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In this paper a generalized hp method is combined with pseudospectral methods and
convex optimization to provide a high-accuracy, real-time capable method able to compute
optimal trajectories for planetary powered descent and landing phases of a spacecraft.
The benefits of the method are demonstrated for the Mars Science Laboratory study case.
Numerical simulations show that the method provides a suitable alternative to the standard
convex approaches, and represents a good trade-off between accuracy and computational
speed.

Nomenclature

Roman

Ac = Continuous LTI dynamic matrix

Ad = Discrete LTI dynamic matrix

Bc = Continuous LTI control matrix

Bd = Discrete LTI control matrix

D = Discrete differentiation matrix

F = Discrete function vector

f ,g = Generic functions

g = Gravity vector, [m/s2]

In = Identity matrix of dimensions n

i,j,k,m,n,p = Non-negative, integer indices

J = Cost function

kt = Time conversion factor, [s]

L̃n(τ) = Legendre polynomial of degree n

m = Lander mass, [kg]

On1×n2 = Zero matrix of dimensions n1,n2

Pi(τ) = ith Lagrange polynomial

Rn(τ) = Legendre-Radau polynomial of degree n

r = Position vector, [m]

T = Thrust vector, [N]

t = Generic time, s

v = Velocity vector, [m/s]

xc(t), uc(t) = Generic continuous state and control

X, U = Discrete state and control vector

x(t), u(t) = Generic state and control

z = Logarithm of lander’s mass

Greek

α = Thruster parameter, [s/m]

Γ, σ = slack variables, [N, m/s2]

Φ = Mayer term

Ψ = Lagrange term

ρ = Thrust limit, [N]

τ = Pseudospectral time

ω = Radau quadrature weights

Operators and subscripts

˙(·) = First time derivative, [· /s]

(·)0 = first element of variable (·), [·]
(·)f = last element of variable (·), [·]
(·)l = Lower limit, [·]
(·)max = Maximum limit, [·]
(·)(t0) = variable (·) evaluated at t0, [·]
(·)(tf ) = variable (·) evaluated at tf , [·]
(·)u = Upper limit, [·]
(·)x = x component of vector (·), [·]
(·)y = y component of vector (·), [·]
(·)z = z component of vector (·), [·]

I. Introduction

In the last years SpaceX1 and Blue Origin’s New Shepard2 showed that the reusability is the key for a
dramatic reduction of the costs associated with space exploration first and commercial exploitation later on.
All the missions dealing with EDL phases have in common the need for a real-time capability to react to off-
nominal conditions and uncertainties. For example, the spacecraft has to be able to re-compute its trajectory
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without violating any constraint, like a given glideslope limit required for proper hazard-avoidance, or to
reschedule the landing spot in case a crater or a boulder, not previously visible, is detected.

Several methods were developed over the years. The first family of methods is a heritage of the Apollo
era, and is consequently named Apollo guidance,3 originally used for the Moon landing. In this case an
acceleration profile was computed according to the initial and final (desired) position and velocity. This
method solves for the desired terminal conditions, but it is not optimal in terms of propellant consumption,
nor allows for including further constraints. An alternative algorithm is the gravity turn,4,5 characterized
by having the thrust direction parallel and opposite to the velocity vector during the powered descent phase.
A drawback of this approach can be the high final velocity achieved by the spacecraft.6 This risk can be
mitigated by starting the maneuver earlier. However, the correct execution of the algorithm (and therefore
the achievement of the desired final conditions) depends on the initial states, and therefore, requires further
modifications to be used. This was the case for the Viking missions.7 The powered descent algorithm was in
this case based on the combination of the gravity-turn technique with two altitude-velocity profiles, employed
to generate an interpolated solution for any initial and final conditions experienced during the descent.

A paradigm shift was experienced with the development of convex optimization,8 a class of methods
which allow to obtain in real-time optimal solutions for all those problems satisfying some criteria (that is,
for all those problems which are subject to convex constraints). In the field of Entry, Descent, and Landing
(EDL) applications a breakthrough was represented by the development of the lossless convexification for
the Mars powered descent.9 The algorithm optimizes the consumption of propellant mass, and allows for the
inclusion of further constraints, such as the avoidance of non-physical sub-surface trajectories and glideslope
limits during the descent.

An alternative approach has arisen with the development of pseudospectral optimal control, a class
of methods particularly efficient for a wide range of non-convex problems, including the powered descent
guidance problem.10 They use non-uniform grids, leading to smoother results, and a small number of nodes
required to compute a valid solution.11,12 The resulting discretized nonlinear programming (NLP) problem
can be therefore solved with one of the well-known off-the-shelf NLP packages, such as SNOPT13 or IPOPT.14

However these methods cannot in general solve the NLP problem in polynomial time, making harder their
direct use in real-time. Moreover, these algorithms compute only local optima, and for complex problems
they might require a good initial guess.

A first step towards the hybridization of pseudospectral methods and convex optimization can be al-
ready found in the pioneering work of Acikmese et Al.15 However, Chebyshev polynomials were only used
for interpolating the controls. This implies that neither the properties associated with the use of non-
uniform distributions of nodes, nor the dedicated differential and integral operators were exploited. A full
pseudospectral-convex hybridization formulation, based on flipped Radau pseudospectral method and Lo-
batto pseudospectral method has been proposed by Sagliano.16 In this case the accuracy of the solutions,
based on a full exploitation of the properties of orthogonal polynomials led to very accurate results, but for
larger number of nodes the CPU time might be significantly larger than standard methods. This is due to the
structure of the underlying matrices, which are less sparse, leading therefore to larger computation times. In
this paper we propose a strategy to mitigate this effect by generalizing the previous pseudospectral-convex
optimization in the frame of the broader family of hp schemes. This technique, very popular in the Finite-
Element method community,17 and already implemented in other optimization packages18 allows for a quasi
block-diagonal matrix representing the underlying linear system of equations, and therefore to faster results
with limited effects on the accuracy of the solution.

