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In multipath assisted positioning, multipath components arriving at a receiver are regarded as being transmitted by a virtual
transmitter in a line-of-sight condition. As the locations and clock offsets of the virtual and physical transmitters are in general
unknown, simultaneous localization and mapping (SLAM) schemes can be applied to simultaneously localize a user and estimate
the states of physical and virtual transmitters as landmarks. Hence,multipath assisted positioning enables localizing a user with only
one physical transmitter depending on the scenario. In this paper, we present and derive a novel filtering approach for ourmultipath
assisted positioning algorithm called Channel-SLAM. Making use of Rao-Blackwellization, the location of a user is tracked by a
particle filter, and each landmark is represented by a sum of Gaussian probability density functions, whose parameters are estimated
by unscented Kalman filters. Since data association, that is, finding correspondences among landmarks, is essential for robust long-
term SLAM, we also derive a data association scheme. We evaluate our filtering approach for multipath assisted positioning by
simulations in an urban scenario and by outdoor measurements.

1. Introduction

The amount of available and potential services requiring
precise localization of a user has steadily increased over the
recent years. Global navigation satellite systems (GNSSs) can
often satisfy the demands for localization in scenarios where
the receiver has a clear view of the sky. However, if the view
of the sky is obstructed, such as indoors, in urban canyons,
or in tunnels, the positioning performance of GNSSs may
be drastically decreased, or no positioning solution may be
obtained at all [1]. Reasons for this include a low received
signal power due to signal blocking or shadowing and
multipath propagation.

In contrast to GNSS signals, many kinds of terrestrial
signals are likely to have a good coverage in GNSS denied
places. In particular, cellular radio frequency (RF) signals
are designed to be reliably available at least in populated
areas, and they may be used as signals of opportunity (SoOs)
for positioning. However, also terrestrial signals experience
multipath propagation. Multipath propagation biases range
estimates if standard correlator based methods are used.

Various approaches to handle the multipath problem have
been addressed in the literature, for example, in [2]. Advanced
methods such as maximum likelihood (ML) mitigation
algorithms try to estimate the channel impulse response
(CIR) and to mitigate the influence of multipath components
(MPCs) on the line-of-sight (LoS) path [3].

The idea of multipath assisted positioning is contrary,
though. Instead of regarding multipath propagation as ill,
the spatial information of MPCs on the receiver position
is exploited. In [4], the information of MPCs is used in a
fingerprinting scheme. Going one step further, each MPC
can be regarded as being transmitted by a virtual transmitter
in a pure LoS condition, and the virtual transmitters can be
used to locate the user. Such an approach is called multipath
assisted positioning.

The authors of [5, 6] derived some theoretical bounds
for multipath assisted positioning. Multipath assisted posi-
tioning schemes have, for example, been applied in radar
applications [7], using ultrawideband (UWB) [8, 9] or 5G [10]
systems and in cooperative systems [11].
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If the locations of physical transmitters and reflecting and
scattering objects are known, the locations of virtual trans-
mitters can be calculated based on geometrical considera-
tions.The authors of [12] assume the room layout to be known
and focus on the association among virtual transmitters and
reflecting walls. In a general setting, however, the scenario is
unknown to the user.

The authors of [13, 14] have presented amultipath assisted
positioning scheme namedChannel-SLAM that does not rely
on prior information on the scenario. Instead, the locations of
the physical and virtual transmitters are estimated simulta-
neously with the user position in a simultaneous localization
and mapping (SLAM) [15, 16] approach. In general, SLAM
describes the simultaneous estimation of a user position
and the locations of landmarks. In Channel-SLAM, the
landmarks are the physical and virtual transmitters. Previous
extensions to Channel-SLAM include mapping of the user
positions [17], the consideration of vehicular applications
[18], and data association methods [19, 20], for example.

Nonlinearities in the prediction and update equations of
the Bayesian recursive estimation framework prohibit the use
of optimal algorithms such as the Kalman filter, since the
integrals involved in the estimation process cannot be solved
in closed form or become intractable. A popular alternative
is the extended Kalman filter (EKF) [21], which linearizes the
nonlinear terms using a first-order Taylor series expansion.
However, such a linearization can introduce large errors in
the estimation process [22]. The unscented Kalman filter
(UKF) [23, 24] uses a nonlinear transformation to deal with
nonlinearities and outperforms the EKF in a wide range of
applications [22, 25].

UKF methods have found their way into localization
problems, for example, in [27, 28]. The authors of [29]
propose Gaussian sum cubature filters. In [30, 31], the
authors consider a Rao-Blackwellization scheme for SLAM
with a particle filter for the user state and UKFs for the
landmark states, where the measurement model is based on
linearization, though.

The current Channel-SLAM algorithm uses a Rao-
Blackwellized particle filter to estimate the user state and
the location of transmitters simultaneously. Hence, both
the user state probability density function (PDF) and the
transmitter state PDFs are represented by a large set of
particles, tending to result in a highmemory occupation.This
paper is an extension of [32], where we proposed a novel
estimation approach for Channel-SLAM scheme based on
Rao-Blackwellization and performed first simulations. We
refer to this new estimation method as Rao-Blackwellized
Gaussian sum particle filter (RBGSPF). In the RBGSPF,
the user position is tracked by a sequential importance
resampling (SIR) particle filter, while the physical and virtual
transmitter state PDFs are represented by Gaussian mixture
models estimated byUKFs.This parametrized representation
of the transmitter states is a key enabler for exchanging
maps of transmitters among users, since the amount of data
that has to be communicated among users can be decreased
drastically compared to the nonparametric representation
with particles. Such an exchange of maps may be performed
directly among users or via a central entity, for example,

in form of local dynamic maps (LDMs) in an intelligent
transportation system (ITS) context. In this paper, we provide
a full and detailed derivation of our novel algorithm. In
particular, we derive the calculation of the particle weights
in the user particle filter given the representation of the
transmitters in the UKF framework. Since data association
is an essential feature for the accuracy in long-term SLAM,
we also derive a data association method based on [33].
We evaluate our algorithm by both simulations in an urban
scenario and outdoor measurements.

The remainder of this paper is structured as follows.
Section 2 describes the fundamental idea behind multipath
assisted positioning and Channel-SLAM. In Section 3, we
briefly summarize some concepts of nonlinear Kalman filter-
ing. The derivation of the RBGSPF is presented in Section 4,
and a solution to data association is presented in Section 5.
After the experimental results in Section 6, Section 7 con-
cludes the paper.

Throughout the paper, we use the following notation:

(i) As indices, 𝑖 stands for a user particle, 𝑗 denotes a
transmitter or a signal component, ℓ is a component
in a Gaussian mixture model, and 𝑚 stands for a
sigma point.

(ii) (⋅)𝑇 denotes the transpose of a matrix or vector.
(iii) 1𝑛 denotes the identity matrix of dimension 𝑛 × 𝑛.
(iv) 0𝑛 and 0𝑚×𝑛 denote the zero matrices of dimensions𝑛 × 𝑛 and𝑚 × 𝑛, respectively.
(v) N(x;𝜇,C) denotes the PDF of a normal distribution

in x with mean 𝜇 and covariance C.
(vi) 𝑐0 denotes the speed of light.
(vii) ‖ ⋅ ‖ denotes the Euclidean norm of a vector.

2. Multipath Assisted Positioning

2.1. Virtual Transmitters. The idea of virtual transmitters is
illustrated in Figure 1. The physical transmitter Tx transmits
an RF signal. A mobile user equipped with an RF receiver
receives the transmitted signal via three different propagation
paths.

