
Compile-time dynamic and recursive data structures in Modelica
[Work in Progress]

Matthias Hellerer
German Aerospace Center (DLR)

Institute of System Dynamics and Control
Oberpfaffenhofen, Germany
Matthias.Hellerer@DLR.de

Fabian Buse
German Aerospace Center (DLR)

Institute of System Dynamics and Control
Oberpfaffenhofen, Germany

Fabian.Buse@DLR.de

ABSTRACT
The current Modelica Standard (v3.3) does not support dynamic or
recursive data structures. For many applications this constitutes a
serious restriction rendering certain implementations either impos-
sible or requires elaborate and unelegant constructs. In this paper
we will show that support for dynamic and recursive data structures
can be implemented in the Modelica IDE Dymola using a variety
of advanced constructs. This proves the principle viability of the
then proposed inclusion of those data structures in the Modelica
Standard.

CCS CONCEPTS
•Computingmethodologies→Modeling and simulation; Si-
mulation languages; • Theory of computation→ Data structures
design and analysis;

KEYWORDS
Modelica, Dymola, dynamic data structures, recursive data structu-
res, language enhancement
ACM Reference Format:
Matthias Hellerer and Fabian Buse. 2017. Compile-time dynamic and re-
cursive data structures in Modelica: [Work in Progress]. In EOOLT’17: 8th
International Workshop on Equation-Based Object-Oriented Languages and
Tools, December 1, 2017, Wessling, Germany. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3158191.3158205

1 INTRODUCTION
Data structures in Modelica are generally static. They are pre-
allocated during compilation and cannot be changed later, as this
would necessitate a structural change of the model. Dynamic data
structures are data elements which can change their structure. For
the purpose of this paper we will introduce a differentiation bet-
ween run-time dynamic data structures and compile-time dynamic
data structures. In the context of Modelica and similar modeling lan-
guages, run-time dynamic data structures would be able to change
their structure while the simulation is performed and therefore in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EOOLT’17, December 1, 2017, Wessling, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6373-0/17/12. . . $15.00
https://doi.org/10.1145/3158191.3158205

reaction to simulation results. For example adding a new value to an
array every time a certain event occurs1. This is traditionally what
is referred to as dynamic data structures. Compile-time dynamic
structures similarly may change their structure but only during the
compilation process and are static afterwards, during run-time [3].

A Modelica tool forms a models differential-algebraic equation
(DAE) system during compilation and it cannot be changed du-
ring run-time. Attempts to change this are still actively researched
but not yet available [2, 5, 14, 15]. None the less, before the DAE
system is formed, dynamic data structures can be used as will be
shown here. A somewhat similar concept is already part ofModelica,
evenso with a somewhat limited scope, in the form of expendable
connectors (Often refered to as busses.). An expendable connector
allows the user to add arbitrary values to a connection after the con-
nector was defined. Here the values on the bus are also determined
at compile-time [1].

Recursive data structures are data structures containing data of
their own type[11]. A very common construct in computer science
and pre-requisit for many applications. For example linked lists are
comprised of a data elements and either the next element itself or
a link (e.g. a pointer) to the next element in the list, which itself
shows the same structure [9, 13]. Listing 1 demonstrates a linked
list in Modelica syntax.

Listing 1: Simple linked list
1 record l i n k e d L i s t E l emen t
2 Rea l da t a ;
3 l i n k e d L i s t E l emen t nex tE lement ;
4 end l i n k e d L i s t E l emen t ;

This is repeated for all elements of the list until its end is indicated
(e.g. by a nullptr) [10]. Such data structures are currently not
supported by Modelica (as of v3.3) [1]. A Modelica record may not
contain a reference to itself and has no concept of pointers. We will
show here how compile-time dynamic arrays may be used similar
to pointers, allowing us to implement recursive data structures.

This proves the principle viability of compile-time dynamic data
structures in Modelica and show-cases their usefulness. We there-
fore propose the inclusion of those data structures in the Modelica
Standard in the end. All libraries and applications demonstrated
here are currently only tested with the Modelica IDE Dymola by
Dassault Systèmes [4].

2 UNIQUE IDENTIFIER (UIDS) LIBRARY
This whole project started with a simple library. Often times Exter-
nalObjects require an unique identifier (UID). In large projects and
when using replaceable objects, tracking all instances of such an
1really adding a new value to the array, not changing a pre-existing array value

https://doi.org/10.1145/3158191.3158205
https://doi.org/10.1145/3158191.3158205

EOOLT’17, December 1, 2017, Wessling, Germany Hellerer, Buse

external object and assigning unique IDs can be tedious and error
prone. We therefore developed a small library using an inner/outer
construct which allowed us to automatically assign unique IDs. The
library later grew to incorporate multiple groups (e.g. when using
multiple C-libraries in one model) within which the IDs had to be
unique and a counter for the total number of IDs within such a
group was added.

