Coastal modelling topography data by waterline retrieval from Sentinel-1 satellite acquisitions: from method development to a Near Real Time service

Stefan Wiehle, Andrey Pleskachevsky, Sven Jacobsen - German Aerospace Center (DLR), Maritime Safety and Security Lab, Bremen Egbert Schwarz, Holger Daedelow, Detmar Krause - German Aerospace Center (DLR), German Remote Sensing Data Center, National Ground Segment, Neustrelitz

Summary

- Synthetic Aperture Radar (SAR) data are independent of cloud cover and lighting
- Sentinel-1 SAR satellites offer daily acquisitions available free of charge
- Developing automated waterline retrieval processor for coastal waters
- Special application for Wadden Sea: Tidal flats topography and morphology
- Daily Near-Real-Time service possible

with development of full automation

Sentinel-1 SAR satellite acquisitions

- Satellite radar acquisitions independent from cloud cover and illumination with a regular acquisition schedule
- Two satellite constellation Sentinel-1 A/B on polar orbit at ~700 km altitude
- Revisit time: 6 days (same orbit);
 German Bight: Acquisitions almost daily from different orbits

The Sentinel-1 SAR satellite (Image: ESA)

Comparison of land-water-lines in the Elbe estuary derived from a Sentinel-1 image from 13.01.2018 with the waterline processor (red) and Cuxhaven LAT level [NHN-2.06 m] in topography survey campaign data from 2010 (blue). The scene was taken at 18:08 when the water level in Cuxhaven was 354 cm, up from 322 cm at 17:18.

DLR's SAR waterline processor

- Supports data from Sentinel-1, TerraSAR-X and other SAR missions
- Contrast-based determination of land-water-boundary
- Developed for tidal flat areas with bright sandbanks and dark mudflats

Possible applications

- Validate and compare modelling results with currently ongoing changes
- Retrieve changes in the past using archive data (available back to 2014) and compare to hindcasting results
- Spot morphologic changes directly without

- Interferometric Wide Swath (IW) acquisition mode
 - Swath width: 250 km
 - Image strips of >1000 km length
 - 10 m pixel spacing
- Data available free of charge from Copernicus Data Hub or CODE-DE
- Accuracy of about 2 pixels / 20 m in Sentinel-1 IW mode
- Fully automatic operation envisaged
- Output in vector based formats, e.g. kml-polygons
- Combination of multiple scenes with different tidal states allows reconstruction of topography

in-situ campaigns to adapt models or inform local authorities

 Identify regions of high variability to focus future measurement campaigns

TriBand antenna at DLR ground station Neustrelitz

Satellite data processing chain

Located at DLR ground station Neustrelitz
Official receiving and processing station for data from Sentinel-1, TerraSAR-X and

Example for one day of Sentinel-1 coverage over German North Sea and Baltic Sea coasts. (Source: CODE-DE)

many other satellites

- Near Real Time (NRT) processing chain: Automatic generation of value-added maritime products, e.g. wind, sea state, ship detection
- NRT delivery usually within 20 minutes after acquisition
- Data delivery to end user via FTP or quicklook via email, e.g. to ships

German Aerospace Center (DLR) Remote Sensing Technology Institute Maritime Safety and Security Lab Henrich-Focke-Str. 4, 28199 Bremen, Germany

