LULEA
UNIVERSITY
OF TECHNOLOGY

MASTER’S THESIS

On-Board Convex Optimization for Powered
Descent Landing of EAGLE

Author: Supervisor:
Andreas WENZEL Dr. David SEELBINDER
Dr. Anita ENMARK

A thesis undertaken within:

GNC department
Institute of Space Systems
Deutsches Zentrum fiir Luft- und Raumfahrt (DLR), Bremen, Germany

Submitted in partial fulfillment of the requirements for the programme of:

Master in Space Science and Technology
Computer Science, Electrical and Space Engineering
Lulea University of Technology

as part of the
Joint European Master in Space Science and Technology (SpaceMaster)

04th September 2017

1ii

Abstract

Future space exploration missions require new solutions in Guidance, Navigation and Con-
trol for autonomous high precision landing. The German Aerospace Centre, DLR, is cur-
rently developing the environment for autonomous GNC Landing experiments, EAGLE,
acting as a demonstrator for vertical take-off and landing. The goal of this thesis is to de-
velop a prototype real-time applicable guidance function based on optimal control theory
for the powered descent landing, which can be implemented and tested on the on-board
computer of EAGLE.

Based on the principle of loss less convexification developed by Acikmese and Ploen [1],
the powered descent landing fuel-optimal control problem is converted into a second order
cone problem. A discretization and transcription method is designed in order to solve the
resulting non-linear program by means of the embedded conic solver ECOS and the devel-
oped algorithm is verified by the comparison of simulation results for an example pinpoint
landing on Mars from [1].

After the implementation into C-code and a Simulink-Environment, the developed method
is adapted by a preceding heuristic estimation for the fuel-optimal flight time given initial
and final conditions, which is used as input for the developed trajectory optimization algo-
rithm. This results in a prototype, sub-optimal trajectory optimization and guidance func-
tion applicable on on-board systems. The guidance function is tested with EAGLE-specific
parameters in two extensive simulation of 41503 sets, respectively, with different initial and
final conditions. For all the sets, the resulting trajectory and fuel consumption calculated by
the guidance function are compared to the actual fuel-optimal solution, which is obtained
via a search algorithm scanning through different flight times in a given range around the
estimated flight time.

We find that the developed guidance function overestimates the optimal flight time in all
cases, related to a fuel consumption which is 20% higher than the optimal case in 80% of the
sets. Furthermore, the typical computation time of the guidance function on the on-board
computer of EAGLE can be expected to be less than 0.8 seconds, proving the on-board feasi-
bility of the proposed algorithm. The developed prototype guidance function sets a base for
further work on on-board optimization applications and is currently subject to improvement
regarding optimality and robustness.

Acknowledgements

This work has been enabled by Dr. David Seelbinder and the GNC-department at the in-
stitute of spacesystems of DLR. I want to thank him and Dr. Stephan Theil for giving me
the opportunity to work on the exciting topic on convex optimization and on EAGLE. The
support I received from Dr. Seelbinder throughout the thesis work, especially his expla-
nations in the frequent meetings throughout my work at DLR, helped me to build up my
understanding of optimal control and topics related to on-board computing. Thanks to him,
I will continue the work that has started with this thesis. I also want thank Prof. Peter von
Ballmoos and Dr. Anita Enmark for examining this thesis work and for the organizational
support throughout the project.

Moreover, I want to thank the members of the GNC department for the entertaining lunch
breaks, which made the intensive work much more bearable. A special "thank you" belongs
to my friends from university, especially the spacemaster students, as well as to my family
and friends outside of university, who always supported me.

Contents
Abstract
Acknowledgements
1 Introduction
1.1 Motivation e e e e e
1.2 Outline e e
2 Background

2.1 Vertical Take-Off and Landing Demonstrator -EAGLE
2.2 Mathematical Preliminaries e

221
222
223
224

Optimal Control Problems
Non-Linear Programming, Transcription and Discretization
Convex Optimization Problems
Interior Point Methods and SOCP with ECOS

Powered Descent Landing as a SOCP
3.1 Problem Formulation

3.1.1
3.1.2
3.13

Problem Formulation 2 - Convexification of Thrust Magnitude
Problem Formulation 3 - Dynamics Linearization
Example Constraints

Transcription of the Convexified Powered Descent Landing Problem
4.1 Discretization
42 Transcription. L

421
422
423
424

Transforming the Cost-Function
Transforming the Equality Constraints,
Transforming the Inequality Constraints,
Transforming Second Order Cone - Inequality Constraints

4.3 Implementation and Verification

Development of an On-board Feasible Guidance Function
51 TransitiontoC

51.1
5.1.2

CSparse Library for CCS-Matrix Creation,
Pre-allocation of Arrays

52 Convex Simulatorin Simulink 000000
5.3 Run-time Results and Processor-in-the-Loop-Verification
5.4 Guidance Function Design

54.1
54.2
543
544

Optimal Flight Time Estimation
Optimal Flight Time Estimation in Two Dimensions
Flight Estimation for the Powered Movement
Real-time Applicable Guidance Function

Simulation and Tests of Guidance Function

6.1 SimulationSetup oL
6.2 AnalysisProcdure. L o
6.3 Results and Interpretation 0 L.

vii

iii

N =

N U =W W

viii

7 Conclusion and Perspective

A Appendix

A.1 Proof for quadratic constraintsasSOCP
A.2 Column-Compressed Storage of Matrices

A.3 Convex Simulator - Parameters

Bibliography

1 Introduction
1.1 Motivation

Recent developments in space explorations have resulted in impressive demonstrations
of the performance of automative space systems. In particular the successful application
of partially reusable launcher systems such as SpaceX’s commercial Falcon 9, which has
been designed for the launch of satellites into several different orbits and for launching the
Dragon spacecraft for cargo transportation to the ISS, has received high public attention. In
2015, a first stage of a Falcon 9 launcher succesfully landed autonomously in Cape Canaveral
after it had been launched and separated from the second stage. Another succesfull landing
of a Falcon’s first stage was demonstrated in 2017 by landing on a platform based on a boat.
Those unprecedented landings of a launcher system are expected to enable cheap and fre-
quent launch possibilities, which is especially of interest for commercial space companies.
The reusability of spacecrafts and launch systems may also be a key technology for future
manned or unmanned missions to other planets like Mars.

In addition, several scientific exploration missions to other bodies of the solar system require
precise landing on a planet’s surface to meet specific scientific objectives. Missions that in-
clude the landing of a vehicle within a few meters of accuracy are very challenging and have
to make use of robust high precision guidance, navigation and control (GNC) solutions. Ac-
complishing such autonomous missions would be impossible without the high performance
level of new computer technologies, i.e. on-board computer architectures, which allow the
implementation of high fidelity GNC-solutions.

Inherent to both goals, landing reusable launchers on Earth or an exploration lander on
another planetary object like Mars, the final phase of approaching the landing site can be di-
vided into several elements: All missions involving a landing space vehicle equipped with
one or more engines share an atmospheric re-entry followed by a descent, which may in-
clude the use of a parachute for deceleration, and a final powered descent landing, where the
engine is ignited to decelerate the vehicle and to maneuver towards a desired final position.
This work is focused on the powered descent landing of a spacecraft. Due to the complexity
and timescale of the powered descent landing problem, the overall system requires high au-
tonomy and the flight path may have to be recalculated several times during the powered
descent phase. In special cases it might even be necessary that the system autonomously
selects another suitable landing site in case of any hazard detected at the initially planned
landing area during the descent. Therefore, the landing trajectory has to be recalculated
several times on the on-board computer of the landing vehicle. While previous missions
like Mars exploration rovers required a landing accuracy of around 35 km or even 10 km in
the case of the famous Mars Science Laboratory with the rover Curiosity [3], landing a ve-
hicle within a few meters requires new on-board capable trajectory optimization techniques.

Calculating the optimal trajectory for the powered descent landing can be seen as an op-
timal control problem involving the dynamics of the landing vehicle and several constraints
on the control parameters and the actual trajectory, while some relevant parameter is min-
imized. In the example case of fuel-optimal landing, the amount of consumed fuel has to
be minimized. However, the optimal control problem is in general not on-board feasible,
since it contains time continuous functions. For the numerical solution of such a problem
a discretization and transcription is necessary, which converts the inifinte dimensional op-
timal control problem into a problem of finite dimension. The solution algorithms for such

2 Chapter 1. Introduction

problems, i.e. non-linear programming, do not in general provide convergence towards the
optimal solution and the computation time of corresponding solvers may be too long for
real-time applications. In 2007, A¢ikmese and Ploen provided a mathematical methodology
called "lossless convexification" for the powered descent landing problem, transforming it
into a convex optimal control problem, i.e. a second order cone problem (SOCP) [1]. This
SOCP formulation of the powered descent landing problem has a global solution, and in-
terior point methods for solving convex problems guarantee the convergence towards this
solution. Therefore, the resulting SOCP formulation provides an onboard feasible approach
for real-time trajectory optimization of the powered descent landing.

1.2 Qutline

This thesis focuses on the development of a convex minimum-fuel trajectory optimization
algorithm for on-board application on the vertical take-off and landing demonstrator called
Environment for Autonomous GNC Landing Experiments, EAGLE, of the German Aerospace
Centre DLR. The goal is to create a prototype on-board guidance function making use of the
lossless convexification method by Acikmese and Ploen and solve the resulting convex op-
timization problem for the powered descent landing by means of the open source embedded
conic solver ECOS [9]. Therefore, the convexified optimal control problem is discretized and
transcribed making use of full discretization and trapezodial scheme, such that it is numer-
ically solvable. Furthermore, the transcription has to take into account the formalism for
optimal control problems expected by ECOS.

The developed optimization method is extended in order to obtain an ob-board applicable
guidance function, that can provide optimal, or close to optimal, reference trajectories to the
control system of EAGLE.

The structure of this document is as follows: A short introduction to the EAGLE system
in section 2.1 and a summary of the mathematical basis required for the transcription of the
optimization problem, especially regarding convex and conic optimization, is followed by
the derivation of the SOCP formulation of the powered descent landing problem following
[1] in chapter 3. Based on this, a transcription method is developed in chapter 4, as well
as a complete convex trajectory optimization algorithm applying ECOS. This includes a test
and verification of the algorithm with an example of Mars pin-point landing. In chapter 5
the created algorithm is implemented in C and extended to a prototype guidance function,
including a quasi-heuristic estimation for the optimal flight time. This guidance function is
then tested in chapter 6, followed by an outlook and a final conclusion.

2 Background
2.1 Vertical Take-Off and Landing Demonstrator - EAGLE

Although the main focus of this work lies on the mathematical aspects and generic imple-
mentation of an on-board feasible trajectory optimization algorithm, one of the future goals
of this work is to implement and test the created algorithm on-board of EAGLE. EAGLE is
a vertical take-off and landing vehicle designed as a platform for testing and demonstrating
new GNC algorithms related to soft-landing, smooth ascent and hovering. It provides dy-
namics, sensors and actuators similar to a typical landing vehicle. Hence it can be used to
test new GNC solutions, e.g. for space exploration missions, in a realistic environment.

The EAGLE system mainly consists of the main structure housing all relevant sub-systems,
like sensors, on-board computer and power supply. There are three legs attached to this
housing. The actuation mainly consists of a jet engine generating the main thrust. Its mag-
nitude is controlled by the fuel flow into the engine’s burning chamber, while the thrust
direction is controlled via two vanes aligned perpendicular below the engine. Those vanes
deflect the thrust for maneuvers in pitch- and yaw-direction. For roll-control, a cold-gas
reaction control system is applied with actuators placed on the two lever arms of EAGLE.
These actuators are electro-magnetic on/off-valves which control the ejection of the pressur-
ized gas, and thus they control the torque acting along the roll direction [10].

FIGURE 2.1: Design model of EAGLE [10]

The wet mass of EAGLE is about 30 kg including four tanks filled with 1.5 liter of cerzozine
as fuel. In figure 2.1, the symmetrical mounting of the green tanks within the main housing
of EAGLE is visible.

For navigation purposes, EAGLE contains an inertial measurement unit (IMU), a GPS re-
ceiver, a laser altimeter and a magnetometer. The measurements of these sensors are fused
for precise navigation. To overcome problems during tests with EAGLE in the vicinity of the
DLR laboratory, i.e. unsufficient GPS-satellite visibility, an optical navigation solution has
been developed using camera images for navigation within the EAGLE test environment.

4 Chapter 2. Background

Furthermore, a control system has been developed including two different strategie [10]s.
The general system consists of a guidance function providing a reference trajectory. This
reference is used as the command for the EAGLE control system and compared to the actual
position and velocities estimated by the navigation subsystem. An outer loop calculates a
reference quaternion fed to the inner loop controller [10]. As mentioned above, there are
two strategies which are implemented into this inner loop controller . First, a simple PD-
controller which is hand-tunable was developed to allow for simple testing. The second
method is based on sliding-mode control taking into account uncertainties resulting from
the ongoing development of EAGLE like uncertainties on mass and moment of intertia [10].
One can easily switch between these two controllers.

The on-board computer runs the operating system QNX. A MATLAB /Simulink model in-
cluding the desired GNC algorithms is created and converted into C-code via the Simulink
Coder. This C-code is then cross-compiled and finally executed by QNX on-board of EA-
GLE. Throughout this thesis work, the specific requirements especially regarding on-board
computer and control system are taken into account for a follow-up implementation of the
prototype guidance function developed in this thesis.

2.2 Mathematical Preliminaries

The work presented in this thesis focuses on real-time trajectory optimization and the imple-
mentation of a guidance function for usage in the control system of EAGLE. To understand
the underlying principles, this mathematical preparation is an introduction to the funda-
mental concepts of optimal control and provides the basic definitions required for under-
standing the applied algorithms. It will cover the definitions towards a general and a convex
optimal control problem. Also, the structure of SOCP including the equivalent formulations
relevant for the proposed transcription algorithm are introduced.

2.2.1 Optimal Control Problems

The optimal control problem (OCP) considers the optimization of a controlled process. The
state of the system at time ¢ is described via the state variable z(¢) € R"* while the control
variable is given by u(t) € R", where n, and n, are the dimensions of the state and the
control variable. The optimal control process in general depends on an independent variable
t, which can be associated with time although ¢ can have different meanings in general. One
restricts the optimal control process to an interval ¢t € [to,tf], where the start time ¢ is
fixed and the final time ¢; can be fixed or free. Systems having a free end time are called
autonomous systems. The optimal control problem can be written in its general formulation
as:

Problem 1
min 7= olettw)ati) + [fea@ue) @
st (1) = £14,2(0,u(0) @2)
o (o (1) = 0 @3
Vr(z(ty) =0 (2.4)
c(@(t), u(t),t) < 0Vt € [to, 1] (2.5)

The scalar valued function J : R x R™ x [tg,t¢] — R is called cost or objective function
measuring the performance of a solution. Equation 2.2 is the dynamics of the problem given

2.2. Mathematical Preliminaries 5

by the ordinary differential equation &, which in our case will be only a linear function of
the state and the control vector via:

i(t) = AW (t) + B u(t), (2.6)

where A%" € R% x R™ and B®" € R™ x R™ are called system matrices defining the
dynamics. In addition, equations 2.3 and 2.4 define conditions for the state vector at the
beginning and end. There are also possible constraints, called path constraints, given by
the general formulation in equation 2.5, which includes constraints on the state or on the
control, respectively, and mixed constraints on both throughout the defined time interval. It
is useful to emphasize the difference between the two vectors for the state and the control
variable. The state vector x(t) can be seen as the vector that is differentiated in the dynamics
of the system, while the control appears as algebraic values in the algebraic equation [5].