Based on this library we started to experiment and soon discove-
red that UIDs could not only be used for external objects but also
in Modelica code, yet only in very simple models. While C-code
will almost always accept the UID at run-time, most interesting
applications in Modelica require the UID value at compile-time.
That is before the model is flattened and the DAE is formed. For
example accessing a value in an array using UIDs works, but using
this value then in an equation and incorporating it into the DAE
system, requires the compiler to know which value is used. The
problem is, that the UID value is also determined during the com-
pilation. It is therefore not possible to use an UID in this manner.
To circumvent this problem we found that is possible to write cer-
tain information to a file before the compilation process itself is
started using final parameter, algorithms as well as the __Dy-
mola_preInstantiate command2. The file may then be accessed
to retrieve the IDs during compilation.

Listing 2: UID Library models
1 model UniqueID
2 parameter S t r i n g group = " none " ;
3 f ina l parameter I n t e g e r u id = getUID (group) ;
4 annotation (_ _Dymo l a _p r e I n s t an t i a t e =
5 r e g i s t e rU ID (group)) ;
6 end UniqueID ;
7

8 model GroupTota l
9 parameter S t r i n g group = " none " ;
10 f ina l parameter I n t e g e r t o t a l = g e t T o t a l (group) ;
11 end GroupTota l ;

The UID Library consists of two main models: UniqueID and
GroupTotal as outlined in Listing 2. UniqueID-objects are assigned
a group and they provide an integer value uid, unique within this
group. The uid values start at 0, due to their emergence from the
C-interface and are in the range [0..total[. GroupTotal-objects
similarly provide the total number of values assigned within a
certain group.

3 COMPILE-TIME DYNAMIC ARRAYS
UIDs can not only be used with ExternalObjects but also in Mo-
delica code where their compile-time availability allows them to
be used similar to constants. Specifically they can be used to not
only access values in an array but also to determine the size of the
array. For an example see Listing 3.

Listing 3: Compile-time dynamic array in Modelica
1 model ArrayTes t
2 UID.UniqueID i d 1 ;
3 UID.UniqueID i d 2 ;
4 UID.GroupTota l g t o t a l ;
5 Rea l a r r ay [g t o t a l . t o t a l] ;
6 equation
7 a r r ay [i d 1 . u i d +1] = 1 ;

2This non-standard command currently limits our implementation to Dymola IDE

Figure 1: A simple data tree in Modelica

8 a r r ay [i d 2 . u i d +1] = 5 ;
9 end ArrayTes t ;

First two UniqueID-objects and one GroupTotal-object are created
(by default they will be assigned the group name "none"). The total
can then be used to create an array of fixed size gtotal.total (line
5). Furthermore the UniqueIDs can be used to identify objects in
this array and use them in Modelica code (line 7).

In this example all objects are easily visible in one model and the
user could edit it manually, but of course this could be a lot more
complicated and spread over many objects in a real application.
Thereby making the array size less obvious and requiring the user
to keep track of used IDs. Furthermore this can easily get even
more complicated with replaceable models and replaceable
packages and especially in these cases any user error usually le-
ads to unrelated error messages. An automated system like this
therefore makes such arrays much simpler to use.

4 RECURSIVE DATA STRUCTURES
Recursive data structures are among the oldest concepts in compu-
ter science [9, 13], yet they are not available in Modelica Standard
3.3 [1]. Only the generalized programming language MetaModelica,
used in the implementation of OpenModelica, supports this concept
[6, 7, 12]. Yet they can already be implemented in Modelica.

According to [6, Chapter 6.15.1] the omission of recursive data
types was a conscious decision to avoid heap allocation. The imple-
mentation shown here doesn’t require heap-allocation either for all
data definitions are handeld during evaluation and are fixed after
flattening.