In the first case, the signal is reflected at the reflecting
surface. The user treats the corresponding impinging MPC
as being transmitted by the virtual transmitter vTx1 in a pure
LoS condition. The location of vTx1 is the location of the
physical transmitter Tx mirrored at the reflecting surface.
When the usermoves along the trajectory, the reflection point
at the wall moves as well. However, the location of vTx1
is static. The two transmitters Tx and vTx1 are inherently
perfectly synchronized.

In the second case, the signal from the physical trans-
mitter is scattered by a point scatterer and then received
by the user. We define the effect of scattering such that the
energy of an electromagnetic wave impinging against the
scatterer is distributed uniformly in all directions [34]. The
user regards the scattered signal as a LoS signal from the
virtual transmitter vTx2, which is located at the scatterer
location. If the signal is scattered, the physical and the virtual
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Figure 1: Signals from the physical transmitter Tx are received
at the two user positions via different propagation paths. Each
MPC arriving at the receiver is regarded as being transmitted by a
virtual transmitter in a pure LoS condition. The propagation paths
correspond to a reflection at the wall (vTx1), a scattering at a point
scatterer (vTx2), and a scattering followed by a reflection at the wall
(vTx3).

transmitter are not time synchronized: the virtual transmitter
has an additional delay offset to the physical transmitter
corresponding to the propagation time of the signal traveling
from the physical to the virtual transmitter.

In the third case, the signal is first scattered at the scatterer
and then reflected at the surface.The user treats this signal as
being sent from the virtual transmitter vTx3. The location of
vTx3 is the location of vTx2, that is, the scatterer location,
mirrored at the reflecting surface. Accordingly, the concept
of single reflections and scatterings can be generalized in a
straightforwardmanner to the case ofmultiple reflections and
scatterings by applying the first two cases iteratively. In case
the signal undergoes only reflections, the physical and the
virtual transmitters are inherently time synchronized. If the
signal is scattered at least once, the delay offset corresponds
to the actual propagation time of the signal from the physical
transmitter to the last scatterer the signal interacts with.
Therefore, in Figure 1, the virtual transmitters vTx2 and vTx3
have the same delay offset towards the physical transmitter.
Note that a delay offset can be interpreted as a clock offset.

Throughout the paper, we consider the physical trans-
mitter and the environment to be static. Hence, the virtual
transmitters are static as well.

2.2. Recursive Bayesian Estimation. Recursive Bayesian esti-
mation [35] is a method to recursively estimate the evolution
of a state vector x, where the state evolution is modeled as

x𝑘 = f𝑘 (x𝑘−1, k𝑘−1) . (1)

The index 𝑘 denotes the time instant, the function f𝑘(⋅) is
assumed to be known, and k𝑘−1 denotes a sample of the
process noise with covariance matrix Q. The state is related
to the measurement z𝑘 by

z𝑘 = h𝑘 (x𝑘,n𝑘) , (2)

where h𝑘(⋅) is again a known function and n𝑘 is a sample of
the measurement noise with covariance matrix R. Recursive
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Figure 2: Based on the received signal, the parameters of the propa-
gation paths are estimated in the first step by the KEST algorithm. In
the second step, the estimates serve as measurements for estimating
the positions of the user and the physical and virtual transmitters. In
addition, user heading rates of change measurements from an IMU
are incorporated in the second step.

Bayesian estimation works in two steps, the prediction and
the update step. The corresponding PDFs can be calculated
recursively by

p (x𝑘 | z1:𝑘−1) = ∫ p (x𝑘 | x𝑘−1) p (x𝑘−1 | z1:𝑘−1) dx𝑘−1 (3)

for the prediction step and by

p (x𝑘 | z1:𝑘) = 1𝑐𝑘 p (z𝑘 | x𝑘) p (x𝑘 | z1:𝑘−1) , (4)

for the update step, where 𝑐𝑘 is a constant and z1:𝑘 denotes the
measurements from time instant 1 to 𝑘. The state transition
prior p(x𝑘 | x𝑘−1) and the measurement likelihood p(z𝑘 | x𝑘)
are obtained from the movement model in (1) and the
measurement model in (2), respectively.

2.3. Channel-SLAM. In the following, we will revise the
Channel-SLAM algorithm from [13, 17]. Figure 2 gives an
overview of the two stages of Channel-SLAM. In the first
stage, the parameters of the signal components received by
the user via different propagation paths are estimated. The
resulting estimates are used as measurement input in the
second stage, where the states of the physical and virtual
transmitters and the user position are estimated simultane-
ously in a SLAM scheme. Further sensors, such as an inertial
measurement unit (IMU), may be included in the second
stage.The locations of both the physical and virtual transmit-
ters are assumed to be unknown. Thus, Channel-SLAM does
not differentiate between physical and virtual transmitters,
and the term transmitter comprises both physical and virtual
transmitters in the following. Each signal component arriving
at the receiver corresponds to one transmitter.

The RF propagation channel between the physical trans-
mitter and the user equipped with a receiver is assumed to be
a linear and time-variant multipath channel.

The received signal ismodeled as a superposition of signal
components of the transmit signal 𝑠(𝑡), where the 𝑗th signal
component is defined by a complex amplitude 𝑎𝑗(𝑡𝑘) and a
delay 𝑑𝑗(𝑡𝑘) at time 𝑡𝑘. The signal received by the user at time
instant 𝑡𝑘 is

𝑦 (𝜏, 𝑡𝑘) = ∑
𝑗

𝑎𝑗 (𝑡𝑘) 𝑠 (𝜏 − 𝑑𝑗 (𝑡𝑘)) + 𝑛 (𝜏) , (5)

where 𝑛(𝜏) is a sample from a colored noise sequence incor-
porating both dense multipath components (DMCs) and
additive Gaussian noise. The channel is assumed to be
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constant during the short time interval when the received
signal is sampled at time instant 𝑘.

The physical transmitter continuously broadcasts the
signal 𝑠(𝑡) that is known to the user. At the user side, the
parameters of the signal components arriving at the receiver
are estimated. Such parameters can in general be the complex
amplitude, time of arrival (ToA), angle of arrival (AoA), or
Doppler shift, depending on the available hardware and the
scenario. For the signal parameter estimation, we use the
KEST algorithm [36]. The KEST estimator works in two
stages. In an inner stage, a ML parameter estimator such
as Space-Alternating Generalized Expectation-Maximization
(SAGE) [37] estimates the parameters of the signal compo-
nents jointly on a snapshot basis. An outer stage tracks these
estimated parameters over time with a Kalman filter and
keeps track of the number of signal components. The KEST
estimator is in general able to handle the DMCs in the noise
term in (5). However, DMC handling is not implemented
in our evaluations, leading to a model mismatch in KEST
and hence to a higher variance in the parameter estimation.
However, we do not expect many DMCs in our evaluation
scenarios. In an indoor scenario, for example, DMCs need to
be considered [38].

In the literature, there are alternatives to the KEST
estimator. For example, the authors of [39] track signal
component parameters based on an EKF, though the authors
of [40] showed that the KEST estimator is more robust in
resolving signal components that are close to each other in
the state space. In [41], an EKF is used as well for parameter
estimation, while the position estimation is based on the
time difference of arrival (TDoA) of virtual transmitters. The
authors of [42] consider the linearization of the observation
model in the EKF a major drawback that might lead to a
tracking loss.