The cost function J consists of two main elements: The first part is the so called Mayer
term ¢(x(to), z(ts)), which is a function that only depends on the initial and the final state of
the system. The second function is the so called Lagrange term, being the integral of a func-
tional fy. Depending on which of these two parts is not vanishing, the optimization problem
is said to have Mayer or Lagrange form. If both are not vanishing, it is a so called Bonza-
problem. However, it can be shown that all three formulations are equivalent, meaning that
they can be transformed into each other [5].

2.2.2 Non-Linear Programming, Transcription and Discretization

An optimal OCP usually considers continuous state trajectories and piecewise continuous
control functions, and as such it is infinite dimensional. However, systems for the numerical
solution of such optimization problems require a finite set of variables and constraints. So
called direct and indirect approaches are used to overcome this problem and to solve the
OCP. The latter formulates the OCP as a boundary value problem and uses Pontryagin’s
minimum principle for checking the necessary optimal conditions. This approach is also
known as “optimize then discretize” [5]. In contrast, direct methods convert the OCP into
a non-linear program (NLP) of finite dimension in order to solve it numerically, which is
referred to as transcription. One focus of the work presented in this thesis is on the tran-
scription and solution of an OCP, and thus on direct methods which are discussed in further
detail.
The first step for transcribing an OCP into an NLP is to construct a stage vector y € R™=*"u
from the state and control variables:
_ (=(®)
y(t) = <u(t)> ‘ (2.7)

The additional crucial step is to discretize the trajectory with a grid of nodes. Note that
the points do not have to be equidistant, and that depending on the problem and applied
numerical method it might be even adventageous to adapt the separation between the grid
points. Within the framework presented in this report, the time interval [¢y,t¢] is divided
into N equidistant discrete time points ¢; € [to, t¢],7 € [0, N] with

to=to<t1 <...<ty1 <ty =ty (2.8)

and the equal separation
tr—t
Atzti_;_l—ti:At:u.

I (2.9)

6 Chapter 2. Background

From this discretization one obtains a stage variable y(¢;) = y; for each node i, called the
stage variable. The optimization vector y € RY'("=%7) containing the entire trajectory is
then composed of the discretized stage variable

Zo
uo
Yo -~
Al
y = . = ul
YN TN
UN

In this way, the OCP representing an infinite-dimensional optimization problem can be
transformed to a finite-dimensional optimization problem. The size of the finally resulting
NLP, as well as the computation time and the obtained solution accuracy, strongly depend
on the chosen number of nodes of the discretization. The choice of integration scheme for
the dynamics & has an additional impact on these parameters but also on the complexity
of the actual NLP. As an example, the Euler scheme or trapezoidal scheme are simple and
quick integration schemes, of which the latter will be used within this work:

x(tiv1) = x(t;) + dt - &(t;) Euler Scheme (2.10)
w(tip1) = a(ts) + % (#(t:) + i(tin)) Trapezoidal Scheme (2.11)

Applying the trapezoidal integration scheme together with the discretization described above
on the general optimal control problem 1 results in a discretized version of the optimal con-
trol problem:

Problem 2
AtN 1
min J = ¢(z(to), = +5 ti)) + fo(z(tivr), u(tiv1))] (2.12)
=1
st alti) = olt) + Cf((t:) + #(ti41)) @.13)
((1) =0 (2.14)
Yr(x(ty) =0 (2.15)
c(x(t) u(t;) <0, € [0, N] (2.16)

The actual transformation of this discretized OCP towards an NLP also depends on the final
chosen direct transcription with the three main methods single shooting, multiple shooting
and collocation:

Single Shooting

In the single shooting method, the trajectory is calculated by integrating the dynamics start-
ing from an initial state xo and using the control ; at each point as decision variables, while
it is also possible to include the initial or final state xy and x y in the set of decision variables
in the case of free dimensions in those states. The NLP is solved by iteratively finding the
trajectory which follows the path constraints on «; and which minimizes the so called single
shooting defect D [5], defined as the difference between the final state Z of the resulting

2.2. Mathematical Preliminaries 7

integrated trajectory to the desired final state z/y,

D=3y —a)y =0. (2.17)

Multiple Shooting

In multiple shooting, the control is discretized according to the chosen grid and the single
shooting method is applied to each individual segment of the grid, which means that the
trajectory is integrated for each segment according to the given dynamics. Therefore, the
dynamics is also discretized along the grid. For each segment ¢, the defect d between the final
state of the integrated trajectory &;,1 and the final state of the desired trajectory z;, ;, where
the latter is the initial state for the integration within the following segment, is minimized in
order to achieve continuity of the solution trajectory at the discretization nodes. Therefore,

the overall defect D

d1 571 — x’l)
do To — @t

D et . = . 2 == 0 (2‘18)
dN JNJN — QZ/N

is to be minimized [5].
Compared to the single shooting method, the computation time is higher since the dimen-
sion of the NLP is increased, but this results in an increased accuracy for the solution.

Collocation Method

In collocation methods, both the state and control variables are discretized, and the dis-
cretized dynamics is introduced as equality constraints. Therefore, it is not necessary to
actually integrate the trajectory in each segment. The discretization of both control and state
results in a large, but sparse NLP [5].

2.2.3 Convex Optimization Problems

Solution algorithms for NLP do not generally provide knowledge about the convergence
towards an optimal solution. However, for convex optimization problems, which are a sub-
class of NLP, solution algorithms provide convergence towards the global optimum within
polynomial time [7]. This makes convex optimization attractive for on-board optimization
applications.

An OCP is called a convex if the objective function J is a convex function of some vari-
able x which is defined over a convex set x C R", such that x € x. Note that linear
functions and sets are also included in convexity. As a subclass of convex optimization,
conic optimization problems and SOCP aim to optimize a convex objective function subject
to conic constraints. In the following, several basic definitions are presented to fully ex-
plain the structure of SOCP, which are solved by ECOS, as well as the connection between
several equivalent formulations. This mathematical preparation is a selection of the basic
definitions from the lectures of Steven Boyd on convex optimization [7].

8 Chapter 2. Background

Conic Programming and Second Order Cone Problems

A first important step towards a mathematical framework for SOCP formulations is to un-
derstand the definition of a convex set and a cone, which is based on several preceding
mathematical definitions.

Definition 1 A line passing through two points x1 # xa|x1,22 € R™ is given by the points
y € R with
y=10x1+ (1 —0)xs, 6 €R. (2.19)

The corresponding closed line segment are the points defined by 6 € [0, 1].
In close relation to lines, an affine set can be defined as follows:

Definition 2 A set A C R" is an affine set if the line through any two distinct points x1,z2 € A
liesin A, i. e. if for § € R
1 + (1 — 0)ay € A (2.20)

This definition can be generalized by introducing affine combinations of points 1, ..., zy,
for which
Orx1+ ...+ Oz with0y +...+ 60, =1 (2.21)

An affine set then contains every affine combination of its points, meaning that if A is an
affine set, z1, ...z € Aand 01 + ... + 0, = 1, then the point 6121 + ... + 0z, also lies in A. In
addition, affine sets are always convex according to the following definition:

Definition 3 A set C € R" is a convex set, if the line segment between any two points x1,z2 € C
lies completely in C, i.e. if for 6 € [0, 1]

Ox1+ (1 —0)ze € C. (2.22)

A simplified geometric interpretation is that a set is convex if any point of the set can be
connected to another point of the set by a straight line without leaving the set, such that no
point of the connection line is outside of the set. Affine sets are always convex, since they
always contain the entire line between any two distinct points in the set.

An illustrative example for this geometric interpretation of convex sets is shown in figure
2.2, which will play an important role in the convexification of the powered descent landing
problem presented later on. The upper part of the image shows an annulus in grey, which is
a non-convex set since connecting two points of the annulus with a straight line may result
in a line that partially leaves the annulus and enters the central excluded circle. Therefore,
not all connection lines completely lie within the set defined by the annulus. The lower part
of the image shows a convex set where any points can be connected without leaving the set.

In analogy to affine combinations, one can define convex combinations as a point of the
form

Orx1+ ...+ Oz with0y +...+60,=1and 0, > 0, =1, ..., k. (2.23)

Since all affine sets are convex, affine transformations and especially linear transformations
preserve convexity:

2.2. Mathematical Preliminaries 9

NON_CONVEX

TcZ

CONVEX

N
vV

T
cl

FIGURE 2.2: Example of non-convex (grey annulus in the top image) and con-

vex sets (bottom) [1]

Lemma 1 Suppose that the set C C R"™ is convex and f : R™ — R™ an affine function of form
[=Azxz +bwith A€ R™ x R" and b € R™. The image

f(€) ={f(z)|lz € C} (2.24)
is then convex.

These basic definitions on convex sets are the fundamental base for defining cones and sec-
ond order cones.

Definition 4 A set C is a cone if and only if for any x € C and 6 > 0 the point y = 0z lies in C
which can be extended to the definition of a convex cone:
Definition 5 A set C is a convex cone if for any x1,x2 € C and 01,02 > 0, the point

0121 + G929 (2.25)
lies in C. Thus a set is a convex cone if it is convex and a cone.

Typical and very important examples of convex cones related to this thesis are the norm cone
and the second order cone. The norm cone associated with any norm ||-|| on R" is given by
the set

C = {(z,t) CR"™||z|| < ¢}, (2.26)

while the norm cone corresponding to the Eucledian norm ||-||2 is called second order cone
with
C = {(z,t) e R"M|||z|, < t} (2.27)

An illustration of this cone, also refered to as Lorentz cone, is given in figure 2.3 . There exist
different equivalent formulations of second order cones, of which the most important one
for this thesis is

laz +b]| < CTz +d, (2.28)

10 Chapter 2. Background

T2 _17 -

FIGURE 2.3: Example of a second order cone (Lorentzcone) [7]

with a € RF*" pand d € R¥ and C € R™**. This formulation of a second order cone is
a typical way of formulating second order cone constraints in an optimal control problem,
and it is equivalent to the general formulation given in equation 2.27, since both sides of
equation 2.28 are an affine image of z to variables u = ax + b, u € Rfand t = CTx + d,
t € R building up the second order cone K = {(u,t) € R¥*! | ||lu|| < t}. Thus, equation 2.28
implies that the vector (az + b, CTx + d) lies within the second order cone set K.

To finally obtain a formulation of second order cone problems, a special type of inequalities
has to be introduced, called general inequalities. These inequalities originate from so called
proper cones:

Definition 6 A cone IC C R™ is called a proper cone if it satisfies the following properties:
o K is convex
o K is closed
o K is solid, meaning that it has non-empty interior
o KCis pointed, meaning that if x € K and —x € K, then = = 0.

For further explanations of the above properties the reader is refered to [7]. General inequal-
ities originate from such proper cones as follows:

Definition 7 Let C be a proper cone. There is a partial ordering on R", called general inequality,
associated to IC with
r3kyey—xz ek (2.29)

One example for such a proper cone with a generalized inequality is the non-negative or-
thant £ = R"} . In that case, the general inequality < is equivalent to the componentwise
ineqality of two vectors, meaning that for z,y € R’} the general inequality =+ < y is equiv-
alent to z; < y;,¢ = 1,...,n. Another important example is the positive semidefinite cone
K = 8%, which is also a proper cone. The corresponding generalized inequality X <y Y
implies that the matrix ¥ — X is positive semidefinite. In the following, the subscript
for the generalized inequality is ommitted, since a generalized inequality will always be de-
fined over some conic set.

It will be useful to derive an equivalent version of the second order cone formulation in
equaton 2.27 making use of generalized inequalities by applying the definition given in
equation 2.29. A second order cone given as ||ay + b|| < CTy + d implies that the vector

2.2. Mathematical Preliminaries 11

(ay + b, CTy + d) lies in the cone K. Therefore, one can use definition 7 to set up the follow-
ing chain:

(az+b,CTy+d) e K (2.30)
VAN (ay +b,CTy+d) —0€e K (2.31)
& (ay +b,CTy+d) =0 (2.32)
& (—ay —b,—CTy —d) <0. (2.33)

A reformulation using matrix notation results in:

(—ay —b,—-CTy—d) <0 (2.34)

& <__CS‘T> y— (Z) <0 (2.35)
& <__C?T> y < (Z) . (2.36)

> and vector h = (b

By defining the matrix G = (J

__CC,LT > one obtains the reformulated
second order cone as
Gy 2k h (2.37)

The transformation chain has been presented here since it will be of extraordinary impor-
tance for the transcription method described in this thesis. Finally, the SOCP can be written
as follows [7]:

Problem 3
min ¢y (2.38)
st. Ay =B (2.39)
Gy+s=h (2.40)

In this problem, the cost function is a linear function of the optimization variable y, con-
strained by the equalities Ay = B and the second order cone constraint Gy < h. Note that
the matrix A and ¢” appearing in this problem are different from the matrices a and C” used
in the second order cone equation 2.28. The variable s appearing is introduced as possible
slack variables, that might be added to the problem and especially in the formulation of the
inequality constraints. Throughout this work, we will not make use of such numerical slack
variables and they should not be confused with slack variables introduced later on in the
general formulation of the powered descent landing problem. In the following, this formu-
lation of SOCP will be referred to as ECOS-feasible formulation [9], since ECOS has been
created to solve optimization problems with the structure given in problem 3.

Linear inequality constraints

Several constraints, appearing especially in the powered descent landing problem, are in-
equalities which are linear with respect to components of the optimization variable y, and
not second order cone constraints. Introducing these constraints in simulations with ECOS
is straightforward. If the constraint is linear, the generalized inequality in problem 3 be-
comes the usual inequality on R, such that G;y = h;, where the index [denotes that only a
one-line element of the matrices G, and h is considered for the linear inequality.

12 Chapter 2. Background

Quadratic Constraints in SOCP
If the optimization problem contains quadratic constraints that can be written in the form of
y ' Hy+p'y+q=y " FI'Fy+p'y+q<0 (2.41)

withy € R, H € R* x R?, Fand FT € R" xR", p” € 1 x R® and ¢ € R, then this constraint
can be rewritten as an equivalent second order cone constraint with [7]:

14+pTy+q
2

1—ply —
<P Y74 (2.42)
Fy 2

2

The connection between the quadratic constraint and the formulation as a second order cone
constraint requires that the matrix H can be split such that H = FT F. This decomposition is
also called Cholesky decomposition and is only possible for positive semidefinite matrices.
Hence, H has to be positive semidefinite if the quadratic constraint should be formulated
as a second order cone problem. Note that the decomposed matrix F' typically is a lower or
upper triangular matrix. A short proof for the connection between equation 2.41 and 2.42
is given in the appendix A.1. The formulation of the quadratic constraint as a second order
cone constraint is even more clear and applicable for ECOS if it is rewritten in the form of
equation 2.28:

1+bi;x+c 1—bLr —¢
Fx 9 - 2
1,7 1+c
sbTw + e Lp 1-c
2 2 <—-Z 2.43
Fz+0 |, TR (249)
17T 14c
=b =< 1 1—-c
2 2 < _ T
<F):J:—|—<O>2 2b:lc—l- 2
Usin
° 57 L r_ 1g 1—gq
_ [S =2 2.44
o= (%) (3) o=yt a3 ew

results in the desired SOCP form of equation 2.28. Therefore this method describes a strategy
to formulate quadratic constraints in an ECOS-feasible way.

