algorithm tends to slightly overestimate hazards, as
some safe sites are labelled hazardous. However, less than 1% of all hazards are overseen. Therefore, the
algorithm presented here delivers good performance in a conservative sense.

III. Hardware-in-the-loop Testing

To extend the performance evaluation of the algorithm, HILT is performed. These tests are executed at
the Testbed for Robotic Optical Navigation (TRON) at the German Aerospace Center (DLR) in Bremen,
Germany8,9 . In the following, first some general aspects of the facility will be introduced, after which the
test set-up will be described.

A. Facility

TRON is a HILT facility with the purpose of supporting the development of optical navigation technology.
TRON provides an environment, which allows qualifying breadboards to Technology Readiness Level (TRL)
4, and qualifying flight models to TRL 5-6. Typical sensor hardware, which can be tested in TRON, are
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(d) Texture-based roughness

Figure 3: Intermediate results of stereo vision hazard mapping SILT.1
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(b) Hazard mapping errors, darkgray =
undetected hazard, white = safe, lightgray
= safe site detected as hazardous, black =
hazard.

Figure 4: Hazard mapping results of SILT.1
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active and passive optical sensors like lidars and cameras. The major components of the laboratory are a
robot on a rail for dynamic positioning of the sensor under testing, a dynamic lighting system for illumination
of the targets, laser metrology equipment for high precision ground truth, and a dSPACE real-time system
for test observation and control and synchronization of ground truth and sensor data. The laboratory can be
customised with user-defined hardware, such as models of a Lunar or Martian surface. Due to this flexibility,
as well as its extensive dimensions, TRON is well suited for simulating missions representative of the ones
encountered by optical sensors during exploration missions.

Figure 5: Layout of the TRON facility.

As shown in Fig. 5, TRON features three di↵erent terrain models located at di↵erent walls inside the
laboratory. Each of these models is designed for a specific phase of approaching and landing on a body.
Figure 6 shows a picture of the facility. All three terrain models are visible, as well as the robot, the laser
tracker and the lighting system. Figure 5 also shows the T-Mac mounted on the payload platform together
with the stereo cameras. The T-Mac serves as a target for the laser tracker to measure the distance from the
target to the tracker as well as its orientation with respect to the laser tracker.

Terrain 3 is designed for simulating the last phase of a landing mission. In this way, the terrain can be
used to not only perform hardware-in-the-loop tests of hazard detection and avoidance methods, as presented
in this paper, but also methods for terrain relative navigation with respect to the landing site. Therefore,
terrain model 3 is used for this research. An image of this model is given in Fig. 7.

Figure 6: Picture of the TRON facility.

Terrain model 3 is installed at the front wall of TRON. Its size is about 4.2m x 2.2m, the terrain dynamics
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Figure 7: Picture of surface model 3.

is ⇡0.26m. The model reference data were obtained entirely by DLR via a process beginning with hand-
modeling, and ending with 3D scanning and post-processing, as described in Ref. 10 . The model was then
manufactured in two steps. At first, a coarse milling step obtained the rough terrain structure. Afterwards, a
finishing surface layer was applied manually. Due to the hand-made finishing, no manufacture marks such
as milling lines are visible, leaving the model with a practically infinite resolution. The self-similarity with
respect to scale of the model and the Moon can be exploited by applying a di↵erent scale to this model.
This landing-site model is not only representative for the Lunar surface, but also for many asteroid surfaces.
Combining this model with low scale factors makes it a useful sensor target for 3D imaging sensors.

Moreover, a full ground-truth model of the surface exists, and its location is precisely known within the
laboratory reference frame. This enables a very accurate comparison of simulation results to reality. The
ground truth of Terrain 3 is presented in Fig. 8.

Figure 8: Laser scan of Terrain 3, the terrain dynamics in z-direction are exaggerated with respect to the
other axes for better visibility.

The robot, carrying the (optical) sensors, can be moved along a rail from a distance of 11m to a distance
of 1m to Terrain model 3, as also indicated in Fig 5. At the same time, it can be moved with a radius of
⇡1m perpendicular to the rail.

