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Mapping MIMO control system specifications into
parameter space

Michael Muhler!

Abstract

This paper considers the mapping of design objectives
for parametric multi-input multi-output systems into
parameter space. To this end mapping equations for
standard norm specifications are derived. Design ob-
jectives under consideration include Heo performance,
H, performance and dissipativity. The mapping equa-
tions are derived from a novel uniform framework.
These presented mapping equations are similar to the
well-known mapping equations for pole location spec-
ifications. The theory which extends the parameter
space approach to MIMO systems is iliustrated by an
example.

1 Introduction

The parameter space approach has been ane of the ear-
liest concepts to analyze and design control systerms
subject to structured (parametric) perturbations. The
classical purpose of parameter space methods is to es-
tablish a direct correlation between roots of the char-
acteristic equation and adjustable or uncertain param-
eters appearing in coefficients of the equation. Robust
controller design based on this method is thoroughly
presented in [1] and supported by publicly available
software {2].

Recently there has been an increased inferest in map-
ping frequency-domain specifications into a parameter
plane. Incorporating these specifications into the con-
troller synthesis enables the designer to take specifi-
cations into account which are diffieult to express by
time-domain specifications. Furthermore a robust de-
sign with respect to unstructured uncertainties such as
high-frequency parasitic medes is possible. H,. norm
specifications have been mapped into parameter space
in [3] for SISO systems using the magnitude of a single
1/O channel, while {4] considered specifications arising
from the Nyquist and Popov planes. A Routh-Hurwitz
type criterion for the MIMO H norm was presented
in [5] and frequency restricted magnitude bounds for
interval rational functions were investigated.

The purpose of this paper is tc derive the mapping
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equations of control design objectives for paramet-
ric multi-input multi-output systems into parameter
space. We consider general well accepted and widely
used norm specifications, namely the ., and H; norm.
In addition the derivation of the mapping equations for
dissipativity {passivity), generalized Fy norm, Hanke!
norm and the complex structured stability radius fits
into the same framework.

This paper is organized as follows. MIMO specifica-
tions are reviewed in Section 2. Section 3 is a brief
presentation of algebraic Riccati equations (ARE) and
their basic properties. This section also introduces
a theorem for parameter dependent algebraic Riccati
equations due to [6], which will be used to establish
the mapping equations. The main result of this paper,
namely the mapping equations for MIMO specifications
are presented in Section 4, followed by a robust control
example in Section 5. Finally in Section 6 we summa-
rize the most important conclusions.

2 MIMO specifications in control theory

This section reviews the various specifications and ob-
jectives relevant for design and analysis of multivariable
control systems. All specifications will be formulated
using algebraic Riccati equations or Lyapunov equa-
tions. While there will be no special notation for para-
metric dependencies, the considered systems might de-
pend on several real parameters g € R%. Since the pa-
rametet space approach does not favor controller over
plant uncertainties we will not discriminate these.

Consider uncertain, time-invariant systems with state-
space realization

= A(g)r+ B(qg)u, y=Clgdz+D(gu (1)

or transfer matrix H(s,q), Le.

H(s,q) = C{g)(sI — A(@))""B{g) + D(g). {2

)

Our main objective is to map specifications relevant for
dynamic systems {1) and {2} into the parameter space
or a paramster plane.



2.1 H,, performance
The Hy, norm of (2) with 4 being stable and
Tmax{D) < v, satisfies

H{Gw)l| <7,
if and only if the algebraic Riccati equation
vXBS!'B'X + ~C*S'C— X(A-BS;'D*C)
- (A-BS/D*CYX =0, (3)

has a hermitian solution Xy such that all eigenvalues
of A — BB*X; lie in the open left half-plane, where
8, =(D*D —~*I) and S; = (DD* —+71).