The remainder of this paper is organized as follows. Sections II and III provide a brief overview on
hp pseudospectral methods and convex optimization, respectively. More specifically, the latter refers to a
special form of convex optimization, that is, the Second-Order Cone Programming (SOCP). In Sec. IV
the problem we focus on, that is, the Mars powered descent problem is described. The new pseudospectral
convex optimization framework is presented in Sec. V, while numerical simulations showing the benefits of
the proposed techniques are the subject of Sec. VI. Finally, Sec. VII presents some conclusions about this
work.
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II. Pseudospectral Methods

A. Optimal Control Problem

There are several approaches for the generation of reference trajectories. Some methods exploit the structure
of the specific problem we deal with. Often, they require simplifications to make the problem mathematically
tractable, and therefore generate solutions valid under given hypotheses. A different approach, which has
become a standard method, and benefits from the development of the computational capabilities of modern
CPUs, is the representation of the trajectory generation problem as an optimal-control problem. This means
that we are looking for solutions minimizing (or maximizing) a given criterion, and satisfying at the same time
several constraints, which can be differential (i.e., the equations of motion of a spacecraft) and / or algebraic
(e.g., the maximum heat-flux that a vehicle can tolerate during the atmospheric entry). The standard form
for representing optimal-control problems is the so-called Bolza problem. Given a state vector x(t) ∈ Rns ,
a control vector u(t) ∈ Rnc , the scalar functions Φ(t,x,u) and Ψ(t,x,u), and the vector g(t,x,u) ∈ Rng we
can formulate the problem as follows:

minimize J = Φ [tf ,x (tf ) ,u (tf )] +

∫ tf

t0

Ψ [x(t),u(t)] dt (1)

subject to the differential equations
ẋ = f (t,x,u) (2)

and to the path constraints
gL ≤ g (t,x,u) ≤ gU (3)

The first term in the cost function of Eq. (1) takes the name of Mayer term (or terminal cost), and represents
punctual constraints (e.g., the minimization of a distance according to a given metric), while the argument
of the integral is called the Lagrange term (also known as running cost) and is used to maximize or minimize
variables over the entire mission (e.g., the heat load obtained by integrating the heat-flux over time). The
inequalities in Eq. (3) are meant as component-wise. Note that although not specifically expressed, we
always refer to autonomous systems of differential equations. Therefore the time dependency in Eq. (2) is
never explicit. Since we deal with physical systems, the problem has usually bounded states and controls,
that is, x(t) and u(t) are compact in Rns and Rnc , respectively:

xL ≤ x(t) ≤ xU (4)

uL ≤ u(t) ≤ uU (5)

Moreover, initial and final conditions might be constrained as well.

x0 = x(t0) (6)

xf = x(tf ) (7)

Equations (1)-(7) represent a generic continuous optimal control problem. In the next section we will see
how this type of Optimal-Control Problem (OCP) can be transcribed by using hp pseudospectral methods.

B. Properties of Pseudospectral Methods

Numerical methods for solving OCPs are divided into two major classes, namely, indirect methods and direct
methods. Indirect methods are based on the Pontryagin Maximum Principle, which leads to a multiple-point
boundary-value problem. Direct methods, instead, consist in the proper discretization (or transcription)
of the OCP, having as a result a finite-dimensional NLP problem. Pseudospectral methods represent a
particular area of interest in the frame of the wider class of direct methods. Examples of tools implementing
pseudospectral methods include DIDO,19 GPOPS,20 and SPARTAN.10 For several pseudospectral methods
the following properties are valid:

• ”Spectral” (i.e., quasi-exponential) convergence of the NLP solution to the OCP solution when the
number of nodes employed is increased (and the problem is smooth)

• Runge phenomenon is avoided
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• Sparse structure of the associated NLP problem

• Mapping between the discrete costates of the associated NLP and the continuous costates of the
Optimal Control Problem in virtue of the Pseudospectral Covector Mapping Theorem.21

The transcription process does not only involve the choice of the discrete nodes, but also determines the
discrete differential and integral operators needed to solve the associated OCP. Therefore, transcription is
a more general process than discretization. The minimum fundamental steps of a transcription are the
following:

• domain discretization

• discrete to continuous conversion of states and / or controls

• characterization of differential and integral operators

Among the families of pseudospectral (PS) methods a specific one was considered for this work: the hp
flipped Radau Pseudospectral method (or fRPm). It is worth saying that this is not the only possible choice,
as other sets of nodes, like Gauss,22 Chebyshev23 or Lobatto12 exist. The reason behind this choice is that
the fRPm allows for a natural and straightforward definition of the initial conditions of the problem, and
shows a smoother convergence of the costates with respect to other methods.12 Moreover, in its hp form we
will see that it provides a compact way to transcribe the problem. Therefore, it is useful to have a look at
this method, and at its transcription. This will be the purpose of the two next subsections.