2.2.4 Interior Point Methods and SOCP with ECOS

ECOS solves conic optimization problems in the general form of problem 3. To do so, it
applies so called interior point methods, which are a powerful tool in solving constrained
optimization problems. A complete theory of interior point methods and especially nu-
merical issues related to that method is beyond the scope of this project work, since ECOS is
mainly used as a black box assuming that it offers enough information to determine whether
a solution provided by ECOS is optimal or not. However, a brief overview of interior point
methods and the usage of ECOS is provided in the following.

Interior point methods are a widely used approach in order to solve different types of op-
timization problems. As such, ECOS uses so called primal-dual interior point methods for
solving conic problems [9]. The general concept is to replace the constrainted optimization
problem 3 by a series of smooth convex unconstrained problems, which can be solved, step-
wise e.g. by Newton’s method. In order to transform the contrained problem into one which
is unconsrainted, a so called barrier function is employed in the cost function. The approach

2.2. Mathematical Preliminaries 13

results in a sequence of solutions
V= P L oF AR R =0,1,2. .. (2.45)

where y* = (:ck, yk, sk 2k) [9]. the variables = and y are the so called dual variables resulting
from the dual problem formulation of problem 3 (see [9] and [7]) and s are possible slack
variables from problem 3. The step length o* is found via line search algorithms and Ax*
is a search direction found by solving linear systems of equations. It can be shown that the
solution x* at the iteration steps k follow the so called central path which ends in the final
solution set.

15

3 Powered Descent Landing as a SOCP

This work is based on the so called lossless convexification method for the powered descent
landing problem presented by Acikmese and Ploen [1]. In this framework, the OCP describ-
ing the powered descent landing of a spacecraft, for example on Mars, is reformulated as a
SOCP. The important steps towards a convex formulation of the fuel-optimal landing prob-
lem presented in [1] are repeated in the following in order to understand the underlying
optimization problem as a whole .

3.1 Problem Formulation

The general minimum-fuel OCP describing a spacecraft landing on a planet in the given
time interval t € [0, 7] aims to find the time of flight ¢; and thrust profile 7'(¢) for which the
consumed fuel is minimized or equivalently for which the total mass of the spacecraft at the
end of the landing is maximized. It can be formulated as in problem 4 [1].

Problem 4
ty

max m(tf) = min T.(t)| dt 3.1
(i) = min [T @)

. Te(t) .
b = = —a|T. 2
st F=g4 o0 n(t) = —a Lol 62
0 < p1 < || Te(t)]| < p2 ri(t) >0 (3.3)
lajz(t) + bsll < CT +d; (3.4)
m(0) = myer 7(0) =10 7(0) =79 r(ty) =7(ty) =0 (3.5)

The position of the spacecraft at a certain time ¢ is defined by the position vector r(¢) within
the surface fixed coordinate system illustrated in figure 3.1. The corresponding velocities
and accelerations are denoted as 7 and . Together with the mass m(t) of the spacecraft at a

. /o m(t)

A /
// /
/

TARGET

FIGURE 3.1: Surface fixed coodinate frame [1]

given time the aforementioned variables build up the actual state vector z € R” of the OCP
with

16 Chapter 3. Powered Descent Landing as a SOCP

al(t) = [r(t) ra(t) ra(t) i1(t) 7at) 73(t) m(t)]. (3.6)

The control variable u(t) € R3 of this problem is the net thrust vector
u(t) = [Tea(t) Tea(t) Tes(t)]. The net thrust vector is defined via the thrust level T of the
n identical thrusters as

T. = (nT' cos (¢)) e, (3.7)

where e is the corresponding direction of the net thrust as sketched in figure 3.2, and ¢ the
cant angle. It is therefore assumed that the n thrusters are arranged symmetrically around
the spacecraft with the same cant angle. The dynamics prodiving changes of the state vector

Net thrust direction

FIGURE 3.2: Geometry of thrusters [1]

x are mainly described through the acceleration of the spacecraft. This acceleration can be
written as the sum of the gravitational acceleration g and the acceleration resulting from the
net thrust, where the net thrust has to be divided by the spacecraft’s mass in order to obtain
the corresponding acceleration:

Te(t)
m(t)’

The mass loss or fuel consumption related to the thrust is also implemented in the dynamics
via

7 =g+ (3.8)

n(t) = —a | Te@)] (3.9)

where « is the fuel consumption rate that is calculated from the specific impulse I, and the
gravitational acceleration on Earth g. via

1
Ispge COS(¢) '
The additional constraints introduced in the OCP imply that each of the thrusters has an

upper and lower thrust boundary, and thus the thrust level T'(¢) is bounded by the lower
and upper boundary p; and p

(3.10)

o =

0<Th ST(t) <1T5.

The net thrust is therefore also bounded by the constants p; = n7} cos(¢) and pa = nT5 cos(¢)
resulting in the actual control constraint [1]

p1 < | Te@)] < p2- (3.11)

Another constraint in this problem is that the spacecraft is supposed to stay above the sur-
face throughout the whole flight time, and therefore the constraint r; > 0 is introduced. The
residual constant parameters in the OCP are the initial and final condition for the state with
muwet being the spacecraft’s mass at the beginning of the descent including the entire fuel, as
well as the initial and final values for the position and velocity with 79 and 7.

3.1. Problem Formulation 17

The powered descent landing is thus completely formulated as an OCP, that aims to min-
imize the used fuel or equivalently maximize the total mass of the spacecraft. However, it
contains non-convex elements and thus cannot be solved by means of convex optimization.
As will be explained in the following section, the non-convex elements are the dynamics,
i.e. the formulation of the acceleration, and the control constraint on the thrust vector. These
non-convex elements are eliminated step-by step resulting in several adapted OCPs, which
finally lead to the SOCP formulation for the powered descent landing.

3.1.1 Problem Formulation 2 - Convexification of Thrust Magnitude

A first step in the convexification of the OCP 4 is to convexify the constraint on the net
thrust vector 7T,. Figure 2.2 illustrates this constraint with an example 2-D control space in
the upper part of the image. Bounding the thrust vector by a lower and an upper boundary
results in an annulus for the 2-D case, which is a non-convex set according to the definition
3. In order to convexify the control constraint, a slack variable I'(¢) can be introduced to
relax this constraint via two new constraints: ||7.(¢)|| < I'(t) and p; < T'(t) < pa. Because of
this relaxation the thrust vector is constrained to lie within a cone as illustrated in the lower
part of figure 2.2. Implementing these two new constraints and replacing the net thrust in
the cost function by the slack variable I'(¢) results in the following relaxed OCP [1]:

Problem 5
tr

max m(tr) = min T.(t)|| dt 3.12
e mit) = i [T) (3.12)

T.(t)
st. =g+ (t) m(t) = —a||Te(t)|] (3.13)

m(t)

[T < T'(t) (3.14)
0<p1 <T@ < p2 ri(t) >0 (3.15)
laja(t) + bl < CF +d; (3.16)
m(0) = myer 7(0) =19 7(0) =79 r(ty) =7(ty) =0 (3.17)

If the optimal solution for the problem 5 is given with (¢}, 77 (-),I(+)), then (¢}, 77()) is
also an optimal solution for the original problem 4 as shown in [1]. Another outcome of
the related proof is that the optimal solution yields ||T7(¢)|| = p1 or | T} (t)|| = pe for all

te {t, t}] This implies that for the optimal set (¢}, 77 (-),I'*(-)) the thrust is expected to be

at maximum or minimum level throughout the whole process, also refered to as the "Bang-
Bang" solution in optimal control. However, this only holds if the time of flight ¢, is an
optimization parameter and therefore optimized as well. If ¢/ is fixed and the problem only
aims at finding the thrust profile 7'(¢) that minimizes the used fuel for the given flight time,
the optimal solution does not necessarily have such a Bang-Bang structure.

Even though a relaxation and convexification of the thrust-magnitude constraint has been
introduced in problem 5, one cannot use means of convex optimization for solving problem
5, since the dynamics is still non-convex. In the calculation of the acceleration 7, the net
thrust is divided by the mass, and hence a division by one of the state elements occurs
which means a high non-convex relation. To overcome this and finally reach a completely
convex formulation of problem 5, variable substitutions have to be introduced as described
in the following.

18 Chapter 3. Powered Descent Landing as a SOCP

3.1.2 Problem Formulation 3 - Dynamics Linearization

As the second main step in obtaining an entirely convex formulation of the OCP for the pow-

ered descent landing, one can eliminate the non-linearities in the dynamics by a sequence of

variable substitions. The first set of substitutions are [1]
')

o(t) = (@) and u(t) =

(3.18)

introducing the new control variables 0 € R and u € R3. Following this substitution, the
dynamics 7(t) and 7(t) are transformed into

P(t) = u(t) + g, and —< = —ao. (3.19)

The resulting dynamics for the mass is a differential equation with the solution

m(t) = mo exp [—a /O tf U(T)df] (3.20)

Since the aim of the optimization problem is to maximize the spacecraft’s mass at the end
of the considered time interval, or equivalently to minimize the total fuel consumption, one
can replace the previous cost function given in 3.20 by

min /Otf o(r)dr. (3.21)

Minimizing this integral maximizes m(t) from equation 3.20, since for o > 0 the function
3.20 is a monotonically decreasing function of the integral in 3.21.

Also the constraints have to be rewritten with the new control variables according to the
substitution as

T <T(t) & [lu®)] < ot) (3.22)
M <TH) < % <o(t) < % (3.23)

The second constraint has become bilinear, since m(t) and o(t) are both variables, and mul-
tiplying both sides of the new constraint 3.23 with m(t) results in the product o(t) - m(t) to
appear within the constraint. In addition, once again a value is divided by the mass m(t),
and hence divided by a component of the state variable. Therefore, the applied substitution
linearizes the dynamics, but results in non-convex constraints.

Another substitution is required to eliminate the bilinearity and to finally convexity the en-
tire problem. The useful substitution [1]

z(t) =In(m(t)) (3.24)

transforms the dynamics of the mass consumption into

— =—ao & z=—ao(t). (3.25)

3.1. Problem Formulation 19

The new slack varible o(t) therefore can be understood as a mass flow. Also the inequality
constraint is changed to

mp(lt) <o(t) < % pEN ple_z(t) <o(t) < pge_z(t). (3.26)
The left part of the new inequality constraint on o(¢) is a convex feasible region, while the
right one is not. Figures 3.3 and 3.4 illustrate this geometrically. Independent of the explicit
structure of z(t), the inequality p1e=*(*) < o(t) describes a convex feasible set for o (t), which
is marked in blue in the left plot. Rememebering the geometrically interpretation of convex
sets in 2.2.3, one can connect any point of the blue region with any other point within the
blue set by a direct line. This is not possible for the blue region in the right figure, showing
the non-convex set for o(t) defined by the inequality o(t) < pae *®). Furthermore, even

Nonconvex Set in Blue by o(t)< pzexp[-z[t]]=y[z(t)]

Cconvex Set in Blue by y(z(t)=p,exp(-z(t)) <o(t) 1
1

0.9
0.9

0.8
0.8

0.7
0.7

0.6
0.6

0.5

Wzt i,

0.5

Yz) In,

0.4
0.4

0.3
0.3

02
0.2

01

01

0

0 05 1 15 2 25 3 35 4 45 5
0 05 1 15 2 25 3 35 4 45 5 z(1)

z(t)

0

FIGURE 3.4: Nonconvex re-
gion defined by left con-
straint

FIGURE 3.3: Convex region
defined by left constraint

for the convex part in equation 3.26 the substituion given by equation 3.24 introduces an
exponential function with respect to the variable z(¢), which is not applicable for ECOS
using second order cone or linear constraints. To overcome this, one can use the Taylor
series expansion of e~* to write the constraint in an appropriate way [1]. The left part of
equation 3.26 can then be written as

2

pre |1 —(z—z) + (2_220) <o, (3.27)
using the first three terms of the Taylor expansion and zp = z(¢ = 0). This is a quadratic
inequality constraint approximating the exponential inequality constraint, and can poten-
tially be written as an SOCP as explained in section 2.2.3. The right part of the inequality
constraint defining the non-convex inequality can be linearized, and thus convexified, by
using only the first two terms of the Taylor expansion:

o< pee [l —(z—2)]. (3.28)
If one defines

p = pre 7, p = pae” (3.29)

and
20(t) = In(myer — apat), (3.30)

20 Chapter 3. Powered Descent Landing as a SOCP

such that zy(t) is a lower bound on z(¢) at time ¢, the inequality constraint p; < I'(t) < ps of
problem 5 is finally converted into

(z — 20)2

pre 11— (z = 20) + ——

<o < pre [l —(z—2)]. (3.31)

In [1] an estimation of the errors introduced by the Taylor series expansion is also given. It
is shown that, even for the linear approximation, the errors are below two percent for an
example flight time of 70 seconds.

In addition one has to consider so far unmentioned constraints as lower and upper bound-
aries for the variable z(t), which represents the mass of the spacecraft. The lower boundary
is defined by the possibility that the thrusters run with maximum thrust in the interval [to, t],
and therefore have a maximum of mass consumption. The upper boundary is the opposite
case of minimum thrust in the given time interval, such that the variable z(t), which has
been introduced to substitute the actual mass m(t), is constrained with

In (mwet - aPZt) < Z(t) < In (mwet - aplt) : (332)

Moreover, we introduce a constraint on the pointing of the thrust vector at the final landing
time ¢y, used in all considered landing problems in the following. This constraint sets the
thrust to point straight downwards at the very end of the maneuver, which can be seen as a
stabilization of the vehicle. Therefore, the components us(ts) and u3(ts) of the control vari-
ables have to vanish, while the component pointing towards the surface has to be u3(t) < 0.
In total, one arrives at the entirely convexified version of problem 5 with quadratic or linear
constraints as given in problem 6 [1]. One might be interested in adding further constraints
on the state or control variables, which is taken into account by the general formulation
llajz(t) + bj]] < CjT + d; of second order cone constraints, where the index j denotes the
different constraints.