Listing 4: Tree data global data array
1 model TreeData
2 replaceable TreeElemData v a l u e s [g r o u p T o t a l . t o t a l] ;
3 parameter S t r i n g treeName = get Ins tanceName () ;
4 protected
5 UID.GroupTota l g roupTo ta l (group=treeName) ;
6 end TreeData ;

Listing 5: Tree data type element
1 record TreeElemData
2 I n t e g e r pa r en t ;
3 I n t e g e r l e f t ;
4 I n t e g e r r i g h t ;
5 TreeElementType elemType ;
6 end TreeElemData ;

Compile-time dynamic and recursive data structures in Modelica EOOLT’17, December 1, 2017, Wessling, Germany

Listing 6: Tree data connectors
1 connector TreeConnec tor_a
2 input I n t e g e r up ;
3 output I n t e g e r down ;
4 end TreeConnec tor_a ;
5

6 connector TreeConnector_b
7 output I n t e g e r up ;
8 input I n t e g e r down ;
9 end TreeConnector_b ;

Listing 7: Tree data elements
1 model Root
2 TreeConnec tor_a con ;
3 parameter S t r i n g treeName = t r e eDa t a . t r e eName ;
4 protected
5 outer TreeData t r e eDa t a ;
6 UID.UniqueID uniqueID (group=treeName) ;
7 I n t e g e r ID = un i qu e ID . u i d + 1 ;
8 equation
9 t r e eD a t a . v a l u e s [ID] . p a r en t = −1 ; / / s t a r t o f b ranch
10 t r e eD a t a . v a l u e s [ID] . l e f t = con .up ;
11 t r e eD a t a . v a l u e s [ID] . r i g h t = −2 ; / / end o f b ranch
12 con.down = ID ;
13 end Root ;
14

15 model Branch
16 TreeConnec tor_a c o n _ l e f t ;
17 TreeConnec tor_a c on_ r i gh t ;
18 TreeConnector_b con_paren t ;
19 parameter S t r i n g treeName = t r e eDa t a . t r e eName ;
20 protected
21 outer TreeData t r e eDa t a ;
22 UID.UniqueID uniqueID (group=treeName) ;
23 I n t e g e r ID = un i qu e ID . u i d +1 ;
24 equation
25 t r e eD a t a . v a l u e s [ID] . p a r en t = con_parent .down ;
26 t r e eD a t a . v a l u e s [ID] . l e f t = c o n _ l e f t . u p ;
27 t r e eD a t a . v a l u e s [ID] . r i g h t = c on _ r i g h t . u p ;
28 c on_ l e f t . d own = ID ;
29 con_r i gh t . down = ID ;
30 con_pa r en t . up = ID ;
31 end Branch ;
32

33 model Lea f
34 TreeConnector_b con_paren t ;
35 parameter S t r i n g treeName = t r e eDa t a . t r e eName ;
36 protected
37 outer TreeData t r e eDa t a ;
38 UID.UniqueID uniqueID (group=treeName) ;
39 I n t e g e r ID = un i qu e ID . u i d +1 ;
40 equation
41 t r e eD a t a . v a l u e s [ID] . p a r en t = con_parent .down ;
42 t r e eD a t a . v a l u e s [ID] . l e f t = −2 ;
43 t r e eD a t a . v a l u e s [ID] . r i g h t = −2 ;
44 con_pa r en t . up = ID ;
45 end Lea f ;

The idea used to implement those data structures is to use a
global dynamic array of data elements (see Listing 4) and to use
the position within this array as one would use a pointer in other
languages, as demonstrated in Listing 5. In other words: we know
we are operating on elements of typeT in an arrayX . So Integer y
can used as pointer to the element T z = X [y]. A value of ≤ 0 can’t
address any values and may therefore be used to indicate special
conditions, like the end of a list, similar to other programming

languages. Using special connectors in Listing 6 and the implemen-
tation outlined in Listing 7, a tree data structure can be constructed
visually as shown in figure 1.

5 APPLICATIONS
The presented libraries find application in number of different si-
mulations from a variety of different research fields.

Dynamic arrays are used in our multi-body contact simulati-
ons. For this purpose it has been slightly augmented to define a
variable size matrix. In this matrix every row and every column
corresponds to one uniquely identified object and a Boolean value
indicates whether two objects are in contact (therefore the matrix
is symmetric and the main axis defined to be always false). The
presented library allows users to simply add new objects to the
simulation. The new objects are then automatically added to the
contact detection and the contact matrix grows automatically to
accommodate the new value.

Recursive data structures have originally been created for the
the DLR Rover Simulation Toolkit[8]. This toolkit allows users to
quickly and easily create planetary rovers. When a new rover is
assembled, internally a tree data structure is automatically created,
which can then be parsed recursively. This is for example used for
the rover controller to automatically calculate the rovers total mass.