Vo e R

2.2 Passivity and Dissipativity

Passivity is equivalent to the transfer matrix H being
positive-real, i.e. H{s) + H(5)* > 0, ¥ Res > 0, which
can be expressed in the time-domain as

T
f wlydt >0, Yz(0)=0,T > 0. (4)
4]

Condition (1) is equivalent to the following state-
ment [7]: There exists X = X* satisfying the ARE
AX+XA+{XB-CWHD+D* )Y (XB-C** = 0. (5)

A system is said to have dissipation » if

T
/ (wfy —nuTu)dt >0, vz(0)=0,T>0
U]

Thus passivity corresponds to nonnegative dissipation.
A system has dissipativity 5 if the following ARE has
& hermitian solution

(XB-CN(2pl — (D+ DY YXB - C*)

TA'X +XA=0, (6)

Remark I Both H. aond dissipativity specifications
fit into the more general framework of gquadratic con-
straints of the form

T 3l

2.3 Structured complex stability radius
The compler structured stability radius of the system

(t) = (A+ UAV)z(t) (8)
is defined by
re =inf {[|A]]: c{A+UVAVINC, £}, (9)

where A is a complex matrix of appropriate dimension,
€, denotes the closed right half plane and |[Af| the
spectral norm of A. Following [8], r¢ can be computed
using the equality

re(A U V) = ||V(sI = AUl
Thus the determination of the complex structured sta-

bility radius is equivalent to the computation of the
H,. norm of a related transfer function.

4528

2.4 H, performance
The Hs norm is defined as

| Hljz = (Trﬁl,:;/_iﬂ{jw)ff(jw)*dw)m

This norm is only finite if & = 0 (resp, D(gq) = 0).
Hence we assume D) = 0 in this subsection.

The Ha norm can be expressed as

|H|Z = Tr (BT Wes. B), {10)
where Wep, is the observability Gramian of the realiza-
tion, which can be computed by solving the Lyapunov
equation

ATWope + Wop A+ CTC = 0. (11)
The Hy norm is different from the specifications pre-
sented so far in that a specification |[H||2 < v cannot
be expressed by an ARE. In that sense the H, norm
does not really fit into the ARE framework. But this
specification can be formulated by means of the more
special Lyapunov equation, which is affine in the un-
kmown W,

2.5 Generalized H; norm

In the scalar case, the H; norm can he interpreted
as the system gain, when the input are L, functions
and the output bounded L., time functions. Thus the
scalar Hy norm is a measure of the peak output ampli-
tude for energy bounded input signals. Low values for
this quantity are especially desirable if we want to avoid
saturation in the system. Unfortunately this interpre-
tation does not hold for the Hy norm in the vector case.
The so-called generalized Hy norm, defined in [9], can
be expressed as

1 |12, = A& (B Wan B), if |[ylloc = sup [lg(0)]2
<t<oo
or
Hllog = dil (BT Woss B) if [[ylloe = sup [[y(t)]}oo
0<t<oo

depending on the type of I norm chosen for the vec-
tor valued output y. Here, Amax(-) and dio.{-) denote
the maximum eigenvalue and maximum diagonal entry
of a nonnegative matrix respectively.

2.6 Hankel norm

The Hankel norm of a system is a measure of the effect
of the past system input on the future output. It is
known that the Hankel norm is given by

[]H! ‘hanke.’. = }‘i{fx{{'yobs vvcc’ntr):

where the controllability gramian W, ... is the solution
of AWionsr + Weonen AT + BBT =1,



The Gramian W, measures the energy that can ap-
pear in the output and Weornsr measures the amount of
energy that can be stored in the system state using an
excitation with a given energy.

3 Algebraic Riccati equations

This section gives an overview of algebraic Riccati
equations. The general algebraic matrix Riccati equa-
tion is given by

XRX - XP-P'X—-Q=0, (12)

where P, R and @ are given n X n complex matrices
with @ and R hermitian. Although in most applica-
tions in control theory P, R and @ will be real, the
results will be given for complex matrices were possi-

ble.

An ARE has in general many solutions. Real symmet-
ric solutions, and especially the maximal solution, play
a crucial role in the classical continuous time quadratic
control problerns.

For R = 0 the ARE reduces to an affine matrix equa-
tion in X. These so called Lyapunov equations have
proven to be very useful in analyzing stability and con-
trolability.