C. Flipped Radau Pseudospectral Method

Flipped Radau Pseudospectral Method is an asymmetric pseudospectral method, whose nodes are the roots
of the flipped Legendre-Radau polynomial, defined as the combination of the Legendre polynomial of order
n and n− 1 with coefficient equal to 1 and -1 respectively.

Rn(τ) = L̃n(τ)− L̃n−1(τ) τ ∈ [−1, 1] (8)

An example of roots associated with the Legendre-Radau polynomial of order 10 is depicted in Fig. 1(a),
together with the corresponding polynomial.
Remark 1 Note that the Rn(−1) is not a root of the underlying polynomial, therefore it is not a collocation point, although
it is required for the evaluation of the polynomial. This is due to the fact that only over the left-open, right-closed interval
(−1,+1] these polynomials are orthogonal.

This discrete representation of the domain is useful to reconstruct continuous approximations of the
functions x(t) as:

x(t) ∼=
n∑
i=0

XiPi(t), Pi(t) =
n∏
k=0
k 6=i

t−tk
ti−tk (9)

A property of Radau pseudospectral methods is that only one of the two extremal points is collocated. This
difference will affect the differential operators we are going to introduce in the next section, as we will see,
and has consequences on the proposed hp pseudospectral convex method too. This aspect will be further
explained in Sec. V. An example of the approximation obtained via Eq. (9) is depicted in Fig. 1(b), where
the function 1/(1 + 25τ2) is reconstructed by using 25 nodes. It is possible to see that the original function
is approximated very well with this set of discrete nodes.
Remark 2 Note that the approximation becomes more accurate when the number of nodes is increased. This is the opposite

behavior observed when equi-spaced nodes, which suffer from the aforementioned Runge Phenomenon, are employed.

Once that the domain has been discretized, and the discrete-to-continuous conversion of states has been
defined, the corresponding differential operator needs to be characterized. This is required for the proper
representation of the left-hand side of Eq. (2). The differential operator will be in the form

Ẋi
∼= D ·X, i = 1, ...n (10)

and the dynamics defined in Eq. (2) will be replaced by

D ·X =
tf − t0

2
f(ti,Xi,Ui) (11)
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Figure 1. Transcription steps with fRPm: (a) domain discretization, (b) continuous reconstruction of functions.
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Figure 2. Transcription steps with fRPm: (a) application of differential operator, (b) application of integral
operator.

where t0 and tf are the initial and final time, and the term
tf−t0

2 is a scale factor related to the transformation
between the physical time domain t, and the pseudospectral time domain τ ∈ [−1, 1], given by the following
affine transformations:

t =
tf − t0

2
τ +

tf + t0
2

(12)

τ =
2

tf − t0
t− tf + t0

tf − t0
(13)

The matrix D has dimensions [n × (n + 1)]. Once again, this is due to the fact that the states are defined
for n+ 1 discrete points, while the controls U and the derivatives of the states f(t,X,U) are defined in the
n collocation points. This means that the initial state X0 is an input and not an output of the optimization
process, and it is thus assumed to be known. If we look at Eq. (9), and we take the derivative w.r.t. time,
we get

ẋ(t) ∼=
d

dt

n∑

i=0

XiPi(t) =

n∑

i=0

Xi
d

dt
Pi(t) (14)

as the nodal points are time-independent. These derivatives can be efficiently computed with the Barycentric
Lagrange Interpolation.24 An example of the differential operator for the two methods is depicted in Fig.
2(a), where D is used to approximate the derivative of the continuous test function F (τ) = Ae−τ sin(ωτ),
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with A = 5, ω = 10, sampled in 25 collocation nodes. It can be seen that the polynomial approximation fits
the true derivative of the function very well.

In addition to the differential operator, we need an integral operator. This operator is required as the
cost function in Eq. (1) may contain the Lagrange term, which needs a proper discretization. In this case
the Gauss quadrature formula is used.25 For the fRPm the approach consists of replacing the continuous
integral with the discrete sum given by:

∫ tf

t0

Ψ [t,x(t),u(t)] dt =
tf − t0

2

n∑

i=1

wiΨ [Xi,Ui] (15)

It can be shown that Eq. (15) yields exact results for polynomials of order at most equal to 2n− 2.12 Once
again, the presence of the term

tf−t0
2 is a consequence of the mapping between pseudospectral and physical

time domains described in Eq. (12) and (13). The weights wi can be computed as

w = flip(w̃) (16)

w̃j =





2

n2
, j = 1

(1− τj)
n2L̃n(τj)2

, j = [2, ...n]
(17)

where the operator flip simply multiplies its argument by a factor equal to −1, and sorts the results in
increasing order. To give a practical example the integral of the test function F (τ) = 2τ + 2− τ2 has been
computed. Results are then compared with the analytical integral, and with the trapezoidal rule (Fig. 2(b))
applied using the same nodes. Numerically, we get exactly the analytical result, that is 3.3333 when fRPm is
employed, while the application of the trapezoidal rule gives 3.3298, confirming the validity of the quadrature
formula applied to the f-RPm points. Note that when n equi-spaced nodes are used the trapezoidal rule
gives better results (3.3310), but still inferior to the pseudospectral ones.