6 PROPOSED NEW FEATURES FOR A
FUTURE MODELICA VERSION

Unique IDs for C-Interfaces present a very specialized application:
They are therefore well suited for a specialized library and need no
inclusion into the Modelica standard. Compile-time dynamic arrays
on the other hand are a very general concept with a large variety of
possible applications and even so we have shown that they can in
principle be implemented in Modelica, a simpler and standardized
notation would be preferable. We propose that arrays of variable
size use the same notation as is used in Modelica functions. Arrays
without determined size are denoted by A[:] and their size real size
can be determined using the notation size(A, 1). This leaves only
a notation to increase the size of an array. The proposed notation
is inc(A). This function may only be used in an equation section
and not in a when or similar sub-section. The return value of the
function would be a unique number in ∈ [1, size(1, A)] (non-
deterministic). An example using this simple notation can be found
in Listing 8.

Listing 8: Proposal for dynamic array syntax
1 model DynamicArrayExample
2 Rea l A [:] ;
3 I n t e g e r i ;
4 I n t e g e r j ;
5 equation
6 i = i n c (A) ;
7 A[i] = 5 ;
8 j = i n c (A) ;
9 A[j] = 1 0 ;
10 / / =⇒ A = {5, 10} or A = {10, 5}3

11 / / =⇒ size(1, A) = 2
12 end DynamicArrayExample ;

3depending on non-deterministic evaluation order but A[i] and A[j] are unambiguous

EOOLT’17, December 1, 2017, Wessling, Germany Hellerer, Buse

Just as dynamic arrays, recursive data structures can also be im-
plemented, but a simpler and standardized notation would again be
preferable. Modelica tries to abstract most implementation details
and focuses on the user interface. The solution we presented is clo-
sely related to the concept of pointers, a very low level concept. For
the inclusion into the Modelica standard we propose to move away
from the presented implementation and to go for a more specialized
approach. This would allow a more user-friendly treatment of the
special cases discussed earlier. This part of the notation is critical,
besides it is only necessary to use an record within itself4.

The proposed syntax is shown in Listing 9. The record test
contains a data value a and a recursive sub-element rec of type
test. Access to rec is limited. The ‘=‘-operator is used to assign
another record of type test to this element (similar to a pointer) and
the function getRec to access the element (similar to dereferencing
a pointer). The function returns the referenced record and a boolean
indicating whether or not the dereferenciation was successful. If
the referenced record is not defined as in line 12, the returned record
is not defined and the second return value is false (line 13). After
a value is assigned to the record in line 23, the value can be access
in line 24. Of course this notation means that it may only be used
in algorithm sections.

Listing 9: Proposal for recursive data structure syntax
1 record Recu r s i v eRe co rd
2 Rea l a ;
3 Recu r s i v eRe co rd r e c ; / / r e c u r s i v e d e f i n i t i o n
4 end Recu r s i v eRe co rd ;
5

6 function a c c e s s R e c u r s i v e R e c o r dUn s u c c e s s f u l l
7 Recu r s i v eRe co rd t 1 ;
8 Recu r s i v eRe co rd t 2 ;
9 Bool t 2 S u c c e s s ;
10 algorithm
11 t 1 . a = 5 ;
12 (t 2 , t 2 S u c c e s s) = ge tRec (t 1 . r e c) ;
13 / / =⇒ t2Success = false; t2 = <undefined>
14 end a c c e s s R e c u r s i v e R e c o r dUn s u c c e s s f u l l ;
15

16 function a c c e s s R e c u r s i v e R e c o r d S u c c e s s f u l l
17 Recu r s i v eRe co rd t 3 ;
18 Recu r s i v eRe co rd t 4 ;
19 Recu r s i v eRe co rd t 5 ;
20 Bool t 5 S u c c e s s ;
21 algorithm
22 t 3 . a = 7 ;
23 t 4 . r e c = t 3 ; / / c o n n e c t t 4 wi th t 3
24 (t 5 , t 5 S u c c e s s) = ge tRec (t 4 . r e c) ;
25 / / =⇒ t5Success = true
26 / / =⇒ t5.a = 7 (t5 is now alias for t3)
27 end a c c e s s R e c u r s i v e R e c o r d S u c c e s s f u l l ;

Alternatively recursive data structures could be implemented in
Modelica similar to MetaModelica. MetaModelica uses uniontypes
to implement what they call case records. In short this construct
allows a records member to be of variable type (with constraints).
In the tree example every type shown in figure 1 would be of such
a variable type. The branch would have two such recursive variable
type elements for the left and right sub-branch, while leafs would
have no such recursive elements [6, Chapter 6.15.1]. While this

4this might be more complicated when complex inheritance structures are considered
but we will focus on the simpler case here

implementation is more flexible, we believe our proposal to be
more user friendly.