Associated with (12) is a 2n x 2n Hamiltonian matrix:

”g }i} : {(13)

The matrix M in (13) can be used to obtain the solu-
tions of {12). For the parameter space approach these
particular solutions are not relevant, but we will use
some properties of (13). Namely the set of all eigenval-
ues of M is symmetric about the imaginary axis. To
see that, introduce
0 -7
=P

I

It follows that J-*MJ = -JMJ = —M*. Thus M
and —M* are similar and X is an eigenvalue of A if
and only if —X is. The following theorem provides
an important link between solutions of AREs and the
Hamiltonian M.

M- |

Theorem 1 Suppose that R > 0, @ = Q*, (P, R) is
stabilizable, and there is a hermitian solution of (12).
Then for the mazimal hermitian solution X, of (12),
P — RX is stable if and only if the matriz M from
{13} has no eigenvalues on the imaginaery azis.

" Thus the non-existence of pure imaginary eigenvalues
is a necessary and sufficient condition that the ARE
(12) has a maximal, stabilizing, hermitian solution.
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Since the parameter space approach deals with uncer-
tain parameters we will extend the previous results for
invariant matrices to matrices with uncertain parame-
ters in the next section.

3.1 Continuous and analytic dependence
Suppose now that the matrices P, Q and R are real
analvtic functions of a real parameter g € R,ie. P=

P(g),Q = Qlq). R= R(g).

Theorem 2 [Lancaster,Rodman,[6]] Let P = P(g),
Q = Q{q), and R = R{g) be analytic n x n matric
functions of q on a real interval [g7;q%], with Riq)
positive semidefinite hermitian, Q(g) hermitian, and
(P(g}, R(q)) stabilizable for every g € lg7;qT]. Assume
that for oll g € [q7; 47|, the Riccati equation

X(q)R(g)X(g) — X(q)P(g) — Pla)"X(q) - Qlg) :(1?1 |

has o hermition solution. Further assume that the
number of pure imaginary or zero eigenvalues of

_[-P(g) Ria)
M(a) '{@{g) P(q)*} (15)

is constant. Then the mazimal selution X,{q) of (14}
is an enalytic function of q € [q7;q"]. Conversely, if
X, {q) is an analytic function of g € [a=;q7], then the
number of pure imaginary or zero eigenvalues of M(g)
is constant.

The previous result can be generalized to the case when
P{q), Q(q) and R{q) are analytic functions of several
veal variables g = (g1,...,qq4) € §2, where {} is an open
connected set in RY.

4 Mapping specifications into parameter space

In this section we present the mapping equations for
the specifications given in Section 2 for systems with
urncertain parameters.

In general, the parameter space approach maps spec-
ifications into the space of parameters, We are thus
seeking the subspace for which the specifications are
fulfilled. Especiaily important are parameter planes,
since the resulting subspaces are simple regions which
are easily visualized by their boundaries. This allows
intuitive, interactive design of robust control systems.

For eigenvalue specifications the boundary of the de-
sired region in the eigenvalue-plane is mapped into a
parameter plane by the characteristic polynomial. Us-
ing the real and imaginary part of the characteristic
polynomial we get two mapping equations which de-
pend on a generalized frequency and the uncertain pa-
rameters. The mapping equations presented in this sec-
tion will have a similar structure.



4.1 ARE based mapping

While we provided the definition of the H,,, dissipa-
tivity and complex stability radius specifications, we
showed that all of these specifications are equivalent
to the existence of a maximal, hermitian solution of
an ARE. Using Theorem 1 we can in turn formulate
the adherence of the given specifications as the non-
existence of pure imaginary eigenvalues of an associated
Hamiltonian matrix.

Consider now the uncertain parameter case. Using
Theorem 2 we can extend this equivalence to sys-
tems with analytic dependence on uncertain parame-
ters. Given a specific parameter ¢* € R™ for which a
maximal, hermitian solution X {g*) exists, we know
from Theorem 1 that the Hamiltonian matrix (15) has
no pure imaginary eigenvalues. Using Theorem 2 we
can extend this property as long as the number of
eigenvalues on the imaginary axis is constant. In other
words, having found a parameter for which a specifica-
tion described by an ARE holds, the same specification
holds as long as the number of imaginary eigenvalues
of the associated Hamiltonian (15) is zero and does not
change. Hence the boundary of the subspace for which
the desired specification holds is given by all parame-
ters for which the number of pure imaginary eigenval-
ues of (15} changes. A new pair of imaginary eigenval-
tes of (15) only arises if sither two complex eigenvalue
pairs become a double eigenvalue pair on the imaginary
axis or if a double real pair becomes a pure imaginary
pair. Note: Another possibility is a drop in the rank of
M, which corresponds to eigenvalues which go through
infinity.