In the second stage of Channel-SLAM, we use only
the delays, that is, ToAs, and AoAs, estimated by KEST
as measurement inputs. Hence, after sampling the received
signal, the KEST estimates at time instant 𝑘 are comprised in
the vector

z𝑘 = [d𝑇𝑘 𝜃𝑇𝑘 ]𝑇 , (6)

where

d𝑘 = [𝑑1,𝑘 ⋅ ⋅ ⋅ 𝑑𝑁TX ,𝑘]𝑇 (7)

are the ToA estimates for the 𝑁TX signal components, or
transmitters, and

𝜃𝑘 = [𝜃1,𝑘 ⋅ ⋅ ⋅ 𝜃𝑁TX ,𝑘]𝑇 (8)

are the corresponding AoA estimates. Note that the number
of signal components and thus transmitters may change over
time. Nevertheless, for notational convenience, we omit the
time instant index 𝑘 in𝑁TX.

In the second stage of Channel-SLAM, the user state xu,𝑘
is estimated simultaneously with the state of the transmitters
xTX,𝑘. The entire state vector is hence

x𝑘 = [xu,𝑘𝑇 xTX,𝑘𝑇]𝑇
= [xu,𝑘𝑇 x⟨1⟩TX,𝑘

𝑇 ⋅ ⋅ ⋅ x⟨𝑁TX⟩TX,𝑘
𝑇]𝑇 , (9)

where x⟨𝑗⟩TX,𝑘 is the state of the 𝑗th transmitter. As we consider
a two-dimensional scenario, the user state at time instant 𝑘 is
defined by

xu,𝑘 = [𝑥𝑘 𝑦𝑘 V𝑥,𝑘 V𝑦,𝑘]𝑇 = [p𝑇u,𝑘 k𝑇u,𝑘]𝑇 , (10)

where the user position is defined by pu,𝑘 = [𝑥𝑘 𝑦𝑘]𝑇 and
the user velocity by ku,𝑘 = [V𝑥,𝑘 V𝑦,𝑘]𝑇. Each transmitter is
defined by its location pTX,𝑘 = [𝑥TX,𝑘 𝑦TX,𝑘]𝑇 and a clock
offset 𝜏0,𝑘 at time instant 𝑘. The state vector of the 𝑗th
transmitter is hence defined by

x⟨𝑗⟩TX,𝑘 = [𝑥⟨𝑗⟩TX,𝑘 𝑦⟨𝑗⟩TX,𝑘 𝜏⟨𝑗⟩
0,𝑘

]𝑇 = [p⟨𝑗⟩TX,𝑘𝑇 𝜏⟨𝑗⟩
0,𝑘

]𝑇 . (11)

Our goal is to find the minimum mean square error
(MMSE) estimator for x𝑘, which is defined as

x̂𝑘 = ∫ x𝑘p (x𝑘 | z1:𝑘) dx𝑘, (12)

where z1:𝑘 denotes all measurements up to time instant 𝑘.
We use a recursive Bayesian estimation scheme as in

Section 2.2 to estimate the posterior PDF p(x𝑘 | z1:𝑘). This
posterior can be factorized as

p (x𝑘 | z1:𝑘) = p (xTX,𝑘, xu,𝑘 | z1:𝑘)
= p (xTX,𝑘 | xu,𝑘, z1:𝑘) p (xu,𝑘 | z1:𝑘) . (13)

The signal components arriving at the receiver are
assumed to be independent of each other; that is, we assume
they interact with distinct objects. Assuming independence
among the measurements for distinct transmitters (on the
one hand, the parameters of the signal components are
estimated jointly by the KEST algorithm, and hence these
estimates might be correlated between signal components
and between the parameters; on the other hand, the correla-
tion is likely to have effect only on a short term basis as KEST
estimates are unbiasedwhenobserved over a longer time), the
first factor in (13) can be factorized further as

p (xTX,0:𝑘 | xu,0:𝑘, z1:𝑘) =
𝑁TX∏
𝑗=1

p (x⟨𝑗⟩TX,0:𝑘 | xu,0:𝑘, z⟨𝑗⟩1:𝑘) . (14)

With the above factorization, the transmitter states are
estimated independently from each other.

As we consider a static scenario, the virtual transmitters
are static as well, and the transition prior for the 𝑗th
transmitter is calculated as

p (x⟨𝑗⟩TX,𝑘 | x⟨𝑗⟩TX,𝑘−1) = 𝛿 (x⟨𝑗⟩TX,𝑘 − x⟨𝑗⟩TX,𝑘−1) , (15)

where 𝛿(⋅) denotes the Dirac distribution.
For the prediction of the user, additional sensors such

as an IMU carried by the user may be integrated into
the movement model. Within this paper, we assume only
heading change rate measurements from a gyroscope to be
available, though, and no knowledge on the user speed.
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Figure 3: The user moves in the direction ku,𝑘 at time instant 𝑘.
The heading change rate from the IMU is Δ 𝛽,𝑘. The ToA and AoA
measurements for the signal from the 𝑗th transmitter are 𝑑𝑗,𝑘 and𝜃𝑗,𝑘, respectively, where 𝜃𝑗,𝑘 describes the angle between the heading
direction ku,𝑘 of the user and the arriving signal.

With the gyroscope heading change rate Δ 𝛽,𝑘, we predict the
movement of the user by

xu,𝑘 = [12 𝑇𝑘12
02 R (Δ 𝛽,𝑘)] xu,𝑘−1 = Fu,𝑘xu,𝑘−1, (16)

where 𝑇𝑘 denotes the time between instants 𝑘 − 1 and 𝑘. The
two-dimensional rotation matrix R(Δ 𝛽,𝑘) is defined as

R (Δ 𝛽,𝑘) = [
[
cos (Δ 𝛽,𝑘 + 𝑤𝑘) − sin (Δ 𝛽,𝑘 + 𝑤𝑘)
sin (Δ 𝛽,𝑘 + 𝑤𝑘) cos (Δ 𝛽,𝑘 + 𝑤𝑘) ]

]
, (17)

where 𝑤𝑘 is the heading noise which is distributed following
a von Mises distribution. Hence, the function f𝑘 in (1) can be
expressed in our case as

f𝑘 (x𝑘−1, k𝑘−1) = [ Fu,𝑘 04×3𝑁TX

03𝑁TX×4 13𝑁TX

] x𝑘−1 + k𝑘−1, (18)

where the process noise covariance matrixQ is diagonal.
As depicted in Figure 3, an AoA measurement for a

transmitter 𝑗 describes the angle 𝜃𝑗,𝑘 between the user
heading direction ku,𝑘 and the incoming signal from the
transmitter. The measurement noise for the ToA and AoA
measurements is assumed to be zero-mean Gaussian dis-
tributed with variances 𝜎2𝑑,𝑗 and 𝜎2𝜃,𝑗, respectively, for the 𝑗th
transmitter. Also, we assume no cross-correlation between
the single ToA andAoAmeasurements.The likelihood for the
measurement vector z𝑘 conditioned on the state vector x𝑘 is
therefore the product

p (z𝑘 | x𝑘) =
𝑁TX∏
𝑗=1

N (𝑑𝑗,𝑘; 𝑑𝑗,𝑘, 𝜎2𝑑,𝑗)N (𝜃𝑗,𝑘; 𝜃𝑗,𝑘, 𝜎2𝜃,𝑗) , (19)

where the predicted ToA between the user and the 𝑗th
transmitter is

𝑑𝑗,𝑘 = 1𝑐0
󵄩󵄩󵄩󵄩󵄩󵄩pu,𝑘 − p⟨𝑗⟩TX,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜏⟨𝑗⟩
0,𝑘

, (20)

and the predicted AoA is calculated as

𝜃𝑗,𝑘 = atan2 (𝑦𝑘 − 𝑦⟨𝑗⟩TX,𝑘, 𝑥𝑘 − 𝑥⟨𝑗⟩TX,𝑘)
− atan2 (V𝑦,𝑘, V𝑥,𝑘) . (21)

The function atan2(𝑦, 𝑥) calculates the four-quadrant inverse
tangent function. It returns the counterclockwise angle
between the positive 𝑥-axis and the point given by the
coordinates (𝑥, 𝑦).
3. Nonlinear Kalman Filtering

3.1. Unscented Transform. If a random variable x is trans-
formed by a function g(⋅) such that y = g(x), the statistics
of y cannot always be calculated in closed form. Monte Carlo
(MC) methods try to estimate the statistics of y from a set
of randomly chosen sample points of x that undergo the
transformation g(⋅). For the unscented transform, a set of the
so-called sigma points is propagated through the function
g(⋅) to obtain transformed sigma points yielding the statistics
of y. However, the sigma points are not chosen randomly,
but in a deterministic manner, which is the fundamental
difference to MC methods.

