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ABSTRACT

In this paper, we investigate making use of a convolutional
neural network (CNN) to solve the task of identifying corre-
sponding patches in very high resolution (VHR) optical and
SAR imagery of complicated urban scenery. By doing so,
the binary decision function is learnt directly from automati-
cally generated training data and does not resort to any hand-
crafted features. First evaluations show great potential for
further studies towards a generalized multi-sensor matching
procedure.

Index Terms— synthetic aperture radar (SAR), optical
imagery, data fusion, deep learning, convolutional neural net-
works (CNN), image matching

1. INTRODUCTION

The identification of corresponding image patches is used
extensively in computer vision and remote sensing-related
image analysis, especially in the framework of stereo ap-
plications. While quite some established feature-based ap-
proaches, specifically designed for the matching of optical
images, exist (e.g., the well-known and widely used SIFT
approach), to this date the matching of images acquired by
different sensors still remains an open challenge. Identifying
correspondences of SAR and optical patches is a non-trivial
task, as there are a couple of challenges that are caused by
two completely different sensing modalities: SAR imagery
collects information about the physical properties of the scene
and follows a range-based imaging geometry, while optical
imagery reflects the chemical characteristics of the scene and
follows a perspective imaging geometry. Hence, particularly
structures elevated above the ground level, such as buildings
in urban areas, show strongly different appearances in both
SAR and optical images (cf. Fig. 1).

CNNs trained by backpropagation have recently shown
promising performance in large-scale image classification [1].
This gave the beginning to a surge of studies exploiting CNNs
for various visual analysis tasks. Meanwhile, CNNs are well
known to be very good at learning input-output relations given
enough labeled training data.

Fig. 1. Two examples for the different appearance of ur-
ban objects in non-rectified VHR SAR and optical data. Left
column: TerraSAR-X amplitude image (range direction: top-
down), middle and right column: airborne optical imagery
with different viewing angles.

As has been shown before, CNNs also provide a pow-
erful means for the matching of homologue image patches
[2]. While almost all of the hitherto published work deals
with the classical problem of optical-to-optical image match-
ing, recently we have shown that CNNs also allow to learn
the identification of corresponding patches in seemingly very
different SAR and optical images of complex urban scenes
[3]. In order to solve this task, we have proposed a pseudo-
siamese architecture with two identical yet completely seper-
ate convolutional streams, whose information is only fused in
a final, fully connected decision layer.

2. HOW TO GENERATE TRAINING DATA?

As is well-known, it is necessary to use a large number of
training samples to learn the huge number of parameters of a
deep CNN. In our case, the first major problem is to get hold
of these training data, as even for human experts, the match-
ing of homologue image patches in VHR SAR and optical
images of complicated urban scenery is a non-trivial task. In
order to deal with this challenge, we utilize an object-space-
based matching procedure developed for mapping textures
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Fig. 2. The used 3D point clouds and the corresponding SAR-optical patches in the 3D space.

from optical images onto 3D point clouds derived from SAR
tomography [4].

The core idea of this approach is to match the SAR and the
optical images in 3D space in order to deal with the inevitable
differences caused by different geometrical distortions. This
often would require an accurate digital surface model (DSM)
of the area to link homologue image parts via a known object
space. In contrast, the approach in [4] creates two separate 3D
point clouds one from SAR tomography and one from opti-
cal stereo matching, which are then registered in 3D space to
form a “SARptical” point cloud, which serves as the neces-
sary representation of the object space. An illustration of the
data generation setup can be found in Fig. 2.

To estimate the 3D positions of the individual pixels in the
images, an interferometric stack of SAR images is required,
as well as at least a pair of optical stereo images. The match-
ing of the two point clouds in 3-D guarantees the matching
of the SAR and the optical images. Finally, we can project
the SAR image into the geometry of the optical image via the
“SARptical” point cloud, and vice versa.

In this work, we made use of a stack of 109 TerraSAR-X
high resolution spotlight images of Berlin acquired between
2009 and 2013 with about 1 meter resolution, and of 9 Ul-
traCAM optical images of the same area with 20cm ground
spacing. After the 3D point cloud reconstruction, 32,446 pix-
els were selected from the SAR images and projected into
the optical images, yielding 89,502 optical patches. Image
patches of 112×112 pixels are centered at a given SAR pixel,
and a similarly large patch around the projected position in the
optical image is cropped to generate a pair of corresponding
SAR-optical patches. Proper corrections, including rotation
and adjustment of the pixel spacing, has been applied on the
corresponding patches, so that they align with each other at
a first approximation. The reason for the different number
of patches is that the 9 optical images are acquired at multi-
ple viewing angles, so that one SAR image patch may have

a maximum of 9 corresponding optical image patches, de-
pending on the visibility of the SAR pixel from the respective
optical point of view. Fig. 1 shows two examples of the ex-
tracted corresponding patches, where the left most column is
the selected SAR image patch, and the other two columns are
the corresponding optical patches, respectively. The SAR and
optical patches are shown in their original geometry. As we
can see, it is still visually difficult to tell if the patches corre-
spond to each other, due to the complex 3D geometry of the
buildings. In addition, the optical patches are slightly differ-
ent because of the different viewing angle of the camera.