More detailed information on the set-up of TRON and the surface model can be found in Ref. 8 and 10.
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B. Test set-up

For testing the stereo vision algorithm, two cameras (the stereo pair) are attached to a plate on the robot’s
arm, see Fig. 9. These cameras and the laser tracker are hardware-triggered by the dSPACE system, which
enables synchronised image capturing of both cameras, as well as recording the robot/camera position during
the simulation. The cameras’ full pose with respect to the laboratory reference system is determined by the
laser tracker, which measures the T-Mac pose at 100Hz. The T-Mac is fixed to the camera platform on the
robot. This information is necessary for comparison of the simulation results to the ground-truth data, to
perform a quantitative assessment of the algorithms performance.

Figure 9: Camera set-up on payload platform.

The cameras used are two Allied Vision Proscila GC1380H cameras, both with a Schneider Kreuznach
Cinegon 1.9/10 10.4mm-F1.9 lens. The cameras are set to deliver an image of 1024⇥ 1024 pixels, which is
down-sampled to 512⇥ 512 pixels to limit execution time. The field of view is ⇡37�. The cameras’ intrinsics
and extrinsics are calibrated using checker-board patterns and DLR’s camera calibration toolbox, DLR CalDe
and DLR CalLab.11 The same tool is used for hand-eye calibration of the camera set-up.

As discussed in Sec. II, the working envelope of the stereo vision HD algorithm starts at 200m above the
surface and current lander designs allow for baselines of 2m to 3m. Since testing in TRON is done in a scaled
environment, the baseline has to be scaled accordingly. TRON’s 10m rail is used to simulate the 200m of the
final descent towards the ground. This represents a scale factor of 1:20. To obtain a set-up of a comparable
depth resolution as the proposed landing set-up, a 30 cm baseline will be used. Here, it should be noted that
the baseline is not scaled at the same ratio as the remaining set-up. This is due to the fact that the depth
resolution was supposed to be kept comparable to the full set-up, i.e., scaled at 1:20. However, as discussed
in Sec. II and supported by equation Eq. (1) the depth resolution does not scale linearly with the rest of the
set-up. Therefore, 30 cm was established as a value representative of the full set-up by an iterative process.

In a real landing scenario, slopes of more than 15� over the size of the lander footprint (commonly on
the order of 2m to 5m) and roughness of more than 0.3m to 0.5m, are considered to be hazardous.1 As
with the baseline, these values have to be adapted to the scaled environment. For the 1:20 scale used in this
set-up, this leads to the following hazard thresholds:

• Slope: �15� over a patch of 10 cm to 25 cm

• Roughness: �1.5 cm

IV. Results

In this section the DEM and the hazard map created from pictures taken at ⇡ 3m from the terrain
model are presented. At this distance, the camera images show only the terrain model. Since a 1:20 scale
environment is used, this is equivalent to a 60m distance (at 2m baseline).

After one stereo pair of two images is acquired, these images first need to be rectified, using the results
from the intrinsic calibration. Rectification is necessary in the hardware test, opposed to the SILT, as epipolar

8 of 15

American Institute of Aeronautics and Astronautics



lines need to be aligned for stereo reconstruction. For purely translated cameras, as used during SILT, the
epipolar lines are already aligned by default.

Figure 10 shows a composition of the rectified right and left stereo image. Careful visual inspection will
lead to the conclusion that tpixels pertaining to the same physical points are indeed on the same row. This
leads to the conclusions that a) rectification worked successfully and b) camera calibration was successful.

Figure 10: Rectified stereo pair(red - left image, cyan - right image).
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TRON during HILT
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Figure 11: DEM from HILT obtained from TRON measurements.

Figure 11a presents the DEM as computed from the input pair shown in Fig. 10. The corresponding
ground truth is given in Fig. 11b.

It can be concluded that over all the scene is reconstructed well, all craters seem to be in the DEM. It is
clear that some errors are present in the computed DEM close to the image borders, which is due to the
stereo reconstruction having more di�culties finding the appropriate matches here. However, it should also
be noted that these regions are by design more prone to problems with calibration and optics. The extensive
testing of the algorithm on a larger number of HILT stereo images also showed that insu�cient and/or very
uneven illumination can also result in reconstruction errors. It is thus very important to create realistic
illumination conditions during HILT. In theory one would try to achieve a parallel lighting condition, however
this is very di�cult to reach in a laboratory where the distance between the light source and the terrain is
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small and limited by its size. The DEM mean and median error in the z-direction of a rectified Cartesian
coordinate frame are 0.037m and 0.066m, respectively, with a standard deviation of 0.034m and a median
absolute deviation (MAD) of 0.016m. The error histogram in Fig. 12 shows that the error is not completely
Gaussian, which is why it was chosen to give both the mean and the median. These error values permit
successful hazard detection as envisioned in this paper.