Based on the unscented transform, numerical approxi-
mations of integrals can be derived. In particular, for the case
when the integrand is a product of an arbitrary function g(x)
of the integration variable x and aGaussian PDFN(x;𝜇x,Cx)
an integration rule of the form

∫ g (x)N (x;𝜇x,Cx) dx ≈ 𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) (22)

can be applied, where X𝑚 is the 𝑚th of the 𝑁sig sigma
points with its associated weight 𝜔𝑚. The idea of the UKF
is to approximate the posterior PDF in recursive Bayesian
estimation by a Gaussian PDF. Hence, the integral in the
prediction step is approximated by the integration rule
in (22). The authors of [43] provide further insight into
sigma point methods and their relation to Gaussian process
quadrature.

3.2. Choice of Sigma Points. In the literature, different sets of
sigmapoints have been proposed for the unscented transform
[44]. Let X𝑚 be the 𝑚th sigma point and 𝜔𝑚 its associated
weight. The dimension, mean, and covariance of the random
variable x are denoted by𝑁, 𝜇x, and Cx, respectively. In [23],
the sigma points and their weights are defined for some 𝜅 ∈ R

as

X0 = 𝜇x, 𝜔0 = 𝜅𝜅 + 𝑁,
X𝑚 = 𝜇x + (√(𝑁 + 𝜅)Cx)

𝑚
, 𝜔𝑚 = 12 (𝜅 + 𝑁) ,

X𝑚+𝑁 = 𝜇x − (√(𝑁 + 𝜅)Cx)
𝑚
,
𝜔𝑚+𝑁 = 12 (𝜅 + 𝑁) ,

(23)

where𝑚 = 1, . . . , 𝑁, (A)𝑚 denotes the𝑚th row or column of
the matrix A, and (𝑁 + 𝜅)Cx is factorized into

(𝑁 + 𝜅)Cx = √(𝑁 + 𝜅)Cx√(𝑁 + 𝜅)Cx
𝑇. (24)
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Figure 4: Structure of the RBGSPF representation: the user state xu
is represented by a number of particles. Each particle estimates the
transmitters’ states on its own. Each of the 𝑁TX transmitter states
is represented by a sum of 𝑁UKF Gaussian distributions Nℓ with
associated weights 𝑤⟨ℓ⟩.

This definition leads to 𝑁sig = 2𝑁 + 1 sigma points. The
authors of [45] presented the cubature Kalman filter (CKF)
with an intuitive derivation of the choice of sigma points
and their weights. The CKF differs from the UKF only in
the choice of the sigma points. Its derivation is based on the
fact that the approximation of an integral using the unscented
transform as in (22) is exact for g(x) being a monomial of an
order not greater than some integer 𝑑. The resulting sigma
points are the points in (23) for 𝜅 = 0. Since the weight of the
first sigma point is zero, there are only 2𝑁 effective points.
Although the derivation in [45] gives useful insight into the
UKF, the same choice of sigma points had been proposed in
[44] before.

The Appendix summarizes the equations for the pre-
diction and update steps of the UKF. If the state transition
model in (1) or the measurement model in (2) are linear
or if Gaussian noise is assumed in the state transition or
measurement model, methods from [46] can be applied to
decrease the computational complexity of the UKF.

4. Derivation of the Gaussian Sum
Particle Filter

4.1. The Rao-Blackwellized Gaussian Sum Particle Filter. The
factorization in (13) allows for estimating the user state
independently from the transmitter states. For the estimation
of the user state in the RBGSPF, we use a SIR particle filter
[26, 47].The single transmitter states x⟨𝑗⟩TX,𝑘 are estimated inde-
pendently from each other following (14). Each transmitter
state is represented by a Gaussian mixture model or Gaussian
sum model [48]. The posterior PDF of each of the 𝑁UKF
Gaussian components in a Gaussian mixture is estimated by
a UKF.The structure of the resulting RBGSPF representation
is shown in Figure 4.

A particle filter is a MC based method, where the
posterior PDF is represented by a number of random samples,
called particles, with associated weights. The user posterior
PDF is approximated as

p (xu,𝑘 | z1:𝑘) =
𝑁𝑝∑
𝑖=1

𝑤⟨𝑖⟩𝑘 𝛿 (xu,𝑘 − x⟨𝑖⟩u,𝑘) , (25)

where x⟨𝑖⟩u,𝑘 is the 𝑖th user particle, 𝑤⟨𝑖⟩
𝑘

its associated weight,
and 𝑁𝑝 the number of particles in the particle filter. From
the structure of (14), we see that the transmitter states are
estimated for each user particle independently.

The posterior distribution of the state of each transmitter
is approximated by a Gaussian mixture model. In a Gaussian
mixture model, a PDF is described as a sum of weighted
Gaussian PDFs, each described by a mean and a covariance.
Hence, the posterior PDF of the state of the 𝑗th transmitter of
the 𝑖th user particle is represented as [48]

p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩1:𝑘) = 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

×N (x⟨𝑖,𝑗⟩TX,𝑘; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) ,
(26)

where z⟨𝑗⟩
1:𝑘

are the measurements for the 𝑗th transmitter
and x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘, P

⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
, and 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
are the mean, the covariance

matrix, and the weight, respectively, of the ℓth Gaussian
component of the Gaussian mixture for the 𝑗th transmitter.
Both x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘 and P⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
are obtained from the update step

of the corresponding UKF. Similarly, the likelihood for the
measurement of the 𝑗th transmitter of the 𝑖th user particle is

p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘) = 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

×N (z⟨𝑗⟩
𝑘

; ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

,R⟨𝑗⟩
𝑘

) ,
(27)

where R⟨𝑗⟩
𝑘

is the measurement noise covariance matrix for
the 𝑗th transmitter. The number 𝑁UKF of Gaussian compo-
nents might differ between transmitters, user particles, and
time instants. However, for notational convenience, we drop
the particle, transmitter, and time instant indices of 𝑁UKF.
The predicted measurement of the ℓth Gaussian component
for the 𝑗th transmitter of the 𝑖th user particle,

ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

= [𝑑⟨𝑖,𝑗,ℓ⟩
𝑘

𝜃⟨𝑖,𝑗,ℓ⟩
𝑘

]𝑇 , (28)

consists of the predicted ToA measurement

𝑑⟨𝑖,𝑗,ℓ⟩
𝑘

= 1𝑐0
󵄩󵄩󵄩󵄩󵄩󵄩p⟨𝑖⟩u,𝑘 − p⟨𝑖,𝑗,ℓ⟩TX,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘 (29)

and the predicted AoA measurement

𝜃⟨𝑖,𝑗,ℓ⟩
𝑘

= atan2 (𝑦⟨𝑖⟩𝑘 − 𝑦⟨𝑖,𝑗,ℓ⟩TX,𝑘 , 𝑥⟨𝑖⟩𝑘 − 𝑥⟨𝑖,𝑗,ℓ⟩TX,𝑘 )
− atan2 (V⟨𝑖⟩𝑦,𝑘, V⟨𝑖⟩𝑥,𝑘) ,

(30)

where the 𝑖th user particle is

x⟨𝑖⟩u,𝑘 = [𝑥⟨𝑖⟩𝑘 𝑦⟨𝑖⟩
𝑘

V⟨𝑖⟩
𝑥,𝑘

V⟨𝑖⟩
𝑦,𝑘]𝑇 = [p⟨𝑖⟩u,𝑘𝑇 k⟨𝑖⟩u,𝑘

𝑇]𝑇 , (31)
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and the mean of the corresponding ℓth Gaussian component
of the 𝑗th transmitter is

x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘 = [𝑥⟨𝑖,𝑗,ℓ⟩TX,𝑘 𝑦⟨𝑖,𝑗,ℓ⟩TX,𝑘 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘

]𝑇
= [p⟨𝑖,𝑗,ℓ⟩TX,𝑘

𝑇 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘

]𝑇 . (32)

In the prediction step of the user particle filter, new
particles are sampled based on the transition prior p(xu,𝑘 |
xu,𝑘−1). Hence, the particle x⟨𝑖⟩u,𝑘 is drawn as

x⟨𝑖⟩u,𝑘 = fu,𝑘 (x⟨𝑖⟩u,𝑘−1, ku,𝑘−1) , (33)

where the function fu,𝑘(⋅) describes the user movement
model, and ku,𝑘−1 is a noise sample drawn from the user
process noise PDF. For the prediction and the update step of
a Gaussian component of a transmitter’s state, the equations
of the UKF are summarized in the Appendix.

4.2. Derivation of the Particle Weight Calculation. In the
following, we will derive the calculation of the particle
weights in the user particle filter and of the weights for
the Gaussian components in the Gaussian mixture models
used to describe the PDFs of the transmitter states. As the
importance density of the SIR particle filter is the state
transition prior and resampling of the particles is performed
at every time instant, the weight for the 𝑖th particle at time
instant 𝑘 is given by [26]

𝑤⟨𝑖⟩𝑘 ∝ p (z𝑘 | x⟨𝑖⟩u,0:𝑘, z1:𝑘−1) . (34)

This expression can be written as

𝑤⟨𝑖⟩𝑘 ∝ ∫ p (z𝑘 | x⟨𝑖⟩u,0:𝑘, x⟨𝑖⟩TX,𝑘, z1:𝑘−1)
× p (x⟨𝑖⟩TX,𝑘 | x⟨𝑖⟩u,0:𝑘, z1:𝑘−1) dx⟨𝑖⟩TX,𝑘
∝ ∫ p (z𝑘 | x⟨𝑖⟩u,𝑘, x⟨𝑖⟩TX,𝑘)
× p (x⟨𝑖⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z𝑘−1) dx⟨𝑖⟩TX,𝑘,

(35)

where we use the assumption of a first-order hidden Markov
model. With the assumption that the measurements are
independent for different transmitters, (35) can be expressed
as

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

∫ p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘)
× p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩𝑘−1) dx⟨𝑖,𝑗⟩TX,𝑘.

(36)

Furthermore, using the Gaussian mixture model rep-
resentation from (26) and (27) and assuming Gaussian
measurement noise, the integrand can be expressed as a sum
of weighted Gaussian PDFs; namely,

p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘) p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩𝑘−1)
= 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 .
(37)

In (37), we defined for notational brevity

p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 = N (z⟨𝑗⟩
𝑘

; ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

,R⟨𝑗⟩
𝑘

) , (38)

p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 = N (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) , (39)

where R⟨𝑗⟩
𝑘

is the measurement noise covariance matrix for
the 𝑗th transmitter and x⟨𝑖,𝑗,ℓ⟩TX,𝑘 denotes the state of the ℓth
Gaussian component of the 𝑗th transmitter of the 𝑖th user
particle. As we assume no correlation among the ToA and
AoA measurements, we have

R⟨𝑗⟩
𝑘

= [𝜎2𝑑,𝑗 0
0 𝜎2𝜃,𝑗] . (40)

Inserting (37) into (36) leads to

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

∫ p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 dx
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 . (41)

Thepredictedmeasurement ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

in (38), defined in (28),
is a nonlinear function of x⟨𝑖,𝑗,ℓ⟩TX,𝑘 .We express themeasurement
likelihood in (38) explicitly as a function g(⋅) of x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ,
resulting in

g (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ) = p
⟨𝑖,𝑗,ℓ⟩

z,𝑘

= N (𝑑𝑗,𝑘; 𝑑⟨𝑖,𝑗,ℓ⟩𝑘 , 𝜎2𝑑,𝑗)
×N (𝜃𝑗,𝑘; 𝜃⟨𝑖,𝑗,ℓ⟩𝑘 , 𝜎2𝜃,𝑗) .

(42)

Due to the nonlinearity in (42), stemming from (29) and (30),
the integral in (41) cannot be solved analytically. Instead, we
use the approximation from (22) to calculate the integral as

∫ g (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 )N (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) dx⟨𝑖,𝑗,ℓ⟩TX,𝑘

≈ 𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) ,
(43)

where the sigma points X𝑚 and their weights 𝜔𝑚 can be
calculated by (23), where

𝜇x = x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,
Cx = P⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
, (44)

and𝑁 is the dimension of a transmitter’s state; that is,𝑁 = 3.
Finally, the weight of the 𝑖th particle is calculated as

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (45)

It follows directly from (45) that the weights of the Gaussian
components are updated by

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

∝ 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (46)
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Input: x⟨𝑖⟩u,𝑘−1, x
⟨𝑖,𝑗,ℓ⟩

TX,𝑘−1 and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

for 𝑖 = 1, . . . , 𝑁𝑝, 𝑗 = 1, . . . , 𝑁TX, ℓ = 1, . . . , 𝑁UKF, z𝑘
Output: x⟨𝑖⟩u,𝑘, x

⟨𝑖,𝑗,ℓ⟩

TX,𝑘 and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

for 𝑖 = 1, . . . , 𝑁𝑝, 𝑗 = 1, . . . , 𝑁TX, ℓ = 1, . . . , 𝑁UKF
(1) for 𝑖 = 1, . . . , 𝑁𝑝 do
(2) draw new user particle x⟨𝑖⟩u,𝑘 using (33);
(3) if any new signal components detected then
(4) initialize the new transmitter(s) based on z𝑘;
(5) if track of any signal components lost then
(6) delete the corresponding transmitter(s);
(7) for 𝑗 = 1, . . . , 𝑁TX do
(8) for ℓ = 1, . . . , 𝑁UKF do
(9) perform UKF prediction and update to calculate x⟨𝑖,𝑗,ℓ⟩TX,𝑘 using the UKF equations in the Appendix;
(10) calculate the weight 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
with (46);

(11) if 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

< 𝜌 then
(12) prune this Gaussian component: set 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
= 0;

(13) calculate the weight 𝑤⟨𝑖⟩
𝑘

with (45);
(14) for 𝑖 = 1, . . . , 𝑁𝑝 do
(15) for 𝑗 = 1, . . . , 𝑁TX do
(16) normalize the weights 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
for ℓ = 1, . . . , 𝑁UKF;

(17) normalize the weights 𝑤⟨𝑖⟩
𝑘

for 𝑖 = 1, . . . , 𝑁𝑝;
(18) resample the user particles x⟨𝑖⟩u,𝑘 [26];

Algorithm 1: RBGSPF for time instant 𝑘 > 0.