3. HOW TO DESIGN THE NETWORK?

3.1. Network Architecture

Conventional CNNs have shown promising performance in
various visual tasks. Yet, such network architectures are
single-input and single-output (SISO) systems. Since SAR
and optical images can be considered to lie on different man-
ifolds, in theory it is not suitable to handle the comparison
task in the focus of this paper. In order to cope with this
deficiency, we make use of a network with two separate, yet
identical convolutional streams, which process the SAR patch
and the optical patch in parallel, and only fuse the resulting
information at a later decision stage. Using this architec-
ture, the network is constrained to first learn meaningful
representations of the input SAR patch and the optical patch
separately, and to combine them on a higher level.

3.2. Detailed Configuration

The exact architecture of the network we train (cf. Fig. 4) is
mainly inspired by the philosophy of VGG Nets [1].

In general, it follows two rules: 1) Having the same fea-
ture map size and the same number of filters in each convo-
lutional layer of the same block; and 2) increasing the size of
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Fig. 3. The architecture of the proposed two-stream CNN for identification of similar patches in SAR and optical imagery.

the features in the deeper layers, roughly doubling after each
max-pooling layer. The traits of our network can be summa-
rized as follows:

• The SAR and optical image patches are passed through
a stack of convolutional layers, where we make use of
3×3 convolutional filters, rather than using larger ones,
such as 5×5 or 7×7. That is because the 3×3 receptive
field is the smallest kernel to capture patterns in differ-
ent directions, such as center, up/down, and left/right.
In addition, another prop is the use of small convolu-
tional filters will increase the nonlinearities inside the
network and thus make the network more discrimina-
tive [1].

• We utilize a convolutional layer with a 1 × 1 kernels
in the fusion stage of the network, which can be re-
garded as nonlinear transformation of the input chan-
nels [5]. The 1 × 1 convolutional layer is used to re-
duce the dimensionality by a factor of two, and is capa-
ble of modeling weighted combinations of two feature
maps produced separately by the SAR and the optical
convolution streams at the same spatial location. When
implemented as trainable filters in the network, 1 × 1
convolutional filters are able to learn a proper fusion
rule of the two feature maps, which minimizes the final
loss function.

• The convolution stride in our network is fixed to 1 pixel;
the spatial padding of convolutional layer input is such
that the spatial resolution is preserved after convolu-
tion, i.e., the padding is 0 for the 1 × 1 convolutional
layer, and is 1 pixel for the 3× 3 convolutional layers.

• Spatial pooling is achieved by carrying out seven max-
pooling layers, which follow some of the convolutional
layers. Max-pooling is performed over 2×2 pixel win-
dows with stride 2.

3.3. Loss Function

Let X = {(xsar
1 , xopt1 ), (xsar2 , xopt

2 ), · · · , (xsarn , xopt
n )} be a

set of SAR-optical pairs, where xsari , xopt
i ∈ RD×D,∀i =

1, · · · , n, whereas yi is the 0/1 label for the pair (xsari , xopti )
(with 0 and 1 denoting a non-matching and a matching pair,
respectively). We then seek to minimize the following error

E =
1

n

n∑
i=1

((1− yi)ŷ2i + yi(max(0, λ− ŷi))2) , (1)

where λ is the margin, ŷi is the output of network, given SAR-
opt pair (xsari , xopti ) and current network parameter settings θ,
as follows,

ŷi = f(xsari , xopti ; θ) . (2)

4. EXPERIMENT

4.1. Training Details

For training the network, we use the Adamax algorithm [6],
because it shows faster convergence than standard stochastic
gradient descent with momentum. The parameters of Adamax
are fixed to β1 = 0.9, β2 = 0.999, and learning rate lr =
0.002 as recommended. In the training, fairly large mini-
batches of 128 SAR-optical patch pairs are used. All weight
matrices in the network and all bias vectors are initialized
from a uniform distribution in the range [-0.1,0.1]. To train
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Fig. 4. Randomly selected examples.

the network, we randomly select 10,000 optical patches from
the available patch data, and find their corresponding SAR
patches to form the positive pairs of the training set. For the
same 10,000 optical patches, negative pairs are generated by
randomly assigning dissimilar SAR patches to them. Now,
we have 20,000 pairs as the training set. Finally, to monitor
the training course of network, we generate a validation set by
randomly selecting 10% of the patch pairs from the training
set.

4.2. Results

For testing purposes, we randomly select another 10,000 opti-
cal patches from the patch pool without any overlap between
these new 10,000 optical patches and the optical patches in
the training set. Repeating the same process as for the training
data, i.e. assigning both 10,000 similar and 10,000 dissimilar
SAR patches, we eventually create 20,000 test patch pairs.

To quantitatively evaluate the performance of our net-
work, we make use of the widely used evaluation metric
FPR95 [2], which stands for the false positive rate at 95%
recall, i.e. the lower the FPR95 value, the better. Our network
can give an FPR95 of 0.05%. In addition, our network is able
to provide an overall accuracy of 97.48% with a false alarm
rate of 0.05%. When maintaining 0% false positive rate, the
highest overall accuracy of 93.43% can be achieved by the
network. In Fig. some randomly selected examples computed
by our network are shown.

5. CONCLUSION

In this paper, a CNN-based framework for learning to identify
corresponding patches in SAR and optical images in a fully
automatic manner has been presented. A first evaluation has
shown promising results. Future work will mainly consist in

enlarging the data pool so that completely independent train-
ing, validation and testing datasets can be formed. In addition,
we will extend the network such that it is not only to cast a bi-
nary decision of correspondence, but to provide a continuous
similarity measure, which will allow to better quantifiy how
similar the different image patches actually are.
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