7 CONCLUSION
Dynamically sized arrays and recursive data structures are and
have been at the core of almost all general purpose programming
languages since their inception. For modeling languages, the inte-
gration of those concepts is more complicated. Changes to these
data structures at run-time would necessitate structural changes to
the underlying DAE system, a topic of ongoing research. But during
compile-time such changes are possible. In fact Modelica already
supports this for the specialized case of expendable connectors and
in this paper we have demonstrated that it can be implemented in
am more generalized manner for the Modelica IDE Dymola. But,
for our implementation is both cumbersome and non-portable, we
propose the inclusion of those concepts into the Modelica language.

When talking about dynamic data structures for modeling lan-
guages it is vital to differentiate between compile-time and run-time
dynamic. While the later is hard and still requires a lot of research,
the former can be implemented easily right now and can still signi-
ficantly simplify the modeling process.

REFERENCES
[1] Modelica Association. 2014. Modelica - A Unified Object-Oriented Language for

Systems Modeling, Language Specification, Version 3.3 Revision 1. PELAB, IDA,
Linköpings Universitet, S-58183 Linköping, Sweden.

[2] Daniel Bender. 2016. DESA: Optimization of Variable Structure Modelica Models
Using Custom Annotations. In Proceedings of the 7th International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools (EOOLT ’16). ACM,
New York, NY, USA, 45–54.

[3] David Broman, Peter Fritzson, and Sébastien Furic. 2006. Types in the Modelica
language. In Proceedings of the 5th International Modelica Conference, Dr. Christian
Kral (Ed.). The Modelica Association, Vienna, Austria, 303–315.

[4] Dassault Systèmes. 2017. Multi-Engineering Modeling and Simulation - Dymola
- CATIA. (2017). https://www.3ds.com/products-services/catia/products/dymola

[5] Hilding Elmqvist, Toivo Henningsson, and Martin Otter. 2016. Systems Modeling
and Programming in a Unified Environment Based on Julia. Vol. 2. Springer
International Publishing, Corfu, Greece, 198–217.

[6] Peter Fritzson. 2015. Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach (2 ed.). Wiley, Hoboken, NJ.

[7] P. Fritzson, A. Pop, and P. Aronsson. 2005. Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica. In Proceedings of
the 4th International Modelica Conference, Prof. Dr.-Ing. Gerhard Schmitz (Ed.).
The Modelica Association and the Department of Thermodynamics, Hamburg
University of Technology, Hamburg-Harburg, Germany, 519–525.

[8] Matthias Hellerer, Stefan Barthelmes, and Fabian Buse. 2017. The DLR Rover
Simulation Toolkit. 14th Symposium on Advanced Space Technologies in Robotics
and Automation.

[9] IEEE Computer Society. 2000. Harold W. (Bud) Lawson - 2000 Computer Pioneer
Award. (2000). https://www.computer.org/web/awards/pioneer-harold-lawson

[10] Donald E. Knuth. 1998. The Art of Computer Programming (3rd ed.). Fundamental
Algorithms, Vol. 1. Addison Wesley Longman Publishing Co., Inc.

[11] National Institute of Standards and Technology. 2004. recursive data structures.
(2004). https://xlinux.nist.gov/dads/HTML/recursivstrc.html

[12] Adrian Pop and Peter Fritzson. 2006. MetaModelica: A Unified Equation-based
Semantical and Mathematical Modeling Language. In Proceedings of the 7th
Joint Conference on Modular Programming Languages (JMLC’06). Springer-Verlag,
Berlin, Heidelberg, 211–229.

[13] M. V. Wilkes. 1964. Lists and Why They Are Useful. In Proceedings of the 1964
19th ACM National Conference (ACM ’64). ACM, New York, NY, USA, 61.1–61.5.
https://doi.org/10.1145/800257.808911

[14] Dirk Zimmer. 2007. Enhancing Modelica towards variable structure systems. In
Proceedings of the 1st International Workshop on Equation-Based Object-Oriented
Languages and Tools (Linköping Electronic Conference Proceedings), Peter Fritzson,
François Cellier, and Christoph Nytsch-Geusen (Eds.). Linköping University
Electronic Press; Linköpings universitet, Berlin, Germany, 61–70.

[15] Dirk Zimmer. 2010. Equation-based modeling of variable-structure systems. Ph.D.
Dissertation. Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
Diss. ETH No. 18924.

https://www.3ds.com/products-services/catia/products/dymola
https://www.computer.org/web/awards/pioneer-harold-lawson
https://xlinux.nist.gov/dads/HTML/recursivstrc.html
https://doi.org/10.1145/800257.808911

	Abstract
	1 Introduction
	2 Unique Identifier (UIDs) Library
	3 Compile-time dynamic arrays
	4 Recursive data structures
	5 Applications
	6 Proposed new features for a future Modelica version
	7 Conclusion
	References