Note that the weights 𝑤⟨𝑖⟩
𝑘

and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

in (45) and (46) of
the user particles and the Gaussian components, respectively,
are not yet normalized. Since resampling is performed at
every time instant in the SIR particle filter, the user particle
weights 𝑤⟨𝑖⟩

𝑘
do not depend on the weights 𝑤⟨𝑖⟩

𝑘−1
from the

previous time instant [26].

4.3. Merging and Pruning of Gaussian Components. When
the KEST estimator detects a new signal component, a new
transmitter is initialized for each user particle based on
the ToA and AoA measurement for that new transmitter
at the current time instant. The posterior PDF of the new
transmitter is represented by a number of Gaussian PDFs,
whose means are initially placed on a grid dependent on the
measurement.The number of Gaussian components depends
on the measurement as well.

As the user travels through a scenario, the means,
covariances, and weights of the Gaussian components of a
transmitter’s state posterior PDF change over time depending
on the available measurements. The mean and covariance of
a Gaussian component may be regarded as a hypothesis and
a corresponding uncertainty, respectively, for the state of a
transmitter. If the weight of a Gaussian component becomes
smaller, the hypothesis for that state of the transmitter
becomes less likely. Hence, if the weight of a Gaussian com-
ponent falls below a threshold 𝜌, the Gaussian component is
pruned; that is, its weight 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘−1
is set to zero. If the means

of two Gaussian components get very close to each other,
they may be merged in order to reduce the computational
complexity.

The final algorithm for one time instant 𝑘 > 0 of the
RBGSPF is summarized in Algorithm 1. For a particle filter

(III)
(II)

(I)

Tx

Figure 5: A user moves along the trajectory. The LoS signal to the
transmitter in Region (I) is lost in Region (II) temporarily due to
blocking by an obstacle and received again in Region (III).

resampling algorithm, we refer to [26]. Note again that we
have dropped the particle and transmitter indices in𝑁UKF.

5. Data Association

Data association is of crucial importance for robust long-term
SLAM. It describes the correspondences among landmarks,
which are transmitters in multipath assisted positioning. In
Figure 5, a user travels along its trajectory. In Region (I),
the LoS signal from the transmitter Tx can be tracked. This
signal is lost in Region (II) and regained in Region (III).
However, KEST is not able to retrack a former path. Hence,
when the user enters Region (III), KEST detects a new signal
component, and consequently a new transmitter is initialized.
However, the transmitter is the same as that which had been
observed in Region (I).

We define the set of transmitters that had been observed
previously but are not detected any more, as old transmitters.
When a new signal component is detected by KEST, a new
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transmitter has to be initialized. Consequently, two casesmay
arise:

(1) the new signal component corresponds indeed to a
new transmitter, or

(2) the new signal component corresponds to an old
transmitter that had been observed before already.

Data association is the decision on the above two cases when
a new signal component is detected. In the first case, a
new transmitter is initialized for the newly detected signal
component. In the second case, the newly detected signal
component is associated with a previously observable, that is,
old, transmitter.

In [33], amultiple hypothesis tracking (MHT) association
methodwas introduced and derived for FastSLAM,where the
user state is represented by a particle filter and each landmark
state by an EKF. In [19], the samemethod has been derived for
a Rao-Blackwellized particle filter. In the following, we will
derive the method for the RBGSPF derived in Section 4.

Each user particle decides for associations individu-
ally and thus carries a hypothesis for associations. Hence,
association decisions are hard decisions for each particle.
Regarding the ensemble of user particles, though, there are
many different hypotheses on associations in the user state
estimate, and the associationmethod can be regarded as a soft
decision method. Consequently, the state vector of the user is
increased by data association.

In the following, we describe how to make an association
decision for a single user particle, where we omit the particle
index 𝑖 in the association variables for notational brevity. The
value of the association variable 𝑛𝑘 denotes an association of
the new transmitter with the old transmitter 𝑛𝑘. We denote
the marginalized likelihood of the measurement of the new
transmitter that is to be initialized at time instant 𝑘 by 𝑝𝑛𝑘
assuming that the new transmitter is associated with the old
transmitter 𝑛𝑘. The set of association decisions up to time
instant 𝑘 − 1 is denoted by𝑁𝑘−1. From [33], we have

𝑝𝑛𝑘 = p (z𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
= ∫ p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
× p (x⟨𝑖,𝑛𝑘⟩TX,𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1) dx⟨𝑖,𝑛𝑘⟩TX,𝑘 ,

(47)

where x⟨𝑖,𝑛𝑘⟩TX,𝑘 denotes the state vector of the 𝑛𝑘th transmitter
for the 𝑖th user particle.

Assuming a first-order hidden Markov model, the first
integrand in (47) can be simplified to

p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
= p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘) .

(48)

Since we use a Gaussian mixture model to represent the
single transmitter states, the second integrand in (47) can be
rewritten as

p (x⟨𝑖,𝑛𝑘⟩TX,𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)

= 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

N (x⟨𝑖,𝑛𝑘⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1
) .

(49)

Inserting (48) and (49) into (47) yields

𝑝𝑛𝑘 =
𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

∫ p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘 p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘 dx⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 , (50)

where p⟨𝑖,𝑛𝑘,ℓ⟩z,𝑘 is defined as in (38), and

p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘|𝑘−1 = N (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1
) . (51)

Similar to (42), we define

g (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ) = p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘

= N (𝑑𝑛𝑘 ,𝑘; 𝑑⟨𝑖,𝑛𝑘,ℓ⟩𝑘
, 𝜎2𝑑,𝑛𝑘)

×N (𝜃𝑛𝑘 ,𝑘; 𝜃⟨𝑖,𝑛𝑘,ℓ⟩𝑘
, 𝜎2𝜃,𝑛𝑘) ,

(52)

which is nonlinear in x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 , and rewrite the integral in (50)
as

∫ p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘 p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘|𝑘−1dx
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘 = ∫ g (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 )
×N (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1

) dx⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 .
(53)

Approximating the integral using (22) and inserting it
into (50) finally yield

𝑝𝑛𝑘 =
𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (54)

The sigma points X𝑚 and their weights 𝜔𝑚 can again be
calculated by (23) with

𝜇x = x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,
Cx = P⟨𝑖,𝑛𝑘,ℓ⟩

𝑘|𝑘−1
. (55)

The authors of [33] propose two ways to come to an
association decision, a ML method and data association
sampling (DAS). The probability for making no association
is defined and denoted by 𝑝0. The set of indices of old
transmitters that have not yet been and hence might be
associated is denoted by Γ𝑘.

For the ML association method, the association of the
new transmitter with the old transmitter 𝑛𝑘 is chosen to be

𝑛ML,𝑘 = arg max
𝑛𝑘∈Γ𝑘∪{0}

𝑝𝑛𝑘 . (56)

In DAS, an association is sampled based on the likelihoods𝑐𝑝𝑛𝑘 for 𝑛𝑘 ∈ Γ𝑘 ∪ {0}, where 𝑐 is a normalization constant.
If a detected transmitter is associated with an old

transmitter, the new transmitter can be initialized with the
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Figure 6: The simulation scenario with thick black lines represent-
ing reflecting walls and black circles representing objects that scatter
the RF signals.The physical transmitter is marked by the red upward
triangle labeled Tx.The user travels along the blue line from START
to END with one loop around the central building.

posterior PDF of the associated old transmitter. Thus, data
association has to be incorporated in Line (4) of Algorithm 1.