Let us first discuss the appearance of pure imaginary
eigenvalues through a double pair on the imaginary
axis. The matrix M{g) has a double eigenvalue at
A = jw if and only if

e ~ M{g)] =0,

: (16}
& |jwl = M(g)| = 0.

A necessary condition for a real eigenvalue pair which
becomes a pure imaginary pair through parameter
changes is

g T — M{q)|ymp = M (q)| = 0. (17)

Additionally the opposite end of the imaginary axis has
to be considered

gl = M(g) (18)

§w=oo :

‘Equation (18) is just the coelficient of the term with
the highest degree in s of [s] — M.

Equation {17) is not sufficient, since it determines all
paramsters for which (15) has a pair of eigenvalues at
the origin. This includes real pairs which are just in-
terchanging on the real axis. To get sufficiency we have
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to check all parameters satisfying (17}, if there are only
real eigenvalues.

The mapping equations (16}, {17}, and (18) have a sim-
ilar structure like the familiar equations for pole loca-
tion specifications. Actually (16), {17}, and (18) can
be interpreted as the complex, real, and infinite root
boundary, respectively. Using the above approach and
Lyapunov's famous ARE for Hurwitz stability

ATP+PA=-Q, Q=07 >,

we get mapping equations for the CRB and RRB which
have the same solution set as the equations derived
from the characteristic polynomial.

Example: Hy, Norm

Using (3) and Theorem 2 the following result holds for
the prominent H,, norm: Let A be stable and v >
Tmax (D). Then [{Hi., < - if and only if

A-BS-DTC

A — —vBS1BT
T a0Ts e

—AT + CTDS;iBT}

has no pure imaginary eigenvalues. Thus M, is the
Hamiltonian matrix needed in the mapping equations
{16}, (17) and (18). Two remarks have to be made
about the H, norm mapping. The H,_ norm requires
the transfer function H{s} being stable, thus we have
to additionally map the Hurwitz stability condition.
Without this additional condition we are actually map-
ping a L., norm condition. Second, using a frequency
domain formulation it can be shown that the condition
Y > Omax (D) is implicitly mapped by {17) and (18).

4.2 H; Norm
We will now present the mapping equation for the
Hy norm. Using (10) a specification on the Hz norm
like [{H (g){i2 < = can be mapped into the parameter
space. In order to use (10} as a mapping equation we
have to compute the parameter dependent observahil-
ity Gramian Wop,. This can be done using the Lya-
punov equation (11} which is a linear equation in the
unknown matrix elements w;; of We.. Thus even for a
system with uncertainties Wy,.(g) can be readily com-
puted. The resulting mapping equation

HIZ = Te(B(9)" Wans (@) Blg)) = v2,  (19)
is a single equation which depends only on the system
paremeters gq. This is in line with the fact that the
general definition of the Hs norm includes an integral
over all frequencies.

If the parameters ¢ enter in a polyvnomial fashion into
A(g), B(g), C{g}, the mapping equation (19) is a poly-
nomial equation.



Note: There are some special cases, when (19) is affine
in one or more parameters, but in general this equation
is polynomial in g, even if A(g), B{q),C{g) are affine in
q.

4.3 Maximal eigenvalue based mapping

Both the Hankel and the generalized Hy norm can be
expressed as a function of a parametric matrix. These
associated matrices can be computed using the solution
of parametric Lyapunov equations.

To get mapping equations for the Hankel and gener-
alized Hs norms, we apply standard results for map-
ping eigenvalue specifications. Namely a condition
Amax{M) = 7, where M is a nonnegative matrix leads
to the mapping equation

Iyl — M

Accordingly the condition dye(M) =¥, M > 0 leads
to the mapping equations

=0

My =7, i=1.n.