D. Hp Pseudospectral Methods

The method introduced in the previous section uses an implicitly-defined unique domain. In other words,
the original time domain of our problem [t0, tf ] is mapped against the so-called pseudospectral time [−1, 1].
To compute a more accurate solution the number of nodes collocated in this interval is increased. This
means that we are increasing the degree of the polynomials used to approximate the continuous variables of
the original problem, for instance, by using p nodes. Since p is the only parameter we are controlling, we
can state that the global flipped Pseudospectral method is a p-method. However, one can think to break the
time domain in sub-domains, and to locally collocate the equations of motion in each of these segments. In
this case there will be two parameters to define, that is, the number of segments h, and the number of nodes
per segment p. This is the idea behind the so-called hp methods, which are very popular in finite-element
methods17 as well as in computational fluid dynamics.26 Hp methods were successfully applied to optimal
control, by using adaptive schemes, which allowed for automatic mesh refinements aimed at improving the
accuracy of the solutions.20,27 Note that p can be a vector p ∈ Rh, where each element p1, p2, . . . , ph
identifies the degree of the polynomial used for the segment 1, the segment 2, . . . , and the segment h.
However, throughout this paper since no automatic mesh-refinement is involved, we will use a constant value
p for all the segments.

A double notation is now introduced to differentiate the segments and the nodes within a segment.
Subscripts i refer to the ith node in a given segment, while superscripts j define the jth segment. Therefore,

Xj
i Uj

i Gj
i ,

j ∈ [1, . . . , n]

i ∈ [1, . . . , p]
(18)

identify the generic state, control and constraint at the ith node of the jth segment. Accordingly, we will
have n time segments, defined as

[tj0, t
j
f ], j = [1, . . . , n] (19)

and the generic element of the overall time vector is tji . With this notation we can define the transcription
according to the hp flipped Radau pseudospectral method:
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Minimize (or maximize) the cost function J , for i = 1, . . . , p, and j = 1, . . . , n.

J = Φ
[
Xn
p ,U

n
p

]
+
tnp − t10

2n

n∑

j=1

p∑

i=1

wiΨ
[
Xj
i ,U

j
i

]
(20)

subject to the nonlinear algebraic constraints

Fji = Dj ·
[
Xj

0 Xj
1 . . . Xj

p

]
−
tnp − t10

2n
f
(
Xj
i ,U

j
i

)
= 0 (21)

and to the path constraints

gL ≤ G
(
Xj
i ,U

j
i

)
≤ gU (22)

Note that since we chose to have the same number of nodes p in each segment, the matrix D is the same for
all the segments; therefore

Dj = D (23)

holds, and the index j for can be dropped. The discrete states and the controls are bounded, as in the
continuous formulation.

xL ≤ Xj
i ≤ xU (24)

uL ≤ Uj
i ≤ uU (25)

Moreover, the so-called linking conditions are required, that is

tj−1p = tj0
Xj−1
p = Xj

0

, j = [2, . . . , n] (26)

These equations provide the pseudospectral hp algorithm, which will be combined with convex optimization,
briefly summarized in the next section.

III. Convex Optimization

Over the last thirty years several researchers focused on the development of convex optimization the-
ory.8,28 They demonstrated that for a large class of problems the key-property is not the linearity of the
system, but the convexity. In this case, the problem can be solved in real-time, and if the problem is feasible,
the computed solution is the global optimum.

A. Convex Programming

In general a convex optimization problem is defined as follows:

minimize J = f0(x) (27)

subject to

fi(x) ≤ ai, i = 1, . . . ,m (28)

where x ∈ Rn represents the vector of variables to be determined. The functions fi, with i = 0, . . . ,m, are
convex functions, which means that they satisfy the following relationship.

fi(αx+ βy) ≤ αfi(x) + βfi(y), i = 0, . . . ,m, ∀α, β ≥ 0 : α+ β = 1 (29)

The previous expression suggests one of the properties of convex problems, that is, they generalize the notion
of linearity of a function, leading to the notion of convexity, which has the equality as special case instead of
the inequality in Eq. (29). Further details and exhaustive explanations can be found in the works of Boyd,
Vandenberghe, Ben Tal and Nemirovski.8,28
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The following properties characterize convex optimization:

• A large number of problems can be reformulated in convex form

• There are efficient methods to solve convex problems (e.g., primal-dual interior point methods), such
that it can be considered more and more a mature technology

• This class of methods does not require an initial guess (a problem which affects many problems when
NLP solvers are employed)

• If a solution to the problem exists, it is the global optimum.

While the category of convex optimization is still quite large, and includes several subfields (e.g., Semidefinite
programming, Quadratically constrained quadratic programming, and so on), we will instead focus on a
specific form of convex optimization, that is, the so-called Second-order Cone Programming (or SOCP).
This specific subclass of methods will be briefly described in the next section, whereas more extensive and
rigorous descriptions of the theoretical properties and the potential applications of this technology can be
found in literature.8,28,29

B. Second-Order Cone Programming

An interesting subcategory of convex optimization is represented by Second-Order Cone Programming. This
definition encloses all the problems which can be formulated as follows:

minimize cT0 x (30)

subject to

Gix ≤ hi, i = 1, . . . , l

A0x = b0

‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . , p

(31)

with x ∈ Rn×1 representing the variables to determine, c0 ∈ Rn×1 is the vector defining the cost function,
whereas Gi ∈ Rli×n and hl ∈ Rli×1 represent (with li that might vary for every i) a set of component-wise
inequalities. A0 ∈ Rm×n and b0 ∈ Rm×1 describe the linear system of m equations that the solution has
to satisfy. The terms Ai ∈ Rmi×n, bi ∈ Rmi×1, ci ∈ Rn×1 and di ∈ R describe a conic constraint of order
mi + 1. These constraints imply that, given the affine transformations

t = cTi x+ di

y = Aix+ bi, i = 1, . . . , p
(32)

the solution will always be contained within the volume of each of the p mi-dimensional cones. An example
for mi = 2 is depicted in Fig. 3.

y
2

t

y
1

Figure 3. Example of 3-D cone. The volume of the cone satisfies the condition ‖y‖2 ≤ t.
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Among the others, linear programming problems, or quadratically constrained problems can be refor-
mulated as cone programming problems. Moreover, they can efficiently be solved by using primal-dual
interior point methods,30 and several solvers, such as ECOS,31 are available. These aspects make the SOCP
technology appealing for several applications, including the one used as example in this work.