Problem 6
. tf
51%1% /0 o(t)dt (3.33)
st. F=u(t)+g, 2(t)=—ao(t) (3.34)
[u(®)]] < o(t) (3.35)
p [1—(2—20)+(220) <o <pg(l— (2= 2)] (3.36)
In (Mmyer — apat) < z(t) < In(Mmyer — apit) (3.37)
lajz(t) + bj| < CF +d; (3.38)
2(0) = In(muyet) 7T(0) =19 7(0) =70 r(ty) =7(tf) =0 (3.39)
us(ty) = us(ty) =0 wi(ty) <=0 (3.40)

Having arrived at the final SOCP formulation of the powered descent landing presented
by [1], one has to find a way to formulate this into an ECOS-feasible way, i.e. one has to
find an applicable discretization and transcription. Before these first contributions of this
thesis are presented, some example second order cone constraints are considered that can
be introduced into problem 6 via the general formulation of second order cones.

3.1. Problem Formulation 21

3.1.3 Example Constraints

The most important examples of these constraints are related to the pointing direction of the
thrust vector and the glide slope of the spacecraft.

Thrust Pointing Constraint

It might be necessary that the thrust of the spacecraft has to point towards a certain direction
during the descent phase and not only at the very end. Also the thrust pointing is almost
always limited by the construction and the thruster arrangement itself. To take into account
these limitations, one can introduce a thrust pointing constraint into problem 6. The under-
lying considerations have been performed in [2] as an expansion of the convexified powered
descent landing problem from [1]. In general, the thrust pointing constraint results from ba-
sic trigonometric considerations to be [2]

A

n-T

m > c08 (Omaz) s (3.41)

where the vector 7 is a unit vector of the reference direction, 7,(¢) the net thrust vector and
Omaz the maximum allowed angular separation between the net thrust vector and the refer-
ence direction. A visualization of this constraint is given in figure 3.5 in a planar represen-
tation. In the left part of the image, the pure bounds on the thrust magnitude are presented
without any restriction of the pointing direction. In the right image, the pointing direction
is limited within the blue area. The same holds for the middle part of the image, but it il-
lustrates that the thrust pointing constraint is only convex for 6,,,, € [0,7]. Considering

¥, Pointing & Pointing
—":Ii /Envelope TC (t) ______ Envelope
M Intersecti 7S~

T, T.()

1
p2 '02 Intersection p2
(a) (W) ©

FIGURE 3.5: Graphical illustration of control constraint in planar view [2].

the relaxation of the thrust magnitude via a slack variable as shown in problem 5 and the
variable substitutions introduced in 3.18, equation 3.41 can be rewritten as

< cos (Omaz) (3.42)
< 0 <= uy(t) — cos (Omaz) o(t) (3.43)

Note, that it has been assumed that the thrust points downwards within the defined refer-
ence frame and thus 7 - u(t) = u;.

Glide slope constraint

Another typical constraint on the trajectory of the powered descent landing phase is the so
called glide slope constraint. The glide slope angle v shown in figure 3.6 can be defined
mathematically by the angle between the projection of the spacecraft’s position on the sur-
face and the straight line between the spacecraft’s position 7(t) = [r1(t) r2(t) r3(t)] and

22 Chapter 3. Powered Descent Landing as a SOCP

final position as in equation 3.44 [1].

v(t) = arctan (ri(t) —r(ty))
\/(7“2(t) — rz(tf))2 + (r3(t) — Tg(tf))2

(3.44)

A constraint on this glide slope is that it should not be lower than a certain threshold 7,4z
Therefore, it can be expressed as a second ordercone constraint through the following for-

Initial
Velocity
Initial Position 7 0
Glideslope .
Constraint 'I(?rgjtle?t%lry

\
Vs
X 7 g
q Landing Target
e} Aes Origin
€9)Y

FIGURE 3.6: Definition of glide slope angle constraint on ~y [6]

mulations:

& arctan (2) > Ymaz
Vat) = raltp)? + (13(0) — rs(tp)
o\ (ra(t) =72 (£))” + (ra() — 73 (7)) <

tan (’Ymaac)

- (7"2 (t) =2 (tf)> <N (t) — 71 (ty)

tan ('Vmax)

1 (t) — 71 (L)

(3.45)

(3.46)

(3.47)

(3.48)

23

4 Transcription of the Convexified Powered
Descent Landing Problem

The main contribution of this thesis is the development of a suitable discretization and tran-
scription of problem 6, such that it is transformed into the form of problem 3 and can be
passed to ECOS in order to obtain the solution. This chapter presents the developed method
before an example simulation of Mars pinpoint landing is set and compared to [1].

4.1 Discretization

The discretization of problem 6 requires a decision on the structure of the optimization vari-
able y. According to the description in chapter 2.2.2, we decide on an optimization variable
y(t) at each time ¢ consisting of the state vector x(t) and the control variables u(t) and o(t),
where the latter combines two roles as a control variable and a slack variable for the thrust
magnitude. Thus, the optimization variable at time ¢ is y(t) € R'", y7(t) = [z(t) u(t) o(t)].
Second, the discretization of the problem is chosen as a grid of N equally distributed points
ti, i € [0, N]in the time intervall t; € [ty = 0,] separated by At = t]{,:tlo . We assume that we
will only handle integer flight times ¢ ;, which on the one hand limits the accuracy and on the
other preserves the second order cone structure of the convexified powered descent landing
OCP. The optimization variable y(t) is therefore discretized into stage variables y; = y(t;)
and the complete optimization variable is given by

Y1

Y2 _
y=|"" | yerRw="1 (4.1)

YN

The subscript i at optimization, state or control variables will always refer to the i-th node in
the following if not stated otherwise. Also, individual components of vectors will be placed
as an index before the index denoting number of nodes. Due to the discretization, the cost
function in problem 6 has to be approximated by the sum

ty N
min/ o(t)dt ~ Z w;0;, 4.2)

to i=0

where w; are possible weights for the slack variables at node i. Also the dynamic equations
need to be discretized according to the chosen scheme and we assume that the dynamics &
yields a linear expression. For the specific dynamics of problem 6 and taking into account the
structure of the state vector defined in equation 3.6, the discretization allows the dynamics
to be replaced by the relation

0001000000 O
0000100000 O
0000010000 O
0
0
0

o O o

=A%y, + B;= (0000000100
0000000010
0000000001
0000000000 —a

~

vi+ | At-g|. (4.3)

o O O

24 Chapter 4. Transcription of the Convexitied Powered Descent Landing Problem

It is useful to remember at this point that several elements of the considered dynamics de-
pend on the control variables u and o, like the change of mass represented by 2. Because of
that, the dynamic matrix Adyn ¢ Rnax(netnutne) glgo takes into account the control variables
at the nodes i and 7 + 1, where n,, and n, are the corresponding dimensions of the control
variable u; and ;. We therefore arrive at a discretized version of the SOCP for the powered
descent landing with

Problem 7
N
min Zwiffi (4.4)
Rk
s.t. iy = AWy, (4.5)
[uill < o (4.6)
(2 — 204)° .
pri 1= (2 = 200) + 5| S 0i < pai[l = (2(0) = 204)] (4.7)
In (Mmyet — apat;) < 2(i1) < In (Myer — aprti) (4.8)
lajy + bl < CJ +d; (4.9)
Mo = Mapet rg = 7"6, = 7"6, rN = 1'"§V =0 (4.10)
u27N = U3z,N = 0 uLN S 0. (4.11)

Note that in this problem the input of the initial and final conditions for the position and
velocity are denoted with a’, to avoid confusion with the notation in the discretized case.
In addition, the variables 2 ; and the related 1 ; and pio; are the discretized versions of the
original time dependent variables z(¢), i1 (t) and p2(t) defined in equations 3.30 and 3.29.
The discretized zj; can be computed for each node i via

20,i = In (Myer — apa(to +1i- At)). (4.12)

4.2 Transcription

Having arrived at a discretized version of the powered descent landing OCP, the task is
now to convert problem 7 into the ECOS-feasible form given in problem 3, meaning that the
corresponding matrices A,B,cT G and h have to be created covering the entire problem 7.

421 Transforming the Cost-Function

The cost function of problem 7 is implemented via the matrix ¢?. Since the cost function
in problem 7 is just a sum of weighted components of the optimization variable, i.e. of the
slack variable o; at each node i, matrix ¢!’ € R*™ can be filled with the weights such that
the non-zero elements of ¢! select the right elements of y via the product ¢! - y:

N
> wioi=(0000000000w 0--0wy) y=cl -y (4.13)
=0

In principle, all weights are equal, because all o; appear in the dynamics. However, the first
and the last slack variable o; and o are associated with the weights of wy = wy = %, since
we will apply the trapezoidal scheme for the integration of the dynamics in which the inital

4.2. Transcription 25

and final point are only incorporated with a prefactor 3.

4.2.2 Transforming the Equality Constraints

Having transformed the cost-function, all equalities appearing in problem 7 including the
dynamics have to be formulated as linear equations of the optimization variable via the ma-
trices A and B to yield the equality in problem 3. The matrices A € R"*"™ and B € R",
where n. is the number of equality equations, can be separated into the submatrices A,,
and B,,, m € [1,2, 3], since there are three different groups of equalities that have to be im-
plemented. These groups of equalities are namely the initial conditions on the states, the
dynamics and the final conditions on the states and partly on the control. Each of these
groups require a specific procedure in order to be implemented correctly in the matrix equa-
tions. The matrices A,, and B,, obtained for each group can then be stacked resulting in the
complete matrices A and B.

As an example, the first 7 lines of A and B associated to the submatrices A; and B; can be
used to implement the initial conditions on the states with

1000000...0 o
0100000...0 rh,
0010000...0 "o
Ay=10001000...0[y= o , (4.14)
0000100...0 7
0000010...0 o
0000001...0 ZO—ln(mwet)

illustrating that the matrix A mainly acts as a selecting matrix to choose the required ele-
ments of the optimization variable y.

In order to implement the dynamics within this framework, a general formulation for in-
tegrating states with the trapezoidal scheme has to be considered. The integration of the
state x; at the discretization node i via the trapezoidal scheme results in the state x;; of the
following node with

At At
Tirl = T+ - (@3 + &i41) = 2 + > (Adyn cyi + A% yz’+1> (4.15)
At At
STy — S AWy — ATy =0, (4.16)

Considering the k-th component of the state vector z; and z;1, equation 4.16 can be written

as
7

At dyn
Thitl — Z Wi T ;Ak,l “Yi+1 = 0. (4.17)
Since the state components z;, ; are also included in the stage variable y; and the trapezoidal
scheme makes use of the states and the control of the following stage y;11, we can consider

the helpmatrix H

- (1+dt-A§l%’1") —dt - ATY' —dt- AT —dt- AL 100 .0
dyn dyn d dyn
b —dt- Ay - (1 +dt-A2}f;) —dt-AY% . —=dt-AT01 0 ... 0 @18)
: . : 0
—dt - Ay - (1 +dt~A§?7"> coo=dt - AT 0 1

26 Chapter 4. Transcription of the Convexitied Powered Descent Landing Problem

which allows equation 4.17 to be represented by the relation

The vector B; had been defined in equation 4.3 and accounts for the influence of gravity
in the change of the first velocity component. In order to provide the dynamics at each
discretization node, the matrix Ay can be filled by placing H such that the right elements
of the stage variables y; and y;;1 are selected. For the first node, the first 22 columns of A,
are filled out with elements of H, which results in the selection of the required elements
from the stage vector yo and y;. For the second node, matrix H is included in A; starting at
column 12, since the goal is now to select the elements of the stage variables y; and y; etc.
The resulting shape of the matrix A, is sketched in the following equation:

000000000000 ...

H 000000000000 ...
00000000000 0...
A2 =1600000000000 H 0... (4.20)

0ooooo000000000000COOOO
o0ooooooo0oo00000000000O0OO

Note, that the matrix H actually consists of seven rows, which are compressed to two rows
in equation 4.20 for illustrative reasons. The matrix By is produced by stacking the vectors
B; of each node on top of each other.

As a third and final element of the equality constraints, the final conditions are incorporated
in analogy to the initial conditions as described above, resulting in the submatrices A3 and
Bs. The overall procedure finally results in the equality

Ay B,
Ay = A2 Yy = B2 = B, (421)
As Bs

covering any relevant equality in problem 7. Since the dimension of each state vector is
7, and problem 7 contains 15 initial and final conditions in total, there are £ = N - 7 + 15
inequalities to be covered such that A € RF*"™ and B € RE.

4.2.3 Transforming the Inequality Constraints

All inequalities appearing in problem 7 have to be represented by the matrix G and vector h
from the generalized inequality in problem 3. These inequality constraints can be classified
as the linear inequalities and the second order cone inequalities, where the latter includes
quadratic constraints in this project as shown in section 2.2.3. ECOS expects that the linear
equalities are placed at the beginning of G and h, hence they are incorporated first.

For all linear inequalities that should be implemented into the matrices G' and h, one needs
to find matrices C7 € R and the scalar b, such that CT - y = b represents the given
constraint. Then CT and b can be stacked for each of the equality constraints to build up G
and h consecutively.

The main linear inequalities in problem 3 are the upper boundary on the mass flow o; and
the two boundaries for the mass variable z; at each node respectively.

The upper boundary on o; from equation 4.8 can be reformulated as

0i + p2i2i < p2 (1 — ZO,i) (4.22)

4.2. Transcription 27

Therefore, a matrix C and scalar b; can be formulated for each node accordingly to repre-
sent this inequality. As an example, the bound on the slack variable of the first node oy is
introduced via

Ci=(000000p;000100-...0) (4.23)
bo = 2,0 (1 — 20,0) (4.24)

Defining C and b; for each node by placing the non-zero elements in C and recalculating
p2,; according to the considered node results in a set of matrices C} and scalars b;. Stacking
all C! fills up the first rows of the matrix G, while stacking all b; represents the first compo-
nents of h.

The other main linear inequalities are the upper and lower boundary on the mass given by

In (Myet — ap2 (to + - At)) < z; < In (Myer — apr (to + 1 - At))

and can be incorporated in an analogous manner. For the upper boundary, where the task of
CT is to select the mass variable z; for the corresponding node i, b; contains the correspond-
ing right hand side of the inequality. As an example, the matrices C{ and by related to the
first node are given by

Ci=(0000001000000...0) (4.25)
Co = In (Muyer — apy (to +1i - At)) . (4.26)

Again, this set up has to be repeated for each node and the resulting matrices can be stacked
and added to the previous constraint, filling up the rows in G and h consecutively. The
lower boundary on z; is implemented in absolute analogy to the upper boundary with the
only difference of switched signs in C! and b;, as well as the changed constant ps in the
calculation of b;.

Implementing the linear constraints with this method and consecutively building up the
matrices G and h also has an important advantage regarding adaptivity of the algorithm. If
one wants to add a new linear inequality constraints, the algorithm only requires to create
the matrices C” and b representing the constraint and to stack those below the already im-
plemented lines in G and h.

Such an additional linear inequality considered in our problem is the thrust pointing con-
straint throughout the entire flight in equation 3.41. It can be implemented, e.g. for the first
node, via

C§=(0000000-100 cos(fpaz) 00 ...0) (4.27)
bo =0 (4.28)

and for the other nodes by placing the non-zero elements accordingly, such that always the
first component of the control u; and the mass flow o; at node 7 are selected. An even stricter
constraint holds for the final pointing of the thrust, which actually forces the two compo-
nents of uy parallel to the surface to be zero, such that the vector uy strictly points down-
wards. The corresponding inequality constraint on the third control component, u3z xy < 0,
therefore is set up with

CT=(000000...1000),by=0. (4.29)

This constraint does not violate the previously introduced control pointing constraint hold-
ing for the entire trajectory, since the final net thrust vector pointing downwards will be

28 Chapter 4. Transcription of the Convexitied Powered Descent Landing Problem

inside the cone defined by the overall pointing constraint.