5 Example

We consider a well-known satellite control problem to
demonstrate the incorporation of H., and Hz norm
specifications into a robust control design. The satel-
lite model consists of two rigid bodies {main body and
sensor module) connected by a flexible link which is
modeled as a spring with torque constant k and vis-
cous damping f. These real parameter are uncertain
in the ranges k € [.09; 4], and f € {.0038;.04].

The equations of motion are

Jifs + f(f) — 6a) + k(61 — 62)
Joflg + f(lgg — 91) + k:(gz — 91)

T. +w
0

where 7T, is the control torque and w is a torque dis-
turbance on the main body. The inertias are given as
Ji=1and J5 =1

The purpose of the control system is to minimize the
influence of the disturbance w on the angular position
#3 of the sensor module. The following specifications
are used to achieve this goal:

e minimize the RMS gain from w to 3 while keep-
ing the Hy norm of the transfer function from w
to (01,0, T.) small {LQG cost of control}.

¢ guarantee a minimum decay rate of 10 seconds

and closed-loop damping I} = 0.5.

In this example we design a robust state-feedback
controller T. = —cT# which satisfies these require-
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T

ments for the entire operaling range, where ¢
[61 o C3 64} and QT - ;—.91 92 91 92}

To solve this problem we use the invariance plane con-
cept developed in [10] to sequentially shift the poles of
the system. In the first step we move the rigid body
poles from the origin to A = —.2 = .35]. This assigns
the desired dynamics to the rigid body. Actually this
can be done in a robust manner without affecting the
flexible modes of the system.

In the final step we have to modify the flexible modes
such that all design goals are satisfied. We proceed
as follows: Choose a representative point for which
an invariance plane is computed which shifts only the
flexible modes without affecting the rigid body modes.
We choose a vertex of the operating range, namely
k= .09, f = .0038. The invariance plane for this oper-
ating point is given as

or

167 .0167 412 .0412]

98 —80 0
e ml | 41

(20)
45
.82

with kg, ks 28 [ree parameters. While (20) guarantees
that the rigid body modes remain unaffected for the
chosen operating point, this is not true in general. Thus
we will map the eigenvalue specifications for the four
vertices of the operating range in order to guarantee
robust satisfaction of the eigenvalue requirements. Fig-
ure 1 shows the resulting boundaries, where the set of
good parameters is shaded grey.

Eigerwalué specifications

LIE L TP SOIspa

L

iy

E

Figure 1: Boundaries with good set for eigenvalue speci-
fications.

Using (19) and the mapping equation for the H we

map the following specifications

HGMFH(Q;,G;;,T:)HQ = {2>23}! EiG’w#—"Bsz = {25~ 3, 1}
(21)

into the ke, & invariance plane for the four vertices of

the uncertain parameter set {f, k). Figure 2 depicts the



set of parameters which satisfies the LQG cost specifi-
cation. Darker regions are used for specifications which
are more difficult to achieve. From this figure and the
RMS gain mapping not shown here, we can conclude
that the concept of first moving the rigid body mode
to desired position without affecting the elastic mode
leads to quite similar regions in the subsequent invari-
ance plane.

H,, Norm specifications

Figure 2: LQG cost of control in invariance plane.

Figure 3 depicts the set of good parameters for the
eigenvalue, Hy and . norm specifications in a single
plot which allows selection of controllers which robustly
satisfy all specifications. Actually it turns out that for
the given eigenvalue specifications pareto-optimal con-
trollers for the Hs and H., Norm are given by param-
eters on the lower edge of the eigenvalue polygon in
the invariance plare. Thus by using controllers from
this lower edge we can tradecff the Hy and H.. norm
while robustly satisfying the eigenvalue requirements.
We have therefore found a robust controller which re-
sults in similar closed-loop dynamics.

ltipte Specificat
T e

Figure 3: Good parameters for eigenvalue, He and Ho.

norm specifications.
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6 Conclusions

In this paper, the mapping equations of design objec-
tives for parametric multi-input multi-output systems
into parameter space were presented. Algebraic Ric-
cati and the more special Lyapunov equations provide
a uniform framework in which all presented specifica-
tions fit.

A robust control example showed that incorporat-
ing standard MIMO specifications into the parameter
space approach is both possible and rewarding.
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