�0.2 �0.15 �0.1 �5 · 10�2 0 5 · 10�2 0.1 0.15 0.2
0

1

2

3

·104

Error [m]

Figure 12: Error histogram of the DEM error in z-direction in rectified Cartesian coordinates (HILT).
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Figure 13: Hazard map, and hazard map compared to real hazard map (HILT).

Figure 13a presents the computed hazard map based on the output of the algorithm. This hazard map is
based on slope, roughness and illumination extracted from both the DEMs and the input image. The hazard
thresholds are set as discussed in Sec. III B. A value of 1 represents a location that would be hazardous. It
can be seen that the craters are visible in the hazard map. Also, the higher slope on the left of the DEM is
identified and labelled as hazardous. In Fig. 13b a comparison of the computed hazard map and the true
hazard map is shown. This figure is colour-coded as follows: a red region represents a hazard, undetected by
the algorithm (false negative, FN). A green region is a safe site which is erroneously labelled as an unsafe site
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by the algorithm (false positive, FP). A white pixel represents a safe location that is correctly identified by
the algorithm (true positive, TP). A black pixel is hazardous and correctly detected as such by the algorithm
(true negative, TN). False negatives are the most dangerous errors, as these can lead to a mission loss when
selecting a landing site that is actually unsafe.

Overall, there are 1.7% FN, 16.5% FP, 68.5% TP, and 13.3% TN in this scene. Overall, 88.6% of all
hazards in the scene are correctly identified, while 80.6% of all safes sites are correctly identified. In total,
81.8% of all detections are correct.

Closely investigating Fig.13b, one can see that both FN and FP errors are not randomly occurring, but
undetected hazards occur in two di↵erent situations:

• in locations right next to correctly detected hazards. This could be accounted for by applying a safety
factor to not select landing sites right next to detected hazards.

• The algorithm sometimes fails to detect small boulders. This is due to the smoothing e↵ect of the
window size used during stereo matching and the comparably small size of the boulder in the scene
(just 2 pixels to 3 pixels each), which makes them very di�cult to distinguish from image noise, while in
the high quality ground truth they can be identified very accurately. This problem might be overcome
by implementing a more advanced boulder detection algorithm in addition to the roughness detection
already included.

Figure 14 shows the individual contributions that lead to the hazard map as presented in Fig. 13a, namely
the slope in Fig. 14a, the roughness in Fig. 14c, with the ground truth given in Fig. 14b and Fig. 14d,
respectively. The texture-based roughness is shown in Fig. 14e and the shadow map in Fig. 14f. It can be
seen that the illumination conditions during the HILT were chosen in such a way that quite some shadows
were present on the model. Moreover, it can be seen that DEM-based roughness (Fig. 14d) and texture-based
roughness (Fig. 14e) show comparable, but not identical, results. Therefore, it is clearly advisable to use
both methods simultaneously. This conclusion was also already reached during the earlier SILT evaluation.

Comparing the computed slope in Fig. 14a to its ground truth in Fig. 14b one can see that the algorithm
performs quite well in computing the terrain’s slope. As the computed DEMs are slightly smoother than the
ground truth DEM, the computed slope is smoother than the true slope as well.

Figure 14c presents the true roughness. Comparing this to the computed roughness in Fig. 14d, one can
see that the overall performance of roughness detection is good for larger-scale features, while the algorithm
fails to detect small roughness features, e.g., very small rocks. This behaviour was already addressed above.

In summary, the results presented in this section demonstrate that stereo vision is a suitable solution for
hazard detection, not only on simulated images, but also when using real images.

V. Analysis

To draw more general conclusions on the performance of the algorithm, eight datasets were recorded and
used to reconstruct stereo DEMs, as well as the resulting hazard maps. Both DEM errors and hazard-mapping
errors were computed for all of theses datasets. The datasets were recorded at terrain distances of 2.5m, 3m,
4m, 5m, 6m, 7m, and 8m. At a 1:20 scale, as discussed earlier, this corresponds to 50m, 60m, 80m, 100m,
120m, 140m, and 160m above the planet’s surface during a real scenario (at a 2m baseline).