4.2.4 Transforming Second Order Cone - Inequality Constraints

The non-linear inequalities, i.e. second order cone and quadratic constraints, are prepared
afterwards and transformed such that they can be processed by ECOS. For each constraint,
this means to:

e Find matrices a;, CiT and vectors or scalar b; and d;, such that the constraints are trans-
formed into the form of 2.28. Note that the size of the non-scalar elements depends on
the actual dimension of the corresponding cone.

e Stack these elements according to relation 2.36 or 2.44
e Add the resulting stacked elements to the already existing matrix G' and vector h.

The first of these constraints is the slack constraint on the control variable ||u;| | < o; at each
node. As an example, it can be introduced for the first node by choosing do = 0, b5 = [0 0 0]
and

000000010000...0

ag={000000001000...0], agp € R¥™ (4.30)
000000000100...0

CI=(0000000000100000...0)" ,CT e R"™ (4.31)

which fulfills the original formulation of the constraint since

uo,1
Haoy + boH = | uo,2 <og= ng + dp. (4.32)
U0,3

For each node 7, this constraint defines a second order cone of dimension 3 + 1, and the
non-zero elements of a; and C again need to be set according the corresponding node to
select the correct elements of the stage variables y;.

In contrast, imposing the lower boundary on the slack variable o; as a second order cone
constraint requires a more intensive approach, since it is a quadratic constraint that has to
be reformulated accordingly. In order to transform the constraint given by

(zi — 204)°

> <o (4.33)

pg |1 = (2 — 204) +

into a second order cone constraint, it first has to be formulated as a standard quadratic
inequality y” F Fiy + pl'y 4+ ¢/ « < 0. Simple re-arrangement of equation 4.33 results in

2
i+ 225 ; + 2204 + 2 < 0, (4.34)

22— (2204 +2) 2 — Y
K

4.2. Transcription 29

which indeed has the desired shape if the selecting matrices F;, p! and scalar ¢; are chosen
properly. The approach in this case is again demonstrated for the first node i = 0. Selecting

2
Fy = (0,0,0,0,0,0, ”1’0,0,0,0,...> (4.35)

2
pg = (0,0,0,0,0,0, — (,uLo + ZOMLO) ,0,0,0,—1,0,0,...) (4.36)
Q0 = p1,0 (1 + 20,0) + 0.501,0 - 25 (4.37)

results in the relation

Yy F oy +phy + q0 = %Zg — (p1,0 + 11,020,0) 20 — 00 + (1 + 20,0) + %Ml,ozg,o <0, (4.38)
which is an equivalent formulation of the quadratic constraint on o given by equation 4.33.
These three elements can therefore be stacked according to equation 2.44 resulting ina 2 + 1
dimensional cone for each node i.

As a final example for the implemented second order cone constraints, we consider the glide
slope constraint introduced in equation 3.48:

\/(T‘2,i - T’Q’N)Q + (7"371- - ré7N)2 < M (4.39)

tan (’Yma:c)

A valid formulation of this constraint as a second order cone can be performed, e.g. for the
first node, via the set

_(0100...0 2%n
“0_(0010...0)’ ao € R, (440)
Cf = (s 00---00), cl e RV ™, (4.41)
b = (~rhn —rhn) (4.42)
—TIN
dy = —L 44
0~ Yan)’ (4.43)

because this set yields the 2 + 1-dimensional cone

apy + boll = \/(7‘270 -7) + <T3,0 -7}) < =(CF +dp. (4.44)
Jaoy +bol ») < =]

The non-zero elements in a; and C{ have to be set according to the corresponding node i
such that the components 71 ;, 72; and 73 ; are selected. Stacking the matrices created for
each node implements this constraint into the matrices G and h.

Again, the general procedure of formulating the constraints as second order cone constraints
and then stacking the created elements to build up the matrices G and h allows for a high
adaptivity regarding the implementation of further constraints, which can simply be added
and stacked below the already implemented constraints in G and h.

As seen above, the conic constraints can set up cones of different dimensions and thus cover
a different amount of rows within G and h. ECOS therefore requires additional inputs for
the correct interpretation of the matrices G and h. These inputs are namely the number of
linear inequality constraints diml, meaning that the first diml rows in G and h are related to
linear inequality constraints, and an array dimgq of size m, where m is the number of second

30 Chapter 4. Transcription of the Convexitied Powered Descent Landing Problem

order cone constraints. As an example, for NV = 100 nodes and given the three second order
cone constraints implemented above, we have m = N x 3 = 300 second order cone con-
straints. For each of these constraints, the array saves the dimension of the related cone. If
new constraints are introduced throughout the following course of the thesis, it is assumed
that they are transcribed and implemented in the same way as the previously described con-
straints.

The transcription method results in highly sparse matrices G and A, since there are only a
few non-zero elements in each row of these matrices. This sparse character is further in-
creased for more discretization nodes. ECOS therefore expects G and A in the so called
column-compressed-storage (CCS) format [4]. While each single element of a matrix is usu-
ally defined and represented by their corresponding row and column index, the column-
compressed formulation is an alternative representation of matrices and especially useful
for sparse matrices. However, handling sparse matrices is not the task of the actual tran-
scription algorithm presented here, since there are powerful libraries and commands avail-
able in different programming environments for the handling and conversion between the
different matrix representations. The required CCS-format has larger influence in the call
of ECOS in the programming language C, and will therefore be investigated in the related
section 5.1.1.

4.3 Implementation and Verification

In order to test and verify the discretization and transcription described above, the method is
implemented into a Matlab script, making use of ECOS compiled as a Matlab executable. To
keep the possibility of testing several landing scenarios, i.e. different spacecraft properties
and also different constraints, this script is developed in the most generic way possible. The
general approach of the script is depicted in the diagram figure 4.1 with the following steps:

e The simulation parameters together with the initial conditions, final conditions, flight
time ¢ and the dynamic matrix A% are read in

e Application of the algorithm described in the previous section for transcribing the
powered descent landing problem into an ECOS-feasible formulation, which is then
passed to ECOS

e The solution vector provided by ECOS is processed afterwards in order to extract the
computed trajectory and thrust profile.

The arrays GG and A passed to ECOS after the transcription are converted into the aforemen-
tioned CCS-format via the Matlab command sparsify acting on the related arrays in the
script.

CT7AaBanh Y

Read-In Transcription ECOS Process Results

v

diml, dimq

FIGURE 4.1: Flow diagram of the algorithm

The algorithm is tested and verified with an example scenario of a spacecraft landing on
Mars, which is also the main example presented in [1]. A comparison of the results obtained
by the algorithm developed in this work to the results provided in [1] is therefore used as a
verification. The specific parameters for this simulation example are:

4.3. Implementation and Verification 31

—3.7114\ 1500 -5\ 0 0\ .
9= 0 — =10 |m =0 |— ry=(0|m #y=[0]—=
0 S 2000 100/ ° 0 0/ °
Muwer = 1905 kg Iy, = 225's
T = 3100 N Ty =03-T T,=08-T
n==6 ¢=27°
Ymaz =4° ty=T2sor8ls N =T72or81

The first simulation is performed without any restrictions regarding the glide slope angle
Ymaz OF the thrust pointing, except for the thrust to point downwards at the final position.
The flight time of 72 s was found by [1] to be optimal, which is why it is used here for the
comparison. Accordingly, the number of nodes is set to meet the flight time and to yield a
step size of At = 1s.

For this first simulation, the result is displayed in the plots of figure 4.2, showing the actual
trajectory, the velocity and accelerations, the net force acting on the spacecraft, the normal-
ized throttle level and the angle 6 between the thrust vector and the first axis, i.e. between
the pointing of the thrusters and the normal to the surface. The Bang-Bang principle for
the optimal solution is clearly visible in the normalized throttle level, yielding an optimal
solution. As hinted by the blue line on the top left plot, the vehicle’s trajectory is below the
surface during the time interval from ¢t ~ 30 s until ¢ ~ 50 s , which is an unrealistic result
in the context of the landing problem. However, this is a consequence from the fact that no
constraint is set regarding possible sub-surface flights or the glide slope angle.

5000 200
- Q
H /’& £
E of T g0 >C/7
-5000 -200
0 50 100 0 50 100
& time (s) time (s)
0
£ 10 20
5 1 H
R e
< g O
S e
g g
3 -10 -20
g o 50 100 0 50 100
time (s) time (s)
1 100
E
5 =)
205 —\—ﬂ g 50
2 £y
2 \/\
£ 0 0
0 50 100 0 50 100

time (s) time (s)

FIGURE 4.2: Simulation results without glideslope constraint. Except for the
plots for the throttle level and angle §, the red curve represents the first axis,
blue the third axis and green the second.

32 Chapter 4. Transcription of the Convexitied Powered Descent Landing Problem

3000

=]
=3

@
=)

2000 N

1000

position, m
velocity, m/s
o

!
a
3

<
. /
. oy

20 40 60 80 0 20 40 60 80

L
=]
3

-1000
0

=)
N
S

o

10 b vl

L

-

I

acceleration, m/s?
o o
=
net force, kN
o

JEUT)

>
0

N

S

20 40 60 80 0 20 40 60 80

o
©

@

=}

throttle level
o o
kS >
0, deg
N oA O
o S 5 3

o
N
S
N
[i
3
3

80 0 20 40 60 80

FIGURE 4.3: Results obtained by [1]

The methodology developed in this thesis is verified by the results for an identical simu-
lation setup from [1] shown in figure 4.3, which match our simulations. The only clearly
visible difference is the obtained control at the final node, e.g. in the throttle level at the final
time t¢. While the final throttle level is at maximum in the method developed in this thesis,
it neither stays at maximum nor reaches the minimum for [1], which might be a numerical
artifact of the used discretization in [1]. Another invisible difference is the consumed fuel,
which in the case of this thesis is calculated by the difference of the mass m,,.; and the mass
atty, ie. by myye = exp®(0) —exp z(t #)- In our simulation, the consumed fuel is 389.39 kg,
while the simulations in [1] show a fuel consumption of 387.9 kg. This difference of around
1.5 kg can also be explained by a different discretization and integration technique. For ex-
ample small time shifts in the computed control history and thus for the throttle level can
result in several grams or kilograms of difference in fuel consumption.

To avoid the potential sub-surface flight, the glide slope constraint is imposed on the tra-
jectory in a second simulation run. Again, the simulation results obtained with this specific
transcription and ECOS meet the results from [1] as shown in figure 4.4 and 4.5 . The glide
slope constraint now avoids that the spacecraft flies sub-surface, requiring a slightly longer
fuel-optimal flight time with ¢ = 81s [1]. An illustration on how the glideslope constraint
is fulfilled is presented in figure 4.6. The straight line defines the limit of the glide slope
constraint and only trajectories above that line are allowed. The angle between this line and
the surface r; = 0 corresponds to the minimum glide slope angle v,,,, = 4°. Note that 7
is ignored in this plot since it is set to zero and does not change throughout the entire tra-
jectory. Again, the fuel consumption of 400.48 kg is slighty more than the one found by [1]
with 399.5 kg, although the overall computed trajectories and thrust profiles agree for both
simulations with the one once found by [1].

The strong agreement between in the trajectories computed within both frameworks, ig-
noring minor numerical issues, verifies the applied method using ECOS and the corre-
sponding transcription for solving the OCP. Even more, the runtime for the transcription
and ECOS computing the optimal solution within this first Matlab based script is in the or-
der of 0.2 s, which suggests a very short computation time also for other landing problems
and especially within other programming environments like C. Therefore, the developed
transcription together with ECOS can potentially be used on an on-board computer of a
landing system for real-time trajectory optimization. The following steps are to transform
this simulation into an on-board feasible environment, mainly including the transition from
the Matlab-based IDE into C-code and the implementation within a Simulink-Environment.

4.3. Implementation and Verification

33

Position (m

Acceleration (u+g) (m/s 2)

Throttle level (m/s 2)

4000 _. 200
K
£
2000 2 0
8
s
0 -200
0 50 100 0 50 100
time (s) time (s)
10 20
of g ool —
Y s
g
-10 -20
0 50 100 0 50 100
time (s) time (s)
1 100
=)
0.5 € 50 /v\
5=
0 0
0 50 100 0 50 100
time (s) time (s)

FIGURE 4.4: Simulation results with glideslope constraint. First axis in red,
third one in blue.

4000
€ 2000
E
9
K 0
g
-2000
0 20 40 60 80 100
10
%
£ 1
]
g s d
5
30 /"JM
S W
8 [
© 5 rossrsssrran,.,,)
o 20 40 60 80 100
038
E
%06
©
=
S
= 04
0 20 40 60 8 100

net force, kN velocity, m/s

0, deg

100
50
0
-50
S—
100
20 40 60 8 100
20
10
0
-10
0 20 40 60 8 100
60
40
20
0
0 20 40 60 8 100
time, sec

FIGURE 4.5: Results with glideslope constraint by Acikmese [1]

FIGURE 4.6:

1500

1000

71 in (m)

500

Position
Constraint Slope Angle = 4°

L

/

\

\

0
0 500

1000 150!

0
g in

2000
m)

2500 3000 3500

constraint

Iustration of the simulation results regarding the glides lope

35

5 Development of an On-board Feasible
Guidance Function

The second goal of this thesis is to develop an on-board feasible guidance function for EA-
GLE based on the developed and verified convex trajectory optimization algorithm. The
first corresponding task is the transition from the Matlab environment to the programming
language C, meaning that the algorithm has to be converted into C-code. In addition, this C-
code version should be embedded in a Simulink model, since the QNX on-board system of
EAGLE executes algorithms which are tested in a Simulink environment and cross-compiled
by the Simulink-coder, before it is extended to an actual guidance function.

5.1 Transition to C

The principle algorithm for solving the convexified OCP remains unchanged as in figure
4.1. Although similar, the call of ECOS in C is slightly different than in the MATLAB envi-
ronment and hence the C-code version of the algorithm requires an adapted approach. The
setup function for ECOS, which is basically a memory preparation step before the actual
solving routine of ECOS, expects the arguments listed in table 6.1 (see [9]).