IV. Mars Powered Descent

In 2012 NASA’s rover Curiosity successfully landed on the martian surface.32 One of the most challenging
parts of the famous 7 minutes of terror33 was the descent phase, where the retrorockets were used to
counteract Martian gravity and ensure the proper conditions for a soft touchdown. An elegant formulation
of this problem was proposed by Acimese and Ploen.9 Specifically, the optimal-control problem can be stated
as follows. We are interested in maximizing the final mass of the lander

maximize J = m(tf ) (33)

subject to the following set of equations:
ṙ = v

v̇ =
T

m
+ g

ṁ = −α ‖T‖

(34)

r ∈ R3 is the position vector, and v ∈ R3 represents the velocity vector, both expressed in a surface-fixed
reference frame, depicted in Fig. 4. The Martian gravity vector is defined as g = [0, 0, −3.7114] m/s2.

X

Y

Z

r

Figure 4. Surface-fixed reference frame.

Note that assuming a constant, vertical gravity vector is a valid assumption given the altitude of the lander
at this stage of the mission. Moreover, the velocities are much smaller than the ones experienced during
the entry and initial descent phase, and therefore the aerodynamic accelerations can be neglected in this
context. T ∈ R3 is the net thrust vector in Newton, and is the control of the system. m is the mass of the
lander, initially equal to 1905 kg. The time of flight is assigned and equal to 81 s. The coefficient α in the
last of Eq. (34) includes parameters of the thrusters’ system, and is computed as

α =
1

Ispge cosφ
(35)

where Isp = 225 s is the specific impulse of the thrusters, and ge = 9.807 m/s2 is the Earth’s gravitational
constant. The rover is equipped with n = 6 thrusters, having a cant angle φ = 27 degrees and able to provide
a thrust Ti along each of the axes. The relationship between Ti and the thrust level T̂i is

Ti = TmaxnT̂i cosφ, i = x, y, z (36)
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with Tmax equal to 3.1 kN. Note that T̂i obeys the following constraint:

T̂l ≤ T̂i ≤ T̂u, i = 1, . . . , 3 (37)

with T̂l = 0.3 and T̂u = 0.8. Initial and final positions and velocities are:

r(t0) =




2000

0

1500


 m, r(tf ) =




0

0

0


 m

v(t0) =




100

0

−75


 m/s, v(tf ) =




0

0

0


 m/s

(38)

There are two constraints that need to be included in the formulation of the problem. The first is the
sub-surface constraint,

rz(t) > 0, ∀t ∈ [t0, tf ) (39)

which simply means that the lander’s trajectory lies above the surface of the planet. This constraint is often
replaced by a stricter one, that is, the glideslope constraint:

tan−1


 rz(t)√

r2x(t) + r2y(t)


 ≥ θ̃alt = 4 deg (40)

This constraint ensures that during its descent the lander moves within a cone having a semi-angle equal
to 90 − θ̃alt degrees, and therefore does not reduce the altitude below a given threshold while reaching the
target position. Acikmese and Ploen9 showed that this non-convex optimal problem can be transformed into
an equivalent convex one. Let us define the following variables:

u =
T

m

σ =
Γ

m
z = log(m)

(41)

The scalar variables Γ and σ are introduced to overcome the nonconvexity of the original control set. With
these definitions, the problem becomes:

minimize J =

tf∫

t0

σ(t)dt (42)

subject to:
ṙ = v

v̇ = u + g

ż = −ασ
(43)

The lossless convexification implies that for the controls the following condition holds:

‖u(t)‖ ≤ σ(t) (44)

The change of variables of Eq. (41) implies that the following constraint acting on z has to be satisfied:

ρle
−z(t) ≤ σ(t) ≤ ρue−z(t) (45)

and these limits are approximated with the following second-order Taylor expansion and first-order Taylor
expansion for the lower and the upper boundaries:

ρle
−zl
[
1− (z − zl) +

1

2
(z − zl)2

]
≤ σ(t) ≤ ρue−zu [1− (z − zu)] (46)
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The centers of expansion zl and zu can be computed according to

zl = log(m0 − αρlt)
zu = log(m0 − αρut)

(47)

and the terms ρl and ρu are equal to the minimum and the maximum values of T . Moreover, Eqs. (39) / (40)
need to be satisfied too. One of these two last conditions, together with Eq. (43) define the entire convex
problem to be solved, characterized by having ns = 7 states, and nc = 4 controls. Full technical details on
the lossless convexification can be found in the work by Acikmese et Al.,9 while further enhancements are
covered in Blackmore et Al.,34 and Szmuk et Al.35 In the next section we will apply the hp pseudospectral
convex optimization algorithm to the original formulation of the problem.

V. Hp Pseudospectral Convex Optimization

In this section we present the hp pseudospectral convex framework for generating real-time capable
optimal solutions for the Mars powered descent and landing phase.