Figure 15 reports the DEM errors of the stereo reconstruction. Both mean, as well as median errors,
are given. This is due to the fact that very small regions of strong noise may cause strong e↵ects on the
mean while the median is a↵ected less by these regions. Therefore, the combination of the mean and the
median together allow a more precise assessment of the actual performance of the reconstruction. Moreover,
as discussed in Sec. IV, the error distribution is not fully Gaussian. Based on Fig. 15 it can be concluded
that the DEMs are reconstructed accurate enough to perform HD. The large standard deviation for 5m
distance is caused by some very large errors in a very small region of the DEM ( 10 pixel), most likely due
to problems with the lighting conditions of the image (the standard deviation is caused by some very large
reconstruction errors in a very small region of the DEM). Overall, it can be seen that the reconstruction
improves if the cameras are moved closer to the surface, which is to be expected as depth resolution is a
function of the square-root of the distance to the surface (see Eq. (1))

Figure 16 shows the percentages of correctly detected hazards, correctly detected safe sites, undetected
hazards, and undetected safe sites. Moreover, the sum of all correct detections is given. It is important to
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Figure 14: Hazard map contributions (HILT).
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Figure 15: DEM mean error and standard deviation (HILT).
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Figure 16: DEM mean error and standard deviation (HILT).

note that the there are never more than 2.5% undetected hazards in the scene. By implication this means
that the probability of a safe landing based on these hazard maps is always greater than 95.6%, assuming that
the function selecting the landing site will only select FN sites proportionally to the size of the DEM/hazard
map. However, it is also clearly noticeable that the algorithm does miss a substantial number of safe sites in
the scene. This can be seen as a safety factor, as these areas largely correspond to regions that are close to
unsafe(e.g., containing large slopes slightly below the threshold) and are close to regions which are actually
unsafe. Again, performance does improve when moving closer to the surface, as the DEMs are more accurate
at smaller distances.

Lastly, Fig. 17 shows the percentage of all hazards detected. It can be seen that this number is always
above 75%, but there is no clear trend in this performance.
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Figure 17: DEM mean error and standard deviation (HILT).

Overall, this analysis clearly demonstrates that HDA is possible with the result of a stereo vision surface
reconstruction. Therefore, the HILT supports the conclusion from the SILT performed previously, that stereo
vision is a feasible candidate for on-board hazard detection.
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It is a known fact, that stereo reconstruction becomes challenging - if not impossible - for scenes with
little to no texture. During the laboratory experiments at the TRON facility, we were able to reproduce this
behaviour on the black wall behind the terrain, as well as on the very smoothly painted ceiling of the laboratory
(see Fig. 18), whereas reconstruction on the strongly textured carpet works well. Which demonstrates that
the lunar analogue terrain has su�cient texture for conduction stereo based hazard-detection. This supports
the assumption that stereo based hazard detection is possible for lunar landings.
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Figure 18: Su�cient texture is needed for stereo reconstruction.

It comes as no surprise that performing hazard detection on real images is more challenging than when
using artificial imagery, such as those presented in Sec.IV. It is also far more challenging to trade the
robustness of noise against the ability to resolve very small features in the scene.

VI. Conclusions

Based on the hardware-in-the-loop testing (HILT) performed at the TRON facility, it is possible to confirm
the conclusions obtained during software-in-the-loop testing (SILT): stereo vision is a capable method for
performing on-board hazard detection during planetary descents. A scaled set-up was developed representing a
Lunar landing scenario at 1:20 scale. It was shown that the transition from software simulations to simulations
including real hardware is a challenging, but feasible path.

We were able to demonstrate that for all test cases considered, successful hazard detection was performed.
As expected, the algorithm performs better, the closer the cameras are to the terrain. Both mean and median
DEM errors always remain below 10 cm. The algorithm always detects more than 75% of all hazards. Overall,
the algorithm tends to overestimate hazards, which serves as a safety factor. These findings support the
feasibility of stereo-based hazard detection for planetary landing.

Due to these promising results, this approach will be investigated through further hardware-in-the-loop
testing with the long-term vision of o↵ering a system for reliable hazard detection for space exploration
missions.
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