The above method describes how to take association
decisions if no more than one new transmitter is initialized
at one time instant, that is, if no more than one new signal
component is detected by KEST at a time instant. In case
of multiple transmitters being initialized at the same time
instant, a greedy algorithm [20] may be applied.

6. Evaluations

In the following, we evaluate the RBGSPF derived in
Section 4 by means of simulations and actual outdoor mea-
surements. For the evaluations, we implemented a square-
root version of the cubature Kalman filter as in [45] for
numerical stability. The sigma points are the ones in (23) for𝜅 = 0. Since the movement model of the transmitters is linear
and we assume Gaussian noise, the prediction step can be
calculated analytically. For the description of a prediction step
of a square-root version of the conventional Kalman filter, we
refer to [48].

6.1. Simulations in an Urban Scenario. A top view of the
urban simulation scenario is depicted in Figure 6. The thick
black lines represent walls, for example, from buildings, that
reflect RF signals, and the black circles are objects such as
traffic light poles acting as scatterers. There is one physical
transmitter in the scenariomarked by the red upward triangle
labeled Tx. The user travels with a constant speed of 10m/s
along the blue line with a loop around the central building.
The initial and final user positions are labeled START and
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Figure 7: The results of the KEST estimator for the simulations
showing the propagation distances of signal components versus
the user traveled distance. The propagation distances are the ToA
multiplied by the speed of light. Only signal components that are
observable for a traveled distance of at least 35m are shown. The
color indicates the normalized amplitude in linear domain.

END, respectively. The traveled distances of the user are
marked for every 50m.

The transmitter continuously broadcasts a signal that is
known to the user and has a rectangular shape in frequency
domain with a center frequency of 1.5 GHz and a bandwidth
of 100MHz. As we know the environment, a CIR and the
received signal can be modeled for every user position with
a simple ray-tracing approach. We incorporate first- and
second-order reflections and scattering, that is, single and
double reflections and/or scattering. The power loss for the
signal being reflected is 3 dB and 6 dB when the signal is
scattered at a point scatterer.The average signal-to-noise ratio
(SNR) at the user is 7 dB.

The user is equipped with an RF receiver and a two-
dimensional, rectangular antenna array consisting of nine
elements. Hence, both the ToA and the AoA estimates from
KEST are incorporated in the estimation of the user and
the transmitters’ states. Based on the received signal, KEST
estimates the ToAs and AoAs every 50ms.

The results of the KEST estimator are plotted in Figure 7.
It shows the propagation distance, which is the ToA mul-
tiplied by the speed of light, of the signal components
versus the traveled distance of the user. Each continuous
line represents one signal component and its evolution as
the user travels through the scenario. The color of each line
indicates the normalized absolute value of the amplitude of
the corresponding signal component in linear domain. Since
signal components that are observable for a long time can
contribute much better to Channel-SLAM than components
which are observable only for a short time, only signal
components that are observable for a user traveled distance
of at least 35m are plotted and used. Using all detected signal
components would dramatically increase the computational
complexity and hardly increase the positioning performance.
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Figure 8: The RMSE of the user position versus the user traveled
distance for the simulations. The red curve shows the RMSE if no
associations among transmitters are made, the blue curve if the ML
method for associations is applied, and the green curve for using
DAS.

In Channel-SLAM, the user position is estimated relative
to the physical and virtual transmitters in the scenario. Thus,
to create a local coordinate system, the initial state of the user
is assumed to be known. However, no prior knowledge on
any transmitter is assumed. In the Rao-Blackwellized particle
filter, the number of user particles in the particle filter is
4000, while the number of Gaussian components for each
transmitter depends on the first ToA measurement for that
transmitter.

The root mean square error (RMSE) of the user position
versus its traveled distance is plotted in Figure 8. The red
curve shows the RMSE if no associations among transmitters
are made; that is, every signal component that is detected
by the KEST algorithm is assumed to be a new transmitter.
The RMSEs with the ML association method and DAS
from Section 5 being applied are plotted in blue and green,
respectively. Since the particle filter is a MC based method,
all RMSE curves are averaged over 100 simulations.

As we assume the starting position of the user to be
known, all three curves start with a low RMSE that increases
linearly during the first 200m as expected. The increase
of the RMSE is less due to a bias in the position estimate
but more due to an increasing uncertainty, that is, variance,
about the user position. After approximately 200m, the
RMSE tends to decrease for all three curves. As more and
more transmitters are observed, the weight for some user
particles becomes small, and these particles are unlikely to
be resampled. Towards the end of the track, the geometrical
delusion of precision (GDOP) causes an increase in the
RMSE, since most of the transmitters are observed from the
same direction. After a traveled distance of around 370m,
several transmitters that had been observed in the beginning
are observed again, and correspondences among them can
be found. If data association methods are used, the RMSE
decreases particularly in that region. The ML method and
DAS show a similar performance. Note that there are several
reasons for which associations among transmitters can be
found. Examples are signal blocking or the geometry of the
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Figure 9: Top viewof themeasurement scenario in front of a hangar.
The physical transmitter location is marked by the red triangle
labeled Tx. The user travels along the blue track from START to
END. The expected virtual transmitter locations are marked by the
magenta downward triangles.

environment causing virtual transmitters to be observable
only from certain regions. In addition, when KEST loses and
regains track of a signal component if its received power
fluctuates or if another signal component arrives at the
receiver with a very small difference in delay, transmitters
may be discarded and initialized again at a later point, and
associations among them may be found. This explains the
increasing positioning performance gain after approx. 50m
using data association.

6.2. OutdoorMeasurements. In addition to the simulations as
described above, we performed outdoormeasurements on an
airfield. A top view of the measurement scenario is depicted
in Figure 9. The grey area is an airplane hangar with solid
metallic doors. The user track with a total length of 112.5m is
plotted in blue.The user walked along the track starting from
the light blue cross labeled START to the black cross labeled
END. The traveled distance of the user is marked after 25m,
75m, and 100m.There is one physical transmitter marked by
the red upward triangle labeled Tx. The user is in LoS to the
physical transmitter throughout the entire track.

In the scenario, we have three fences labeled Fence 1,
Fence 2, and Fence 3. We expect these fences and the
hangar door to reflect the RF signal emitted by the physical
transmitter. Hence, we expect a virtual transmitter for each
of the fences and for the hangar door following Section 2.1.
The virtual transmitter corresponding to the reflection of
the signal at Fence 1 is the magenta downward triangle
labeled vTx2. It is located at the physical transmitter position
mirrored at Fence 1. Likewise, the location of the virtual
transmitter corresponding to Fence 2 is labeled as vTx3. For
the reflection of the signal at the hangar doors, we expect
the virtual transmitter located at the magenta triangle labeled
as vTx1. The expected virtual transmitter corresponding to
Fence 3, vTx4, is outside of the boundaries of Figure 9.
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Figure 10: The results of the KEST estimator for the outdoor
measurements showing the propagation distances, that is, the ToAs
multiplied by the speed of light, of signal components, versus the
user traveled distance. Only signal components that are observable
for long traveled distance are shown. The color indicates the
estimated received power for the signal components in dB.

The Medav RUSK broadband channel sounder [49] was
used to perform the measurements. The transmit signal is a
multitone signal with a center frequency of 1.51 GHz and a
bandwidth of 100 MHz. The signal has 1281 subcarriers with
equal gains and a total transmit power of 10mW.