Data Type Name Definition
idxint n Number of variables, i.e. length of optimization variable y
idxint m Number of inequality constraints, i.e. length of vector h
and first dimension of matrix G
idxint) Number of equality constraints, i.e. length of vector B and
first dimension of matrix A
idxint | Dimension of positive orthant, i.e. number of linear
inequality constraints
idxint ncones Number of second order cones, i.e. number of second
order cone constraints
idxintx q Array of length ncones with integers defining the
dimension of each second order cone
pfloatx Gpr Array of values of matrix G in
column-compressed-storage format
idxint* Gijc Column index array of matrix G in
column-compressed-storage format
idxint* Gir Row index array of matrix G in
column-compressed-storage format
pfloatx Apr Array of values of matrix A in column-compressed-storage
format
idxint« Ajc Column index array of matrix A in
column-compressed-storage format
idxintx Air Row index array of matrix A in
column-compressed-storage format
pfloatx C Array representing ¢’
pfloatx h Vector h from Gy < h
pfloat= b Vector B from Ay = B

TABLE 5.1: Arguments of ECOS-setup call in C

36 Chapter 5. Development of an On-board Feasible Guidance Function

The defined data types pfloat and idxint are ECOS-specific synonyms for known data
types. In our implementation, idxint are variables of type long, while pf1oat are double-
variables. The main difference in the call of ECOS in C compared to the Matlab executable
is that several arrays related to the matrices G and A have to be passed. These arrays arise
from the column-compressed-storage (CCS) format expected by ECOS and a library can be
used to handle the matrix setup according to this format in a user friendly way. Within this
work, the open-source library CSparse by Timothy Davis [8] has been identified as a suitable
choice and is introduced in the following.

5.1.1 CSparse Library for CCS-Matrix Creation

The main criterions for the selection of a suitable sparse matrix library are

e Open-Source availability: In order to allow follow-up adaptions and detailed under-
standing of the software, i.e. of the storage handling, open-source availability is key
for the implementation on embedded systems.

e Simplicity: The transcription method requires detailed and exact filling of matrix ele-
ments. In addition, the generic nature of the developed algorithm allowing for differ-
ent simulation setups may require a complex generic selection of array elements to fill
G and A according to the desired simulation. To keep the overview, simple handling
and function calls for filling the elements of the sparse matrices are useful.

e Storage handling: Since the optimization algorithm will be run on an embedded sys-
tem, extensive dynamic storage allocation has to be avoided.

Especially the simplicity in the use of the chosen CSparse library is an advantage. The ini-
tialization of a sparse matrix starts with the function cs_spalloc including arguments
defining the number of rows, number of columns, maximum number of elements, a check
whether values are going to be filled in the matrix, and a final check whether the sparse
matrix is formulated in triplet form or in the CCS form.

In both formulations, triplet and CCS, the sparse matrix elements are represented by three
arrays defining the value, the row and the column. For a sparse triplet matrix, every non-
zero element of the matrix is represented by one value in the value array, one value in the
row array, and one in the column array, where the values in the latter two arrays define the
exact location of the element. The array structure for the triplet matrix already reduces the
required storage, since only non-zero elements are considered.

Also in the CCS-framework a matrix is described by three arrays. In contrast to a triplet
matrix, the non-zero elements are saved column-wise in the value-array from the top of the
matrix to the bottom. The elements of the row-array save the row number of each of these
elements, and therefore the row-array has the same length as the value array. The main-
difference in the CCS version is the reduced array for the column numbers, which only
saves the index numbers of non-zero elements that start a new column. An example for this
is presented in the appendix A.2. However, libraries like CSparse are designed to handle
CCS-matrices without expecting explicit knowledge about the underlying theory from the
user, such that one can rely on the natural representation of matrices with a row and a col-
umn number defining the position of the matrix elements.

The triplet form handled by CSparse is applied for the preparation and filling of the matrices
A and G within our framework, since the corresponding values are easily set via the CSparse
function cs_entry. As an example, for filling the matrix element A; » = 3, the function
calliscs_entry (A, 1,2, 3), which allows the user to fill matrix elements in a natural way
without any consideration of sparse matrix theory.

5.2. Convex Simulator in Simulink 37

If the filling of a value in the matrix exceeds the maximum number of non-zero matrix el-
ements specified in the matrix initialization, CSparse allocates more space for the matrix by
doubling the size of the arrays to allow twice the amount of values. This procedure is a
tradeoff to allow generic matrix handling while avoiding a large number of allocation pro-
cesses at the same time. Hence, multiple dynamic allocation are naturally avoided by the
library.

Since ECOS requires the arrays in the CCS-format, one can use the function cs_compress,
which converts the final filled triplet matrix into a CCS form. CSparse saves all matrices in
a special struct containing the three arrays that define the sparse matrix and several other
parameters like the number of elements or the type of the sparse matrix, i.e. triplet or CCS.
When calling ECOS after the compression into the CCS format, one can handover the point-
ers to the value-, column- and row-arrays of these matrix structures. In total, CSparse fulfills
the requirements stated above and turns out to be a powerful tool for the purposes of this
work.

5.1.2 Pre-allocation of Arrays

Besides the new approach of handling sparse matrices in the transcription via CSparse, the
main difference in the transition from Matlab to C arises from the required pre-allocation
of arrays in C. While arrays can be stacked in Matlab without requiring any pre-allocation,
the sizes of all arrays need to be fixed in C before the first entries are assigned. Especially
the size of the arrays for h and B need to be pre-allocated, while CSparse handles the sizes
of the arrays A and G dynamically if the initially specified number of non-zero elements
is exceeded. However, all matrices and vectors have deterministic dimensions as soon as
the problem is set, i.e. as soon as the number of nodes, number of equality constraints, and
number of inequality constraints with the corresponding cone dimensions are set. This pre-
allocation does not affect the principle algorithm, but needs to be considered and represents
the main adaption in the transition from the Matlab environment to a C-based application.

5.2 Convex Simulator in Simulink

The created C-code version of the trajectory optimization algorithm has to be implemented
in a Simulink model, since it will be used within a guidance function in the Simulink simu-
lation environment for EAGLE, and compiled via the Simulink-coder for the on-board com-
puter. In addition, another advantage of this implementation is the possibility to create a
graphical user interface with the Simulink model, which allows for simple handling of sim-
ulation inputs and parameters. The C-code is embedded into a Simulink S-function, having
the initial and final conditions, the flight time, as well as the dynamic matrix A%y a5 input.
The S-function is also masked for tuning several parameters according to the given simula-
tion. An up to date list of these parameters is given in the appendix A.3 together with the
corresponding block diagram of this Simulink model, which basically follows the structure
of the diagram in figure 4.1 by fusing the transcription and solution process in ECOS into a
single trajectory optimization block. The entire solution vector y provided by ECOS is put
out from the S-function block besides timing information of the simulation and an additional
output with simulation information to the display block. The main purpose of this display
block is a proper visualization of the results and the extraction of the actual trajectory and
thrust profile from the solution vector.

38 Chapter 5. Development of an On-board Feasible Guidance Function

5.3 Run-time Results and Processor-in-the-Loop-Verification

The optimal trajectory calculated for the example mars landing presented in section 4.3 has
been obtained with the developed C-code version within a total computation time of 0.12 s
on a regular desktop computer, including one millisecond for the entire transcription. This
indicates on the one hand that the actual algorithm can be expected to be on-board feasible
thanks to the quick computation, on the other hand the lower boundary on the computation
time is actually set by the solution process in ECOS and the problem size.

As a first valuable on-board test, the Simulink model has been included in the general
EAGLE-Simulink environment of DLR and it has been cross-compiled for the usage on EA-
GLE’s on-board computer. During a processor-in-the-loop test run on the on-board system,
the Mars landing simulation from section 4.3 including the glide slope constraint has been
run in parallel, but isolated from the other on-board activities to obtain a rough estimate
on the actual on-board performance of the algorithm. In these tests, the computing time
for this algorithm have been determined to be around 1 second, meaning a 10-times longer
computation time on an the-board architecture compared to the desktop computer.
However, the Mars landing example requires high computation resources while EAGLE-
typical maneuvers are less demanding, especially because of the smaller flight time for the
maneuvers, which will also reduce the number of nodes within our framework resulting
in a shorter computation time. This implies that the expected computation time of the de-
veloped software for EAGLE-typical problems on the on-board computer is less than one
second and therefore on-board feasible. Hence, it can be implemented as a prototype guid-
ance function for the control system of EAGLE, which will require some further adaptions
of the so far developed algorithm as investigated in the following.

5.4 Guidance Function Design

Although the trajectory optimization algorithm converted into C is in principle on-board
feasible, it does not provide a closed guidance function, as it expects a fixed flight time as
one of the inputs. Therefore, the algorithm only optimizes the trajectory for a fixed flight
duration. In fact, finding the fuel optimal trajectory requires to find the thrust profile and
flight time which minimize the fuel consumption as discussed in 3.1, meaning that also a
corresponding flight time has to be found. A typical approach in optimal control is to trans-
form the OCP such that the flight time becomes an element of the optimization variable
y and the OCP is transformed into an autonomous system. However, this is not applica-
ble for the dynamics of the powered descent landing problem in the framework of convex
optimization, since e.g. the constraints are represented by linear functions of the optimiza-
tion variable. The integration of the dynamics of the problem 4 with trapezoidal scheme
includes a product At - . If ¢, and thus the node separation At, is an element of the opti-
mization variable y, a product of two different elements of y appears within the dynamics,
which is impossible to implement in a linear relation via selection matrices as it is done in
the developed transcription algorithm in section 4.1. This is a disadvantage of the convex
optimization formulation occuring for any integration scheme.

In order to find the optimal flight time, a bi-sectional approach is commonly chosen. As
an example, in [1] a lower and an upper limit for the flight time are heuristically derived
from the maximum and minimum thrust together with the available fuel, followed by a
scan within this interval of flight times. The optimal solution in this method is found with
the trajectory and the corresponding flight time that yields a minimum fuel consumption.
However, this approach is not completely applicable for a real-time system, since the scan-
interval can become relatively large, e.g. about 100 seconds in the calculations from [1]

5.4. Guidance Function Design 39

resulting in a high number of required iteration steps.

In this thesis, a similar, but in principle shorter approach is chosen. The algorithm derived in
4.3 is extended by a preceding flight time estimation based on kinematic considerations. It
provides a rough estimation of the optimal flight time, which is assumed to be shorter than
the fuel-optimal flight time, and then adds a fixed margin on this optimal flight time to ar-
rive at a value close to the expected fuel-optimal flight time. In addition, one has to consider
the case where this method underestimates the fuel-optimal flight time separately, which
can result in an infeasible and unsolvable problem formulation for ECOS. To solve these
cases, the flight times are increased iteratively in the case of detected infeasibilities, until
a feasible problem is created and solved, which results in a robust and reliable on-board
applicable algorithm for close to optimal trajectories.

5.4.1 Optimal Flight Time Estimation

In order to estimate the optimal flight time of a vehicle, we consider a simple kinematic
model of the spacecraft with a fixed mass throughout the whole flight. We also assume that
the spacecraft will have a vanishing velocity when arriving at the target, which is true for
the planned maneuvers with EAGLE. In a 1-D example, the vehicle tries to reach the point
Send starting from sg. In the time-optimal case, the thrusters will always run on maximum
power, which provides a maximum acceleration for the spacecraft.

Assume a spacecraft is at rest at t5. At the beginning of the maneuver, it will apply full thrust
accelerating the vehicle towards the target. At a certain point ¢;, which in this example is
right in the middle of the trajectory due to the vanishing velocities at start and end, the ve-
hicle has a velocity of v, as a result of the previous acceleration. It will then turn around at
this point and provide full thrust in the opposite direction for deceleration while the move-
ment towards the target continues. Because of the basic laws of kinematics, it will have the
desired final velocity of ve,q = 0 at the target. This example shows the fundamental concept
on which the proposed flight time estimation is based on and is illustrated in image 5.1.

v(t) v(t)
—_— —_—
a a;
—_— —
B K
o N\
So, V1 51, V2 Sendr Vend = 0
ty %)
to =20 tend = t1 113

FIGURE 5.1: Sketch of the heuristic defining the optimal time of flight in one
dimension

As in the example above, one can divide the movement of the vehicle into two segments of
uniform acceleration:

1 1
Send = S1 + 82 + 50 = 5aﬂtf + oty + §a2t§ + vgta + So. (5.1)

40 Chapter 5. Development of an On-board Feasible Guidance Function

In this formulation, the index 1 always denotes the segment, in which the vehicle is acceler-
ating with a; towards the target point, while 2 denotes the segment where the acceleration
is pointing away from the target. If gravity is not acting along the considered dimension,
then a; = —ay. The velocity v; is the initial velocity of the spacecraft v; = v(ty), while v, is
the velocity at the end of the segment 1. The entire optimal flight time can then be calculated
from the flight times for both segments with ¢, = ¢; +¢2. Hence, the goal is to write equation
5.1 as a function only containing one of the two times for the segments together with only
known parameters like initial and final conditions, such that it can be solved and the flight
times can be obtained.

Depending on the initial velocity, there exist possible cases where the segment 1 is not exist-
ing, since the vehicle will have to break for the entire time and in even further cases it might
overshoot over the desired target s.,q. We therefore start with the calculations related to
segment 2, since there will always be a segment involved in which the vehicle will have to
break in order to stop at the final point.

The time to reach v,,q = 0 starting with the velocity v; is given by

v — v v
fg — -cnd — 72 72 (5.2)
a9 as
& V2 = Vgpd — t2ao = —1l2as. (53)

Note, that the segment 2 has been defined to be the segment where a3 is pointing away from
the target. Therefore, if in the 1-D case s, < s, then az > 0 and vz < 0. In contrast, if s, > so,
then as < 0 and v2 > 0, such that we will always obtain a positive time for the braaking
segment. Similar, the flight time ¢; for the first segment is the time to accelerate the vehicle
from the initial velocity v to the velocity v, at the switching point

v — g _ Vend —t2a2 —v1 —taaz — v

t1 = St = = , (54)
al aj ai

where equation 5.3 has been inserted. This flight time also considers the case where there is
no first segment, meaning that t; = 0 if vy = —t2a2 = vy. The switching point of starting the
braking then falls onto the initial point of the maneuver.

Replacing ¢; in equation 5.1 by equation 5.4 and a reformulation results in a quadratic equa-
tion on ¢ that can be solved:

1 0/2 2 11}%
Send 2a2< a1> 2 2a1—|—80 (5.5)
S d_50+lﬁ
Sty= | — 261 (5.6)

1 _ az
jax (1-22)

The corresponding flight time ¢; of the first segment can be obtained by inserting ¢, into
equation 5.4, and therefore the estimated optimal flight time is ¢, = 1 +t5 . In the following,
we will refer to this procedure as flight time algorithm 1. The above equations only result in
a reasonable flight time, if the vehicle’s initial velocity is small enough such that it does not
overshoot the desired target point.

If the vehicle actually overshoots the target point, one can consider the trajectory separated
into two parts: first, the spacecraft decelerates during overshooting, reaching a velocity of
v} = 0 at the point s(. Afterwards, it accelerates towards the target point in one segment of
the trajectory and decelerates again when approaching the target point. Such a maneuver is
sketched in figure 5.2. The second part can be solved by the flight time algorithm 1 using s{,
as initial position and the initial velocity v] = 0. In order to include the overshooting for an

5.4. Guidance Function Design 41

D

(1)
taec
to =20 v(t)
A AR
44—
(@)
ty [
tena
S0+ V1 Send Vena = 0 s, V' =0

FIGURE 5.2: Sketch for a maneuver with overshooting

arbitrary maneuver, the following procedure can be applied: First, the time ¢4, to decelerate
the vehicle to zero velocity can be calculated as t4ec = ¢*. The corresponding final point s;,
is given by

1
56 = 5@32&566 + V1t gec + So. (5.7)

In this case, a3 is the acceleration pointing against the velocity vector, either being equal to
aj or to az. Then the flight time algorithm 1 can be applied with the inital position s;, and
velocity v, to calculate ¢; and ¢o for the second part of the trajectory, resulting in the total
flight time of t, = tgec + t1 + to.