A. Hp Flipped Radau Pseudospectral Convex Method

The first step is the determination of the discrete timesteps, and the state vector representing the solution.
For each of the n segments we can compute the p roots of the flipped Radau-Legendre polynomials as defined
in Eq. (8). Note that in each of the n segments we have p+ 1 discrete nodes. However, the first point is not
collocated. Moreover, we have n−1 link conditions defined in Eq. (26). Therefore, we want to determine the
solution only in np points. These points correspond to the discrete set of pseudospectral times τi ∈ [−1, 1],
which can be converted into physical timesteps by using the first of the affine transformations defined by
Eq. (12), adapted to the jth segment,

tji = tj−1f +
tjf − t

j
0

2
τi +

tjf + tj0
2

, i = 0, . . . , p, j = 1, . . . , n, t0f , 0 (48)

The discrete time vector is of course non-uniform in virtue of the nature of the hp pseudospectral transcrip-
tion. For the states and the controls we propose to use the following vector:

X =
[
r11 v1

1 z11 u1
1 σ1

1 . . . rnp vnp znp unp σnp

]T
(49)

Note that the initial conditions (r0, v0, and z0) and the initial controls (u0 and σ0) are excluded from the
definition of X, consistently with the fact that the initial node of the fRPm is not collocated. The vector X
will have dimensions [(ns + nc)np× 1]

Cost function
The vector c representing the cost function will be a vector having dimensions np(ns + nc) × 1. Of these,
only np elements, corresponding to the σji values, are different from zero. Therefore we have

ck =





tnf − t10
2n

wi,

i = 1, . . . , p

j = 1, . . . , n

k = ij(ns + nc)

0, otherwise

(50)

where wi are the Radau quadrature weight defined in Eqs. (16),(17), and t10 and tnf are the initial and final
times of the entire mission profile, assumed to be known. Note that for each of the segments the first node
is non-collocated. However, the same node is the last collocated node of the previous segment, as depicted
in Fig. 5. Therefore, its weight will simply correspond to wp.

Dynamics
If we define the continuous state vector as

xc = [r v z]
T

(51)
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Segment 1

︷ ︸︸ ︷
Segment 2

︷ ︸︸ ︷
Segment 3

︷ ︸︸ ︷

Link Condition 1

Link Condition 2Non-collocated

Collocated

Figure 5. Linking conditions between segments in the hp collocation scheme.

and the control as
uc = [u σ]

T
(52)

the dynamics of Eq. (43) has the following state-space representation:

Ac =



O3×3 I3 0

O3×3 O3×3 O3×1

O1×3 O1×3 0


 , Bc =



O3×3 0

O3×3 0

O1×3 −α


 (53)

where On1×n2 and In3 are the zero matrix of dimensions n1 and n2 and the identity matrix of dimensions
n3, respectively. In the standard transcription the matrices Ac and Bc were converted into their discrete
counterparts Ad and Bd. These matrices were then used in the discrete scheme for building the linear
system defined in Eq. (31). Instead, with pseudospectral convex framework we can skip this transformation,
and directly use Ac and Bc. The reason is the different construction of the linear system of equations. In
the standard transcription the system is constructed by exploiting the equation

x(k + 1) = Adx(k) + Bdu(k) + Bdg (54)

In our case we build the residuals of the differential equations as

ẋ(t) = Acxc(t) + Bcuc(t) + Bcg (55)

since ẋ ∼= Dx, and keeping in mind Eq. (21) we can write that for each phase j and node i

Dxc
j(t)− ktAcxc

j
i (t)− ktBcuc

j
i (t) = ktBcg (56)

holds. This relationship, evaluated in the p nodes within that segment, leads to the following definitions. In
each segment (j = 1, . . . , n) we have

Aj
dyn =




D1,1Ins − ktAc −ktBc . . . . . . D1,pIns Ons×nc
...

...
...

...
...

...
...

...
...

...
...

...

Dp,1Ins Ons×nc . . . . . . Dp,pIns − ktAc −ktBc




(57)

moreover, we can define for the first phase j = 1 the vector b1
dyn as

b1
dyn =




−D1,0x0 + ktBcg
...
...

−Dp,0x0 + ktBcg




(58)
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while for the other segments (i.e., j ∈ [2, . . . , n]) we have

bj
dyn =




−D1,0x
j−1
p + ktBcg

...

...

−Dp,0x
j−1
p + ktBcg




(59)

The term kt is computed as (tnf −t10)/2n, according to the definition of Eq. (20). Note that the knowledge

of the initial conditions is exploited to construct the vector b1
dyn through the first column of the matrix D,

representing the discrete, non-collocated point corresponding to x0, while the linking conditions are implic-
itly guaranteed by including the elements xj−1p in the definition of the vectors bj

dyn.

Final Conditions
Arbitrary final conditions can be met by imposing further terms in the system of linear equations we are
building. Supposing that all the six components on position and velocity are constrained to some values rf ,
vf , we can impose them by defining a further matrix Afc, and a further vector bfc as

Afc =
[
O(ns−1)×ns O(ns−1)×nc . . . . . . I(ns−1) O(ns−1)×nc+1

]
(60)

bfc =
[
rf vf

]T
(61)

Remark 3 Note that the number of rows of Afc and elements of bfc are in this case equal to ns − 1 because the final mass is
not constrained.

Remark 4 The number of rows of Afc and elements of bfc, can be further reduced in case only some of the components of rf

and vf are constrained. In that case it is sufficient to delete the rows and elements corresponding to the non-constrained final

values.