The user was equipped with an RF receiver, recording
a snapshot of the received signal every 1.024ms. For later
evaluation, the user carried a prism mounted next to the
receiver antenna that was tracked by a tachymeter (Leica
Geosystems TCRP1200) to obtain the ground truth of the
user location in centimeter accuracy. In addition, the user
carried an XsensMTI-G-700 IMU. Only heading change rate
measurements were used from the IMU.

On both transmitter and receiver side, single antennas
were used. Hence, no AoA information about the imping-
ing signal components can be used for Channel-SLAM.
Instead, only ToA estimates from KEST are incorporated.
The likelihood function in (19) is adapted accordingly for the
evaluation.

The results of the KEST estimator for the outdoor mea-
surements are plotted in Figure 10. The colors indicate the
power estimated by KEST in dBm. As for the simulations,
only signal components that are observable for a long user
traveled distance are plotted and used. In addition, the
ground truth geometrical line-of-sight (GLoS) propagation
distances from the physical and the expected virtual trans-
mitters as in Figure 9 to the user are plotted by black lines.
Theymatch theKEST estimates verywell, justifying the signal
model in (5) without considering DMCs in KEST for the
measurement scenario.
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Figure 11: The RMSE of the user position versus the user traveled
distance for the outdoor measurements. The red curve shows the
RMSE if no associations among transmitters are made, the blue
curve if the ML method for associations is applied, and the green
curve for using DAS.

The RMSE of the user position versus its traveled distance
for the outdoor measurements is plotted in Figure 11, where
the RMSE is averaged over 50 particle filter simulations.
As for Figure 8, the red curve denotes the RMSE with no
association method applied; the blue and green curves show
the RMSE if the ML method and DAS, respectively, are
incorporated for data association.

Theuser is always in a LoS condition to the physical trans-
mitter vTx, and the corresponding LoS signal component is
tracked by the user throughout the track, as becomes evident
in Figure 10. Likewise, the signal component corresponding
to the virtual transmitter vTx2 can be tracked after a traveled
distance of approximately 22m until the end.

The almost continuous presence of the signals from
these two transmitters is reflected in the user RMSE in
Figure 11. The RMSE without data association methods
applied increases in the beginning but then stays constant
in the order of 3-4m with some fluctuations. This is due to
the fact that once the variance on the states of transmitters
vTx and vTx2 has decreased far enough, they serve as
reliable anchors throughout the track. Hence, they prevent
the uncertainty about the user state from increasing further,
althoughwemeasure only the ToA for each signal component
in the outdoor measurement scenario.

For the same reason, the data association methods
cannot really improve the user positioning performance in
the outdoor measurements. From another point of view, a
correct data association is inherently made for vTx and vTx2
throughout the track, since once these transmitters have
been initialized they stay observable throughout the track.
However, if a user was to go through the same scenario a
second time with prior information of the transmitter states
as estimated during the first run, data association would
improve the positioning performance as correspondences
among transmitters estimated during the first and second run
could be found and exploited.
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In contrast, the user RMSE in Figure 8 without data
association in the simulations keeps increasing, since there
are constantly new transmitters showing up and current
transmitters disappear. As mentioned above, the uncertainty
about transmitters is high upon initialization, since the
measurements obtained from KEST are of fewer dimensions
than the transmitter states. In addition, the current user
uncertainty adds up to the transmitter uncertainty. No
transmitter can be tracked throughout the scenario, and
the overall uncertainty keeps increasing. In the simulations,
data association relates new transmitters with previously
observable transmitters and decreases the uncertainty about
the states of transmitters drastically. Consequently, also the
uncertainty about and hence the RMSE of the user state
decrease.

7. Conclusion

Within this paper, we derived a novel filtering approach
for Channel-SLAM. Using Rao-Blackwellization, the user
state is represented by a number of particles and estimated
by a particle filter. The states of the landmarks, which are
the physical and virtual transmitters in Channel-SLAM, are
represented by a sum of Gaussian PDFs, where eachGaussian
component PDF is filtered by a UKF. The approach can be
applied to SLAM problems in general.

We evaluated our approach in simulations in an urban
scenario as well as with outdoormeasurement data, where we
could track a user’s position with only one physical transmit-
ter whose location was unknown. For the simulations in the
urban scenario, the user RMSE was always below 21m. With
the presented data associationmethods applied, it was always
below 16.5m. For the measurements on an airfield, the user
RMSE was in the order of 3-4m.

Appendix

A. UKF Prediction and Update Equations

A.1. Prediction Step

(1) Given the Gaussian state PDF p(x𝑘−1 | z𝑘−1) =
N(x̂𝑘−1|𝑘−1,P𝑘−1|𝑘−1), calculate the set of 𝑁sig sigma
points X𝑚,𝑘−1|𝑘−1 and their weights 𝜔𝑚 for 𝑚 = 1,. . . , 𝑁sig, for example, using (23).

(2) Propagate the sigma points through the movement
model:

X∗𝑚,𝑘|𝑘−1 = f𝑘 (X𝑚,𝑘−1|𝑘−1) . (A.1)

(3) Calculate the predicted state:

x̂𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X∗𝑚,𝑘|𝑘−1. (A.2)

(4) Calculate the predicted error covariance:

P𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X∗𝑚,𝑘|𝑘−1X∗𝑚,𝑘|𝑘−1𝑇 − x̂𝑘|𝑘−1x̂
𝑇
𝑘|𝑘−1

+Q𝑘−1.
(A.3)

A.2. Update Step

(1) Given the Gaussian state PDF p(x𝑘 | z𝑘−1) =
N(x̂𝑘|𝑘−1,P𝑘|𝑘−1), calculate the set of 𝑁sig predicted
sigma points X𝑚,𝑘|𝑘−1 and their weights 𝜔𝑚 as for the
prediction.

(2) Propagate the predicted sigma points through the
measurement function:

Z𝑚,𝑘|𝑘−1 = h𝑘 (X𝑚,𝑘|𝑘−1) . (A.4)

(3) Calculate the predicted measurement:

ẑ𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚Z𝑚,𝑘|𝑘−1. (A.5)

(4) Calculate the estimated innovation covariance
matrix:

P⟨𝑧𝑧⟩𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚Z𝑚,𝑘|𝑘−1Z𝑚,𝑘|𝑘−1𝑇 − ẑ𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1

+ R𝑘−1.
(A.6)

(5) Calculate the cross-covariance matrix:

P⟨𝑥𝑧⟩𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X𝑚,𝑘|𝑘−1Z𝑚,𝑘|𝑘−1𝑇 − x̂𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1. (A.7)

(6) Calculate the Kalman gain:

W𝑘 = P⟨𝑥𝑧⟩𝑘|𝑘−1P
⟨𝑧𝑧⟩
𝑘|𝑘−1

−1. (A.8)

(7) Calculate the updated state estimate:

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 +W𝑘 (z𝑘 − ẑ𝑘|𝑘−1) . (A.9)

(8) Calculate the updated error covariance:

P𝑘|𝑘 = P𝑘|𝑘−1 −W𝑘P
⟨𝑧𝑧⟩
𝑘|𝑘−1W

𝑇
𝑘 . (A.10)
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[42] G. E. Kirkelund, G. Steinböck, X. Yin, and B. Fleury, “Tracking
of the temporal behaviour of path components in the radio
channel - A comparison betweenmethods,” inProceedings of the
2008 Annual IEEE Student Paper Conference, AISPC, Denmark,
February 2008.
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