The complete proposed and adapted method for estimating the optimal flight time ¢, is
therefore given by

Calculate 4. and s,

if s, further away from sj than s, then
Calculate ¢, and ¢, with s{, and v{, as initial conditions with flight algorithm 1
to = ldec + 11 + 12

else
Calculate ¢ and ¢, directly from sy and v with flight algorithm 1
to =11+ t2

end if

42 Chapter 5. Development of an On-board Feasible Guidance Function

5.4.2 Optimal Flight Time Estimation in Two Dimensions

The above developed method results in the optimal flight time for movements in one di-
mension. However, a flight time estimation for maneuver in more than just one dimension
is required.

In the two-dimensional case, a first guess might be to project the two-dimensional move-
ment into one dimension by applying Pythagoras’ law. In fact, this only results in a useful
approach if the initial velocities are zero or if the initial velocity vector directly points to-
wards the target. As soon as this is not the case, the movement of the vehicle will not be
only along a straight line and therefore a different estimation has to be found. Although
most of the EAGLE maneuver will start with a vanishing velocity, it will be useful to ob-
tain a more general approach including different initial velocities in order to develop a more
complete guidance function.

As such, our approach for two dimensional movements is to split the maneuver into two
separate movements and to calculate the optimal flight time for each dimension individu-
ally. If the maneuver starts at 9 = [21,0, 22,0] and stops at Zcpg = [T1,end; ©2,end), then the
optimal flight time ¢, ; is calculated via the flight time algorithm 1 for the first of the two
dimensions with a maneuver from z g to =1 ¢,q and in analogy for the second dimension
resulting in the time ¢, 2. Then there are two possible ways of achieving an estimation of the
fuel-optimal flight time in the two dimensions. One can use a geometrical approach, via

tgeo = (/13 + 13. (5.8)

This geometrically motivated method is especially useful if the distances that have to be
covered in both dimensions and the available thrust in both dimensions are comparable,
because then both movements contribute with a considerably large amount of time to the
movement.

However, if the movement in one dimension is much longer and especially if the achievable
acceleration in one of the dimensions is much smaller than in the other, then this dimension
dominates the actual flight time. As a second estimation for the 2-D optimal flight time
covering such cases we select the maximum out of the two derived times ¢y and ¢,2 and
then add a margin on that maximum:

tmar = Max [t(),l, tog] -1.2 4+ 2. (5.9)

Note that this margin is applied, since max [to 1, %o 2] is an estimate of the optimal time of
flight in those two dimensions and will clearly underestimate the fuel-optimal time of flight.
The parameters added in equation 5.9 are freely choosable, but throughout this work they
have been used as a first guess and already turned out to generate reasonable results. The
final estimation for the fuel-optimal time of flight in two dimensions is then selected as the
maximum out of the two times as:

to2p = max [tgem tma:p] (5.10)

This 2-dimensional approach including the margins set in the calculations does not follow
a basic underlying theory and is developed to obtain a time estimation as close as possible
to the fuel-optimal flight time. It is called flight time algorithm 2 in the following and it sets
the base for the time estimation in three dimensions, for typical guidance problems related
to EAGLE and in general for the powered descent landing. Those maneuvers occur in three
dimensions, where one of the dimensions is affected by gravity.

5.4. Guidance Function Design 43

5.4.3 Flight Estimation for the Powered Movement

For each maneuver in the 3-D case of the powered descent landing or general engine pow-
ered movements, the trajectory is split into a two-dimensional maneuver in the ry —r3 plane
and a one-dimensional vertical maneuver along the gravity affected r; axis. The actual dif-
ference in both maneuvers is the acting acceleration on the vehicle: Consider a movement
along the 7 axis, i.e. an altitude changing maneuver. In this case, the accelerations a; and
as defined in equation 5.1 for the considered time intervals of the movement are given by
the sum of the maximum achievable acceleration % derived from the maximum achievable
thrust 7" with a constant vehicle mass of m, and the gravitational acceleration g. Depending
on the segment of this one-dimensional movement, the thrust is pointing downwards or
upwards for acceleration or braking. Applying the flight time algorithm 1 in order to find
the optimal time of flight in this dimension results in the time ¢

For the 2-dimensional movement within the ro — r3 plane, the maximum acceleration along
each of these axis is limited by the maximum thrust pointing angle. Let T},42 2 = Trnaz,3 be
the maximum achievable thrust along the second or third dimension, then for a maximum
deviation of 6,4, from the r; axis, these yield

Tmaz,hor - Tmam,Q - Tmaz,3 =T -sin (Hmaz) . (511)

Therefore, the absolute values a; and a5 are given as i%. The optimal flight time ¢,
in the horizontal case is then calculated as in the 2-dimensional case described with the flight
time algorithm 2.

The combination of both, t5,, and t,e,, is performed in analogy to the two-dimensional case
and results in the estimated flight time ¢ for the 3-D powered movement:

tf = max [\/tior + t2,,., max [thor, tyer) - 1.2 + 2.0 (5.12)

The achievement of this flight estimation is that we obtain a rough estimate for the fuel-
optimal flight time, which can be used as an input of the trajectory optimization described
in section 4.3. Since the flight time estimation also includes different initial velocities and is
applicable in three dimensions, the guidance function is not only limited to the powered de-
scent landing, but allows for on-board trajectory calculations related to any maneuver that
is driven by the engine. However, the flight time estimation presented here still might un-
derestimate the fuel-optimal flight time, which is considered in the following, final guidance
function.

5.4.4 Real-time Applicable Guidance Function

The developed guidance function consists of the trajectory optimization algorithm displayed
in figure 4.1 extended by the time of flight estimation as shown in figure 5.3. It is self consis-
tent, meaning that it only requires the initial and final states in order to compute an entire
trajectory. This trajectory is then optimal, or close to optimal, depending on the accuracy
of the flight time estimation. However, the estimated flight time can be shorter than the
actual fuel-optimal flight time, which results in potentially infeasible problems that cannot
be solved by ECOS. In such a case, ECOS prints a certain flag allowing for detection of the
infeasible problems after one run of the transcription and ECOS, which are summarized as
"Optimization" in figure 5.3.

An ad-hoc solution for this problem is to apply the guidance function once for the initial
position and velocity, and to increase the flight time iteratively in the case of a detected in-
feasibility until the problem becomes feasible. The trajectory optimization is run in each

44 Chapter 5. Development of an On-board Feasible Guidance Function

iteration step until an optimal solution is found for a feasible problem. In the proposed
guidance function, the increment of the flight time is set to be 3 seconds. On the one hand
this is a tradeoff between computation time and accuracy. If the flight time estimation is
close, but below the fuel-optimal flight time, the increment should not result in a new flight
time that is far above the fuel-optimal solution. In contrast, if the estimation is far below the
fuel-optimal flight time, the increment of the flight time should result in a feasible problem
as quick as possible in order to reduce the number of optimization processes.

Y, /]
Tor Tor Muwet Tos Tor Muyet

Read-In > thht tl.me ») Optimization
P, e =0 estimation e, i =0, ty
Optimization Problem Process
Feasible? Results
ty
Update
ty=1ty+3
no

FIGURE 5.3: Flow diagram of the guidance function

The finally achieved guidance function is independent, as it only requires the initial and final
states as inputs, and is robust in the sense that it is expected to always provide a solution
after a limited number of iteration steps. In addition, these solutions are either optimal or
close to optimal, where the latter is true for cases in which the ¢ that finally provides a
feasible problem is larger than the fuel optimal flight time. The guidance function is subject
to in-depth test procedures as described in the following chapter.

45

6 Simulation and Tests of Guidance Function
6.1 Simulation Setup

To indicate the quality of the solutions provided by the guidance function with respect to
robustness, computation time and optimality, it is embedded into two simulation environ-
ments, called simulation cases in the following. The purpose of these cases is mainly to test
the behaviour of the guidance function for different initial positions on the one hand, and on
the other hand for varying final positions. A combination of both in one simulation would
require too many computation ressources. In both cases, the guidance function is fed with
different sets of initial and final conditions and then the results are analyzed with a reference
solution. The entire simulation is set in C-code for quick computation. In order to simulate
typical EAGLE maneuvers with the guidance function, the following parameters describing
the vehicle’s properties are applied in all simulation sets:

Property Symbol | Definition
Total Mass Mawet 28.85 kg
Number of Thrusters n 1
Specific Impulse I, 2335 s
Cant Angle o 0°
Total Thrust T 392 N
Lower Thrust Boundary T T, =0.003-T
Upper Thrust Boundary Ty T,=09-T
Glide Slope Angle Ymaz 4°
Maximum Thrust Angle O maz 5°

TABLE 6.1: Physical parameters for EAGLE-Maneuver simulations
In addition, the gravity vector is given by g = [—9.807 2 0 0] T
The first simulation case considers typical powered descent landing problems. The goal is to
start from different initial positions and velocities, and reach the final position 7y, = [0 0 0] 4
with a final velocity of vjy = [0 0 0]. For the initial conditions, the initial position vector is
varied in its second and third component, hence all maneuvers start at the same altitude
and the corresponding r — 73 plane is covered with a grid of different initial positions. The
second component of the initial position 74 is varied between +50 m with a step size of
Ary g = 10 m. For each of these points, the third component 73, is also varied in the same
way, resulting in a grid of 11 - 11 = 121 different initial positions, while the altitude is fixed
to 71 o = 50 m. For each of these initial positions, the simulation is run with a scan through
different initial velocities, i.e. every component of the initial velocity is scanned between
+7.5 7 in steps of 2.5 . This results in a total set of Ny, = 121 - 73 = 41503 different
trajectories that are considered in this first simulation.

46 Chapter 6. Simulation and Tests of Guidance Function

Simulation Case Fixed Varied Elements Step size
0 0
1 =10 m | r{=[[-50,50] | m 10m
0 [—50, 50]
0 [—7.5,7.5]
vy =0 % | vo=[[-7575]] % 2.5%
0 [—7.5,7.5]
50 [0, 100
’ ro=10|m| rly= m 10 m
50 [0, 100
0 7 5,7. 5]
H=[0] 2] wv= 7575] m | gpm
0 [—7.5,7.5]

TABLE 6.2: Summary of scan intervals in both simulation cases

The second simulation case is built up in a similar way. In contrast to the first simulation
case, the initial position is now fixed to be r{; = [50 m 0 50 m|, while the final position vector
is scanned. The scan covers different final altitudes from | ;, = 0 m to v} = 100 m sep-
arated by 10 m, such that it includes up and down movements. For each of these altitudes
the third component of the final position vector is also varied from 73 ;» = 0 m to 15 5 = 100
m with steps of 10 m, which again results in 121 different target posi;cions to be tested. The
initial velocity is varied in the same way as in the first simulation case, such that the second
simulation also covers 41503 different sets. In addition, the glide slope constraint is turned
off in this second simulation case, since a glide slope is not well defined for upward move-
ments. Due to the chosen scanning intervals, the second simulation might appear to cover
only two dimensional movements, since the second component of the final position vector
is not varied. However, the second component of the initial velocity is varied and hence 3-D
movements are covered in this simulation case, as well.

Both simulation cases are summarized in table 6.2, where the brackets within the vectors in
the column for the varied parameters indicate the scan interval of the corresponding com-
ponent, and the step size column provides the information on how much the individual
components are changed in each step.

The objective of these simulations is to study on the on hand the quality of the flight time
estimation itself, and on the other hand the related performance of the guidance function
regarding fuel optimality. For each of the individual simulation sets the trajectory, corre-
sponding fuel consumption f,; and flight times ¢, obtained from the guidance function are
saved, in addition to the value of the estimated flight time ¢, computed by the flight time es-
timation block of the guidance function. If the flight time estimation ¢, immediately results
in a feasible problem, then t, = t..

As a reference, a sub-simulation is run after the guidance results have been obtained. This
sub-simulation uses the flight duration ¢, from the guidance function, sets an interval of test
times t; € [1,1.5-t,4] and applies the trajectory optimization to the simulation set for each
of these test times. In this way, the true optimal trajectory and reference optimal flight time
t, is determined as the trajectory, for which the problem is feasible and the fuel consump-
tion f, is minimal. The results of the guidance function are then compared to those of this
sub-simulation for each of the simulation sets and saved for further analysis. Moreover, the
number of nodes is fixed to N = 30 for all simulations in order to obtain comparable re-
sults, especially for the comparison between the guidance function results and the reference
simulation.

6.2. Analysis Procdure 47

6.2 Analysis Procdure

The analysis of the data received from these simulations is processed in an identical way for
both simulation cases following the objectives of the simulation.

As an indicator of the flight time estimation’s quality, the estimated flight times ¢, are com-
pared to the optimal flight times ¢, via At. = t. — t,. The same calculation is performed for
the comparison of the flight time obtained from the guidance function ¢, and the optimal
flight time, resulting in the deviation At,. While these differences analyse the absolute er-
rors of the flight time estimation and the guidance function, they do not include information
on how large this overestimation is relative to the actual optimal flight time. As an example,
a certain absolute overestimation has a higher impact for a short optimal flight time than on
longer optimal flight times. The relative deviation

| Aty

hig = i

(6.1)

is therefore introduced, providing more detailed information on the actual impact of the
overestimations. In addition, the ratio between the fuel consumption f, of the trajectory
computed by the guidance function and the optimal fuel consumption f, is computed re-
sulting in the relative fuel deviation
fg

hy T, (6.2)
to illustrate the actual performance of the guidance function regarding optimality. The anal-
ysis also provides the distribution of simulation results with respect to several parameters,
like run-time of the guidance function and iteration steps.

6.3 Results and Interpretation

To obtain an overview of the typical shape of the computed trajectories, a plot is generated
with 30 different trajectories from the simulation case 1 displayed in figure 6.1. The plot only
considers trajectories for a vanishing initial velocity, and therefore the individual trajectories
lie within a plane. One can observe the symmetrical grid of initial positions at a fixed alti-
tude. All trajectories reach the final positition at the origin of the coordinate system, and the
expected conic structure of the set of trajectories towards the end of the maneuver is clearly
visible. Almost all of the plotted trajectories show an increasing altitude at the beginning of
the maneuver, related to two effects. On the one hand it is due to the fixed flight time, which
is put into the optimization algorithm by the guidance function. If this input overestimates
the fuel-optimal flight time, then it might be more efficient to have a strong first burn, re-
sulting in an increase in altitude, with a following acceleration of the spacecraft towards the
ground and a final braking of the vehicle, in order to reach the vanishing velocity at exactly
the desired fixed flight time. As a second reason, the vehicle needs to accelerate towards the
origin of the ro — r3 if it has a vanishing initial velocity. Due to the limited thrust pointing,
this also implies a thrust component accelerating the spacecraft upwards, increasing the al-
titude.