The linear system representing the dynamics and the final conditions is therefore given by the following
condition

AX = b (62)

where

A =
[
A1

dyn
T

. . . An
dyn

T Afc
T
]T

(63)

and

b =
[
b1
dyn

T
. . . bn

dyn
T bfc

T
]T

(64)

Constraints
As first step we need to include the condition described by Eq. (44). This is done by including the following
conic constraint:

∥∥∥∥∥∥∥∥∥∥




1 0 0 0

0 1 0 0

0 0 1 0







ux

uy

uz

σ




j

i

∥∥∥∥∥∥∥∥∥∥
2

≤
[

0 0 0 1
]



ux

uy

uz

σ




j

i

,
j = [1, . . . , n]

i = [1, . . . , p]
(65)

The no-subsurface constraint can be imposed by the following inequality

[
0 0 −1

]


rx

ry

rz




j

i

≤ 0,
j = [1, . . . , n]

i = [1, . . . , p]
(66)

Note that this inequality represents a positive orthant, which is a special case of cone.
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In case we want the glideslope constraint to be active, the previous constraint can be replaced by the
following conic constraint:

∥∥∥∥∥∥∥

[
1 0 0

0 1 0

]

rx

ry

rz




j

i

∥∥∥∥∥∥∥
2

≤
[

0 0 1
tan θalt

]


rx

ry

rz




j

i

,
j = [1, . . . , n]

i = [1, . . . , p]
(67)

The discrete version of the left-hand side of Eq. (46) can be modeled as a conic constraint too. Let us define
the following matrices and vectors:

Aρ =
[ √

2ρle
−zl

2 0

]j
i
, bρ = −

[
ρle
−zl (1 + zl) 1

]j
i
, cρ = ρle

−zl
[
1 + zl + 1

2z
2
l

]j
i

(68)

and

Ac =

[
bρ
2

Aρ

]j

i

, bc =

[
cρ
2 + 1

2

0

]j

i

, cc = − bρ
2

∣∣∣
j

i
, dc = 1

2 −
cρ
2

∣∣j
i

(69)

With these definitions, it is possible to impose the first part of Eq. (46) as

‖Acz̃ + bc‖2 ≤ c
T
c z̃ + dc,

j = [1, . . . , n]

i = [1, . . . , p]
(70)

where

z̃ =

[
z

σ

]j

i

(71)

Finally, the right-hand side of Eq. (46) is a linear constraint, and using the definition of Eq. (71), is
discretized as [

ρue
−zu 1

]
z̃
∣∣∣
j

i
≤
[
ρue
−zu (1 + zu)

]j
i
,
j = [1, . . . , n]

i = [1, . . . , p]
(72)

The entire problem is therefore expressed as

minimize J = cX (73)

subject to the linear system of Eq. (62), together with the constraints of Eqs. (65)-(72), and represents
the transcription of the Mars powered descent problem according to the hp flipped Radau Pseudospectral
Convex method (or hp-fRPCm). The initial state is known, and the initial control is extrapolated from the
control history once that the problem is solved. The computation of the initial control completes the solution
with all the missing information.

VI. Numerical Examples

In this section we describe a series of numerical examples. First, we show the results coming from the
nominal scenario. To assess the reliability of the method, we performed a Monte-Carlo campaign with 1000
runs is performed. Finally, an analysis of the accuracy of the solution when the parameters h and p are
varied is carried on.

A. Nominal Results

The first analysis is based on the original scenario proposed by Acikmese.9 In this case we computed the
solution for n = 8, p = 7 (which leads to a total of 50 discrete nodes, including the initial condition). The
solution is depicted in Figs. 6-10. We can see from Fig. 6, (showing position, velocity, acceleration and
controls) that the solution is fully consistent with the results obtained in the original formulation.9 The
glideslope constraint is also fully satisfied (Fig. 7). Note that with this constraint there is no need to include
the no-subsurface condition in the transcription process, since the cone defined by Eq. (40) is stricter than
the inequality of Eq. (39), which therefore becomes redundant. The final mass consumption is equal to 399.5
kg, as depicted in Fig. 8. Figures 9-10 show the control history with respect to time and in polar coordinates
respectively. The original non-convex control constraints are satisfied, and the equality condition Γ = ‖T‖
is satisfied, as prescribed by the application of the Pontryagin’s minimum principle to this specific problem.
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Figure 6. Solution obtained with hp pseudospectral convex method - states and controls.

B. Monte-Carlo Campaign

In this section we show the results associated with a Monte-Carlo campaign (1000 cases) to test the reliability
of the method. Perturbations in terms of initial position, velocity, mass, and final time are included. The
ranges and the type of uncertainty for each of the variables included in the analysis are listed in Table 1.
States and controls are depicted in Fig. 11. The resulting perturbed trajectories are shown in Fig. 12(a),
while the mass consumption profiles are plotted in Fig. 12(b).
Remark 5 Note that in the Figs. 11-12 only the first 25 cases are shown for a better visualization of the results.
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Figure 7. Solution obtained with hp pseudospectral convex method - trajectory.
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Figure 8. Solution obtained with hp pseudospectral convex method - mass consumption.
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Figure 9. Solution obtained with hp pseudospectral convex method - control components.