Figure 6.2 displays the different distributions obtained by the simulation case 1,where

n = % is the normalized number of sets Ny.: for which the given parameter has been ob-
tained in the simulation case. The top left plot shows in how many of the simulation sets the
flight time estimation underestimates the fuel-optimal flight time marked with red bars. As
visible in this distribution, the flight time estimation block tends to overestimate the optimal

flight time. In total, an underestimation occurs in 35% of all simulation sets, and therefore

48 Chapter 6. Simulation and Tests of Guidance Function

FIGURE 6.1: Plot of 30 extracted trajectories produced by the guidance func-
tion for varied initial position

results in the equivalent amount of infeasible problems. This is solved by the iterative guid-
ance function, as proven by the distribution in the top right plot. This distribution implies
that ¢, > t, for all simulation sets, which was the initial goal of the iterative guidance func-
tion. Note, that in contrast to the distribution of At,, the peak at At, = 2 s dominates now.
This is due to the step size of At = 3 s in the iterative guidance function. All sets, for which
the flight time is underestimated, result in a feasible problem after a certain amount of time
increments. Since the increment is set to 3 seconds, all of these previously infeasible prob-
lems will then contribute to At, = 0s,1s or 2 s as soon as they become feasible, reshaping
the distribution of At, towards the smaller over estimations.

Related to this, the bottom right plot provides the distribution of iteration steps, where one
stands for the case that only one calculation step has been required, and hence the flight
time estimation resulted immediately in a feasible problem. If the estimated flight time had
to be increased once, then this implies two computation steps etc. In total, the cases of more
than one computation step appear in roughly 35% of all simulation sets, which is consistent
with the findings that the flight time estimation underestimated the optimal flight time in
35% of all sets.

The lower left plot is of special interest regarding computing time, revealing that the guid-
ance function provides a solution within 0.08 seconds on a regular Desktop Computer for
almost all simulation sets. Taking into account the previously found factor 10 for the compu-
tation time on EAGLE’s on-board computer, this implies that the guidance function provides
a reference trajectory within one second in any case. Moreover, a detailed analysis revealed
that cases with computation times more than 0.05 s, and also with a higher number of com-
putation steps, are related to high initial velocities with magnitudes above 5 3, which are
not expected for the first EAGLE maneuvers in which this prototype guidance function will
be applied. Therefore, the guidance function is indeed on-board feasible, as it provides so-
lutions in any case in much less than a second.

6.3. Results and Interpretation 49

0.2 0.4
0.15
IS
0.1
0.05
0
-10 0 10 01 2 3 4 5 6
At =t. —t, [s] Aty =t, — 1, [s]
1 1
e 0.5 2 0.5
0 0
0 0.05 0.1 1 2 3 4 5
Runtime [s] Number of computation steps
FIGURE 6.2: Distributions for simulation case 1
04 b
0.3 b
NS
0.2r i
0.1 .
04 b
0.3 b
IS
0.2r i
0.1 :
0 0.1 0.2 0.3 0.4 0.5
Afy/ fo

FIGURE 6.3: Distribution of relative deviations for simulation case 1

The top plots in figure 6.2 are distributions for absolute values. However, they do not pro-
vide information about the actual overestimation relative to the optimal flight time. An
overestimation of At, = 2 seconds has less effect if it is related to a larger minimum flight
time. Therefore, the top plot of figure 6.3 plots the distribution of the relative time deviations
for the guidance function At_zg_ In 80% of all simulation sets, the trajectories are calculated by
the guidance function for flight times that overestimate the optimal flight time by less than
20%. The same holds for the relative fuel consumption, where the 80% of the trajectories

50

Chapter 6. Simulation and Tests of Guidance Function

computed by the guidance function require less than 20% more fuel than the corresponding

optimal trajectories.

0.25

0.2

0.15

0.1

0.05

0.8

0.6

0.4

0.2

0.05
Runtime [s]

0.1

0.5

0.4

0.3

0.2

0.1

Aty =t, —t, [s]

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5

Number of computation steps

FIGURE 6.4: Distributions for simulation case 2

0.5

0.1

0.2

0.3 0.4 0.5

Afyl fo

FIGURE 6.5: Distribution of relative deviations for simulation case 2

Compared to this first simulation case, the second simulation case reveals simular results in
figure 6.4 and 6.5 . There are two main differences visible between those two cases. On the
one hand, the flight time estimation block tends to underestimate the optimal flight time in

6.3. Results and Interpretation 51

more simulation sets than in the first simulation case. However, one cannot conclude that
this is related only to the up-ward movements included in this simulation case, since the
underestimations might also be related to downward movements targeting at a final point
close to the initial one. Even in these maneuvers, the guidance function provides a result in
less than 0.05 s of runtime in most of the simulation sets.

53

7 Conclusion and Perspective

In this thesis, an on-board applicable trajectory optimization algorithm for powered descent
landing maneuvers has been developed based on convex optimization and the "loss-less"
convexification of the powered descent landing method by [1]. The first contribution of this
thesis is a computation chain, which transcribes the corresponding convexified optimal con-
trol problem into a non-linear program tailored to the needs of the embedded conic solver
ECOS, which is used for obtaining the solutions of the problem. The framework developed
here has been verified with an example Matlab simulation of Mars pinpoint landing, for
which the results are in absolute agreement with the findings of [1].

The second contribution is a guidance function for on-board usage on EAGLE based on
this trajectory optimization algorithm, which also has been implemented in C-code and a
Simulink environment. In addition, the algorithm had to be extended by a preceding esti-
mation block for estimating the fuel-optimal flight time and an iterative loop for avoiding
infeasible problem formulations resulting from this estimation.

This guidance function has been tested with a set of 41503 different powered descent landing
maneuvers and reveals that all problems are solved in less than 80 ms on a regular Desk-top
computer and that the guidance function provides trajectories which require less than 20%
more fuel than the corresponding optimal trajectories. First on-board tests of this guidance
function on EAGLE proved that the guidance function is indeed on-board applicable and
the corresponding computations require 10 times longer than on a Desktop computer. The
guidance function is therefore expected to provide close-to-optimal trajectories within far
less than a second on EAGLE, making it a robust, fast and almost optimal tool for real-time
trajectory optimization on-board of EAGLE.

The guidance function and trajectory optimization framework developed in this thesis sets a
base of on-board trajectory optimization algorithms, especially applied for EAGLE. Thanks
to the great adaptivity of the algorithm developed in section 4.3, one can easily add further
constraints, assuming that they are available in a convex form. This means that the consid-
ered optimal control problem can be improved and become more realistic.

Besides that, the developed guidance function is a first step towards a guidance function
in the control system of EAGLE that produces optimal reference trajectories in real-time.
Possible improvements of the function itself would consist of an in-depth investigation of
possible estimation methods for the optimal flight time, which on the one hand would im-
prove the quality in terms of fuel-usage, but on the other hand also the robustness and
computation time. Also, adapted formulations of the considered optimal control problem
are currently subject to further investigations and have resulted in promising results besides
the work presented in this thesis.

A future major step is the entire implementation of the guidance function within the control
system of EAGLE. This has already been partially accomplished, as well. Within the next
months, the guidance function will be tested in free flights of EAGLE after an entirely suc-
cessful implementation.

The developed trajectory optimization algorithm is not only applicable to EAGLE, but pro-
vides a general tool for real-time trajectory optimization. As an example, future reusable
rockets require fuel-saving and precise trajectory calculations in real-time throughout the
whole flight time. The method presented in this thesis can potentially be applied for any
vehicle requiring fuel saving trajectories. As shown in this project, a reliable and robust
real-time applicable guidance function can be developed with open-source available tools,
making the solution cheap and flexible.

55

A Appendix

A.1 Proof for quadratic constraints as SOCP

The following proof underlines the connection between quadratic constraints given in the

form of
eTHe +ple+q=a"FTFr+pT2+¢<0 (A1)

and the second order cone formulation

1+pL z+q
2

ol
cl=pr—g (A.2)
Fx 2

which will be used for implementing quadratic constraints as second order cone constraints.
A similar, but unreferenced proof has been found on [11] after the following proof had been
developed. Substituting y = p’z + q one obtains:

Fx o
o Ly
Fz||, -2
1+y)° 2 l-y
F <
¢ (3Y) + o) <
1 1-—
\/(1+y)2+xTFTFx <Y
4 2
\/(1+y)2+4:cTFTFx <l-y
(1+y)° +42"FTFx <(1-y)?
(149 -1 -y +42"FTFu <0
4y + 42T FT Fy <0
TFTFz 4y <0

tTFTFe +pla+q <0

56 Appendix A. Appendix

A.2 Column-Compressed Storage of Matrices

To illustrate the structure of column-compressed storage matrices, we make use of the fol-
lowing example from [4]: Assume a matrix A is given by

10000-2 0
3900 0 3
A— 0787 0 0
3087 5 0
0809 9 13
0400 2 -1

Then the column-compressed storage version is represented by the arrays:
Value Array: A, = [1033978588...92313 —1]

Row Array: A =[124235634...5625 6]
Column Array: Aj, = [1 4 8 10 13 17 20]

Note that the last element of the column array is needed to identify the last non-zero element
of the matrix A stating that the number of non-zero elements in matrix A is 19.

A.3. Convex Simulator - Parameters 57

A.3 Convex Simulator - Parameters

double [1x3]
Initial 2
double [1x3]
Initial Velocity
doubl 3
Initial Mass | ™ double (2)
double [1x3]
Initial Cc
double
Initial Slack|
3
Initial Conditions
omputing Time
double
81 Ecos Solution
double (891) 891
Final Time T_f
3 10
double [1x3] Display
Final Position
le [1 E—
Finat double [1x3] 2
double
Final ‘
double [1x3]
Final Control
double
Final
End conditions 3
double (10)
double [7x11]
[7x11]
[7x11]

Dynamics Matrix

Solver

FIGURE A.1l: Simulink-Model of the simulation framework

The following provides a list of current parameters tunable via the mask on the S-function:

58

Appendix A. Appendix

Parameter Number | Description

1 Number of nodes for discretization

2 Dimension of Position vector x (or in general of state vector)

3 Dimension of Mass (or additional state variables)

4 Dimension of control vector u (or in general of control vec-
tor)

5 Dimension of slack variable s (or in general slack vector and
additional control variables)

6 Start Time ¢, [s]

7 Number of thrusters n

8 Maximum thrust level of thrusters T' [kN]

9 Lower Thrust Boundary (as fraction of T")

10 Upper Thrust Boundary (as fraction of T')

11 Chant angle of thrusters ¢ [DEG]

12 Specific Impulse I, [s™!]

13 Magnitude of Earth’s gravitational acceleration (used for
calculating mass flow o from I,)

14 Gravitational acceleration on spacecraft on/off

15 Magnitude of gravitational acceleration vector [3] (nega-
tive if in negative direction of axis stated in 16)

16 Axis parallel to gravity 1,2, or 3

17 Initial condition for position on/off

18 Initial condition for velocity on/off

19 Initial condition for mass on/ off

20 Initial condition for control (u) on/off

21 Initial condition for slack variable on/off

22 Final condition for position on/off

23 Final condition for velocity on/off

24 Final condition for mass on/ off

25 Final condition for control (u) on/off

26 Final condition for slack variable on/off

27 Upper constraint on slack variable (o) on/off

28 Lower constraint on slack variable (o) on/ off

29 Upper constraint on mass variable (z) on/off

30 Lower constraint on mass variable (z) on/off

31 Slack constraint on control (||u|| < s) on/off

32 Thrust pointing constraint at end on/ off

33 Thrust pointing direction axis at end £1, +2 or +3

34 Glide slope constraint at end on/off

35 Glide slope angle [DEG]

36 Thrust pointing constraint on/off

37 Maximum deviation of thrust vector to reference axis

TABLE A.1: Parameters for the solver block in the simulation model

59

Bibliography

[1] B. Acgikmese and S. R. Ploen. “Convex programming approach to powered descent
guidance for mars landing”. In: Journal of Guidance, Control, and Dynamics 30.5 (2007),
pp- 1353-1366.

[2] Behcet Acikmese et al. “Lossless Convexification of Nonconvex Control Bound and
Pointing Constraints of the Soft Landing Optimal Control Problem”. In: IEEE Transac-
tions on Control Systems Technology 21.6 (Nov. 2013).

[3] San Martin et. al. “In-flight experience of the Mars Science Laboratory Guidance, Nav-
igation, and Control system for Entry, Descent, and Landing”. In: CEAS Space Journal
(2015).

[4] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

[5] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Pro-
gramming. Society for Industrial and Applied Mathematics Philadelphia, 2010, pp. 130-
131.

[6] L.Blackmore, B. Agikmese, and D.P. Scharf. “Minimum-Landing-Error Powered-Descent
Guidance for Mars Landing Using Convex Optimization”. In: Journal of Guidance, Con-
trol and Dynamics 33.4 (2010).

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004, pp. 36-37.

[8] Timothy Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and Ap-
plied Mathematics, 2006.

[9] A.Domahidi, E. Chu, and S. Boyd. “ECOS: An SOCP solver for embedded systems”.
In: European Control Conference (ECC). 2013, pp. 3071-3076.

[10] M. Dumke. “GNC 2017 - 10th International ESA Conference on Guidance, Navigation
and Control Systems - EAGLE- Environment for Autonomous GNC Landing Experi-
ments”. In: 2017.

[11] wyer33. Converting from Quadratic to Second Order Cone optimization problem. Mathe-
matics Stack Exchange. Version: 2016-10-04. URL: https://math. stackexchange.
com/q/19391609.

https://math.stackexchange.com/q/1939169
https://math.stackexchange.com/q/1939169

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Outline

	Background
	Vertical Take-Off and Landing Demonstrator - EAGLE
	Mathematical Preliminaries
	Optimal Control Problems
	Non-Linear Programming, Transcription and Discretization
	Convex Optimization Problems
	Interior Point Methods and SOCP with ECOS

	Powered Descent Landing as a SOCP
	Problem Formulation
	Problem Formulation 2 - Convexification of Thrust Magnitude
	Problem Formulation 3 - Dynamics Linearization
	Example Constraints

	Transcription of the Convexified Powered Descent Landing Problem
	Discretization
	Transcription
	Transforming the Cost-Function
	Transforming the Equality Constraints
	Transforming the Inequality Constraints
	Transforming Second Order Cone - Inequality Constraints

	Implementation and Verification

	Development of an On-board Feasible Guidance Function
	Transition to C
	CSparse Library for CCS-Matrix Creation
	Pre-allocation of Arrays

	Convex Simulator in Simulink
	Run-time Results and Processor-in-the-Loop-Verification
	Guidance Function Design
	Optimal Flight Time Estimation
	Optimal Flight Time Estimation in Two Dimensions
	Flight Estimation for the Powered Movement
	Real-time Applicable Guidance Function

	Simulation and Tests of Guidance Function
	Simulation Setup
	Analysis Procdure
	Results and Interpretation

	Conclusion and Perspective
	Appendix
	Proof for quadratic constraints as SOCP
	Column-Compressed Storage of Matrices
	Convex Simulator - Parameters

	Bibliography