From the analysis of Figs. 11 we can observe that all the solutions satisfy the constraints as in the
nominal case. Despite the large variations in initial velocities, the scheme is able to steer the lander towards
the prescribed point in every case analyzed. Of course, since the final time is not optimal, and significant
variations of initial position and velocity are introduced, the mass consumption varies quite strongly. In fact,
the optimal value of mass spent during the landing varies between 381.9 and 428.7 kg (Fig. 12(a)). The
large variability of initial conditions is visible in the resulting trajectories depicted in Fig. 12(b), where not
only two-dimensional cases, but also full three-dimensional cases are considered.
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Table 1. Monte-Carlo analysis - uncertainties.

Parameter Dispersion Distribution Units

‖r(t0)‖ ±25 Normal (1σ) m

‖v(t0)‖ ±5 Normal (1σ) m/s

m(t0) ±1 Uniform kg

tf ±3 Uniform s

C. Accuracy Comparison

Finally, a comparison of accuracy between the pre-existing techniques and the new method has been carried
out. The comparison has been performed by looking at CPU times required to obtain a solution and at
the errors accumulated when the solution is propagated via Runge-Kutta scheme. The errors obtained by
propagating the optimal solution for the case n = 8, p = 7 are depicted in Fig. 13. Specifically, the errors
in position and velocity obtained by using standard convex methods are shown in Fig. 13(a), whereas Fig.
13(b) depicts the corresponding errors associated with the proposed hp pseudospectral method. It is already
well-visible that the proposed scheme is more accurate than standard methods given the number of nodes
employed to compute the solutions.

Finally, a comparison in terms of accuracy and CPU time has been performed. The proposed method has
been compared with the standard convex algorithm (here indicated simply as convex ), as well as with the
p-pseudospectral convex method, based on the use of a unique domain (called p-ps-convex ). Consistently,
the proposed method has been labeled hp-ps-convex.

Results are compared in terms of errors, which measure the accuracy of the different convex algorithms,
and the CPU time required to compute a valid solution. The errors are obtained as difference between the
optimal trajectory and the propagated solution generated by propagating the optimal controls. The CPU
times are simply the time required by ECOS31 to solve the corresponding SOCP problem. For a better
characterization of the CPU times, every case has been computed 10 times, and the results averaged. The
dataset is computed for different values of h and p. The compound number of nodes (that is, 25, 50 and
100) associated with each hp case has been used as input to the other two algorithms for a fair comparison
of the results, presented in Table 2.
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Figure 11. Monte-Carlo analysis of hp pseudospectral convex method - states and controls, x component in
blue, y component in red, z component in yellow (1000 cases).
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Figure 12. Monte-Carlo analysis of hp pseudospectral convex method - trajectories and mass consumption
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Figure 13. Accuracy analysis - standard convex method vs hp pseudospectral convex method - 50 nodes.
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Table 2. Comparison of accuracy and CPU times.

Method Nodes CPU time (µ, ms) CPU time (1σ, ms) max error pos (m) max error vel (m/s)

hp ps-convex 25 46 18.0 89.82 3.30

convex 25 16 0.3 403.00 18.87

p ps-convex 25 74 1.0 24.89 1.35

hp ps-convex 50 73 0.5 20.36 1.21

convex 50 34 0.4 196.24 9.31

p ps-convex 50 450 26.5 6.07 0.83

hp ps-convex 100 208 26.4 15.42 0.65

convex 100 108 47.4 96.86 4.63

p ps-convex 100 2760 354.1 1.51 0.38

The most accurate method is the p ps-convex, with a maximum error in terms of position and velocity
(n = 25) equal to about 24 m and 1.4 m/s, respectively. The errors go up to more than 400 m and 18 m/s
when the standard convex algorithm is employed. The proposed hp ps-convex reduces this error to about 90
m and 3.3 m/s. In terms of CPU time the standard method is still faster, with a mean value of 16 ms against
a value 4.5 times larger when the p method is used. The hp method represents an ideal compromise since
it is faster than the p method (46 ms), but the error produced is much closer to the p method than to the
standard convex scheme. When the number of nodes is increased the differences in time become more larger
as the p method computation is heavier (about 2.7 s), against 208 ms required by the hp method. However,
the error obtained by the hp method is still much better than the standard method. The difference in the
CPU times can be easily understood if one looks at the patterns of the associated matrix representing the
underlying system of equations, depicted for the three methods in Figs. 14, 15 and 16. While the standard
method is much closer to a diagonal matrix, the p method results in a sparse matrix having the elements
much more uniformly distributed. The introduction of segments provided by the hp method instead allows
for a block-diagonal matrix, which translates into a faster method than the p method, and at the same time
into a more accurate algorithm with respect to the standard method.
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Figure 14. Matrix associated with the system of linear equations - standard convex transcription: density =
1.18%.
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Figure 15. Matrix associated with the system of linear equations - p pseudospectral convex transcription:
density = 9.16%.
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Figure 16. Matrix associated with the system of linear equations - hp pseudospectral convex transcription:
density = 2.15%.

VII. Conclusions and Future Outlook

In this work a new hybrid framework consisting of hp-pseudospectral methods and convex optimization
has been proposed. The purpose was to reduce the computational gap with respect to standard convex
schemes applied to descent and landing scenarios, while increasing the accuracy of the solution computed by
the optimization process beneath them. Results confirm that the proposed technique leads to a significant
reduction of the CPU times (e.g., up to more than 13 times when 100 nodes are used), with respect to
the previous generation of pseudospectral convex methods, while being at the same time significantly more
accurate than standard convex optimization. Future work will include different scenarios to extend the
analysis to a broader class of problems, and will analyze more in depth the influence of the h and p terms
in the accuracy of the scheme, to come up with an optimal selection criterion to be integrated within the
method.
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